GRANT NUMBER DAMD17-96-1-6274

TITLE: Molecular Interactions of Bcl-2 Family Members in Breast Cancer Cells

PRINCIPAL INVESTIGATOR: Gabriel Nunez, M.D.

CONTRACTING ORGANIZATION: University of Michigan
Ann Arbor, Michigan 48103-1274

REPORT DATE: September 1997

TYPE OF REPORT: Annual

PREPARED FOR: Commander
U.S. Army Medical Research and Materiel Command
Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Abstract

The treatment of cancer with chemotherapy or radiation therapy is limited by the emergence of tumor cells resistant to these therapies. This resistance limits our ability to successfully treat these neoplasms. A major genetic event that occurs in the genesis and/or progression of cancer is alteration in the pathway of apoptosis. Recent studies indicate that the susceptibility of cancer cells to therapy-induced death is controlled in part by genes that regulate the apoptosis pathway. Of these, bcl-2 and bcl-x are expressed in a wide variety of cancer cells and encode products, bcl-2 and bcl-x, that repress the apoptotic mechanism. In order to assess the function of bcl-2 and bcl-x in maintaining the survival of cancer cells, an adenoviral vector that expresses bcl-x, a dominant inhibitor of bcl-2 and bcl-x, was constructed. In the absence of exogenous signals, the bcl-x adenovirus killed cancer cells by apoptosis including primary breast carcinomas. We postulate that apoptotic signals are constitutively expressed in proliferating cancer cells, although repressed by members of the bcl-2 family of proteins. In this proposal, we propose experiments (i) to determine the mechanism involved in bcl-x-mediated apoptosis of cancer cells using the bcl-x adenovirus to dissect molecular interactions of the bcl-2 regulatory pathway and (ii) to characterize cellular proteins that interact with bcl-x using biochemical and genetic approaches. The studies outlined in this proposal should provide novel insight into the apoptosis pathway and lead to alternative therapeutic strategies for the treatment of cancer.

Subject Terms

Breast Cancer
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

N/A Where copyrighted material is quoted, permission has been obtained to use such material.

N/A Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

X Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

N/A In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

X For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

____ In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

____ In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

N/A In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

[Signature] 7-25-97

PI - Signature Date
TABLE OF CONTENTS

Front Cover ... 1
Standard Form SF 298 .. 2
Foreword.. 3
Table of Contents ... 4
Introduction .. 5
Body ... 6-7
Conclusions ... 8
References ... 9-10
INTRODUCTION

Cancer is the result of multiple genetic events, including activation of oncogenes and inactivation of tumor suppressor genes. The protein products of the former are often mitogens, whereas the products of the latter suppress proliferation. It is becoming increasingly apparent that tumor suppressor genes like p53 function in part by activating an apoptotic death pathway. In addition, certain oncogenes such as bcl-2 appear to contribute to tumor development primarily by promoting abnormal cell survival via an apoptosis inhibitory signal. Thus, disruption of the apoptosis pathway appears integral to many malignancies including breast cancer. Furthermore, treatment of cancer with chemotherapy or radiation therapy is limited by the emergence of tumor cells resistant to these therapies. This resistance limits our ability to successfully treat these neoplasms.

The product of the bcl-2 gene, which is activated via translocation in B-cell lymphomas, is an important modulator of apoptosis in many types of cell lineages and tissues (1). Bcl-2 encodes an integral-membrane protein originally found to inhibit apoptosis of hematopoietic cell lines following growth factor deprivation, and later to prevent or delay apoptosis induced by a large variety of stimuli including γ-irradiation, glucocorticoids, heat shock and many chemotherapeutic drugs (2-5). In addition to Bcl-2, a structurally related protein Bcl-xL, has been identified by Craig Thompson's and our laboratory (6-7). Bcl-xL exhibits different regulation than Bcl-2, but like Bcl-2 inhibits apoptosis induced by a variety of signals (6-11). The biochemical mechanism by which Bcl-2 and Bcl-xL block apoptosis is not yet clear. However, Bcl-2 is known to interact with several cellular proteins (12-17). Some of these proteins, for example Bax, Bad, and Bak, share significant amino acid homology with Bcl-2 and Bcl-xL and are considered members of the Bcl-2 family (18). Bax, Bad and Bak appear to negatively affect Bcl-2 and/or Bcl-xL function through protein-protein interactions (13-15). In cancer, one of the most common abnormalities is deregulated expression of the Bcl-2 oncprotein. Up to 60% of cancers originating from many organs including breast overexpress a member of the Bcl-2 family of proteins that inhibits apoptosis (19-23).

A major genetic event that occurs in the genesis and/or progression of breast carcinoma involves alterations in the pathway of apoptosis. We hypothesize that one of these is the functional deregulation of the Bcl-2 family of proteins and that expression of these proteins plays a critical role in the maintenance of breast cancer cells and resistance of tumor cells to therapy-induced apoptosis. To determine the role of the Bcl-2 family of proteins in maintaining cancer cell viability, we constructed a recombinant adenovirus vector that expresses Bcl-xS, a dominant inhibitor of these proteins. Even in the absence of an exogenous apoptotic signal, this recombinant virus specifically and efficiently activates apoptosis in human carcinoma cells arising from multiple organs including breast, colon, stomach and sympathetic nervous tissue (24). Based on these results, we hypothesize that apoptotic signals are constitutively expressed in proliferating cancer cells and perhaps in normal cells, although repressed by members of the Bcl-2 family of proteins. In this proposal, we proposed studies (i) to determine the mechanism involved in Bcl-xS-mediated apoptosis using the bcl-xS adenovirus to dissect molecular interactions of the Bcl-2 regulatory pathway, and ii) to characterize cellular proteins that interact with Bcl-xS using biochemical and genetic approaches. The studies outlined in this proposal may provide novel insight into the apoptosis pathway and lead to alternative therapeutic strategies for the treatment of breast cancer and other malignancies.
BODY OF THE ANNUAL REPORT

Technical Objective #1: Further characterization of the interaction of Bcl-xS with Bcl-2, Bcl-xL and Bax in breast cancer cells (Tasks 1.1 and 1.2).

We presented evidence in the original proposal that MCF-7 breast tumor cells and primary breast carcinoma cells undergo apoptotic cell death after exposure to a bcl-xS adenovirus vector. **Our hypothesis** is that inactivation of Bcl-2 or Bcl-xL by Bcl-xS unleashes endogenous death signals leading to execution of the apoptotic program. We proposed experiments to examine molecular interactions of the Bcl-2 family members following expression of Bcl-xS protein, but prior to morphological/biochemical cell death, in order to define those interactions which may be created or destroyed as the apoptotic program is activated.

In these experiments, cancer cells that express stably FLAG-tagged Bcl-2 or Bcl-xL were infected with the bcl-xS or control β-galactosidase adenovirus vector. Twenty hours later the infected cells were cultured in media containing 35S-methionine-cysteine for 4-5 hrs to label newly synthesized proteins in infected cells. Cells were then lysed and protein was immunoprecipitated with anti-FLAG antibody in a buffer containing non-ionic detergents. After immunoprecipitation, the protein complexes were disrupted by heating in the presence of 1% SDS. The supernatant was then diluted and reimmunoprecipitated using anti- Bcl-X or control antibody. Using this approach, it was difficult to detect interactions between Bcl-xS and Bcl-2 or Bcl-xL due to the low sensitivity of the assay. To overcome this problem, we performed sequential Immunoprecipitation/Western-blot analysis of the same lyates. In this type of experiment, cellular lysates were immunoprecipitated with anti-FLAG and protein complexes were resolved by SDS-PAGE, transferred to nitrocellulose, and immunoblotted with anti-Bcl-X antibody. These experiments showed that Bcl-xS interacts with Bcl-xL but not with Bcl-2.

We determined next if Bcl-xS expression could alter the interaction of Bcl-2 or Bcl-xL with BAX in SHEP cells. In these experiments, FLAG-tagged-Bcl-2/Bax or Bcl-xL/Bax complexes were immunoprecipitated with anti-FLAG in the presence or absence of Bcl-xS, and the amount of bound BAX was determined by immunoblotting with anti-BAX antibody. The results showed that Bcl-xS displaces BAX from Bcl-2 and Bcl-xL after normalization for equal amounts of BAX. We could not determine if Bcl-xS could alter the amount of BAK, another partner of Bcl-2 and Bcl-xL because the cells did not express detectable levels of endogenous BAK.

In additional experiments, we have performed extensive mutagenesis of the Bcl-Xs protein to determine the regions of Bcl-xS required for its interaction with Bcl-xL and those involved in breast cancer cell killing. We have expressed the Bcl-Xs mutants in cells in vivo and are currently performing functional and biochemical analysis of the Bcl-xs mutants.

Recent experiments have suggested that Bcl-2 and Bcl-xL regulate apoptosis by interacting with and inhibiting caspases (death proteases) through a mammalian homologue of the C. Elegans CED-4 protein (25-26). Consequently, we are exploring the possibility that Bcl-xS promotes apoptosis by interfering with the ability of Bcl-2 and Bcl-xL to regulate caspase activity. In preliminary experiments, we have found that Bcl-xS can form a multimeric complex with Bcl-xL and C. Elegans CED-4. Future experiments are aimed at exploring functional and biochemical interactions of Bcl-xS with Bcl-xL, CED-4 and mammalian caspases.
Technical Objective #2: Further characterization and purification of p15, a cellular protein that interacts with Bcl-\textsubscript{xS}.

A mechanism that might explain the apoptosis-promoting activity of Bcl-x\textsubscript{S} is through binding to an upstream activator or a downstream effector of Bcl-2/Bcl-x\textsubscript{L} mediated survival. In preliminary results, we provided evidence in the original application that Bcl-x\textsubscript{S} interacts with a cellular protein, p15, in cancer cells infected with the \textit{bcl-xS} adenovirus. The significance of the Bcl-x\textsubscript{S}-p15 interaction was unclear. p15 could represent a death effector which is activated by the expression of Bcl-x\textsubscript{S}. Alternatively, p15 could be a cellular protein required for survival whose activity is inhibited by the Bcl-x\textsubscript{S} interaction. Clearly, biochemical characterization of p15 and isolation of the p15 cDNA was needed to further assess the role of p15 in Bcl-x\textsubscript{S}-mediated apoptosis.

Biochemical Purification and N-Terminal Microsequencing of p15 (Task 2.1) We purified p15 from preparative gels and submitted the material for microsequencing. Sequencing analysis revealed that the N-terminal sequence of p15 is identical to that of a region of Bcl-2, amino acids that are part of the flexible loop region (27). Thus, p15 represents a cleavage product of Bcl-2. Given these results we are not pursuing any longer the characterization of the protein band termed p15.

Genetic Screen for Bcl-x-Binding Proteins using the Two-Hybrid Yeast Assay (Task 2.2) To search for Bcl-x-interacting proteins, we screened placenta and brain cDNA libraries using Gal4-Bcl-x\textsubscript{L} and Gal4-Bcl-x\textsubscript{S} as "baits" in the yeast two-hybrid assay. In the first screen using the GAL4-Bcl-x\textsubscript{L} bait, fifty six positive clones were identified that interacted with Gal4-Bcl-x\textsubscript{L}. Forty one cDNAs encoded Bad, a Bcl-2 family member recently isolated by binding to Bcl-2. Ten cDNAs encoded Bcl-2 which is known to bind Bcl-x\textsubscript{L} in the two-hybrid system. The nucleotide sequences of four cDNAs were novel in that they did not reveal significant homology to any known gene or translated products in the databases. Three of these novel cDNAs encoded the same gene which we have named \textit{harakiri}. The same gene was identified as an interacting partner of Bcl-2 (28). \textit{Harakiri} functions as a regulator of Bcl-2 and Bcl-x\textsubscript{L} and apoptotic cell death in mammalian cells. The \textit{hrk} product (HRK) does not exhibit significant homology to Bcl-2 or Bcl-x\textsubscript{L} and lacks the conserved BH1 and BH2 domains which are shared by Bcl-2 family members. Significantly, HRK physically interacts with anti-apoptosis proteins Bcl-2 and Bcl-x\textsubscript{L} but not with death-promoting Bcl-2 members such as Bax and Bak. Expression of HRK induces rapid onset of cell death in mammalian cells including breast cancer cells. Importantly, the death-promoting activity of HRK is repressed by Bcl-2 and Bcl-x\textsubscript{L} suggesting that HRK is a common target for the anti-apoptosis proteins Bcl-2 and Bcl-x\textsubscript{L}. Details of these results have been recently published (Inohara \textit{et al.} \textbf{The EMBO J.} 16:1686-1694, 1997).
CONCLUSIONS

The studies which we have performed in the past year are important in that they have provided information regarding the mechanism by which the Bcl-XS adenovirus kills tumor cells. Particularly revealing was the interaction of Bcl-XS with Bcl-XL but not with Bcl-2 suggesting that Bcl-XS functions at least in part through another regulator. A candidate for this regulator is a mammalian homologue of the C. Elegans protein CED-4. Through a genetic screen in yeast, we have identified and characterized HRK, a novel protein that interacts with Bcl-2 and Bcl-XL and induces apoptosis of cancer cell lines including breast tumor cells. Although the mechanism of the phenotype remains unclear, these results suggest that proteins of the Bcl-2 survival pathway that are targeted by Bcl-XS may be required for the terminal differentiation of mammary epithelium induced by pregnancy.
REFERENCES

