6. AUTHORS
Dr. Teresa L. Head-Gordon

5. FUNDING NUMBERS
F49620-94-1-0081

4. TITLE AND SUBTITLE
Optimization of Molecular Structures

8. PERFORMING ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION
NAME(S) AND ADDRESS(ES)
Lawrence Berkeley National Laboratory
Berkeley, CA 94720

9. SPONSORING/MONITORING
AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NM
110 Duncan Avenue, Room B-115
Bolling Air Force Base, DC 20332-8080

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
There has been improvement in robust prediction of secondary structure of real proteins. New models of aqueous solvation have been used to predict energy surface descriptions for protein structure.

14. SUBJECT TERMS
robust, proteins, aqueous

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
UL
Progress Report
AFOSR, Optimization of Molecular Structures
September 1, 1996
Revised 5/7/97

1. Cover Sheet:
P.I.: Dr. Teresa L. Head-Gordon
Life Sciences Division
Lawrence Berkeley National Laboratory
Berkeley, California 94720
Grant start date: 12/1/93
Grant number: F49620-94-1-0081

2. Objectives:
We have new network results that show good improvement in robust prediction of secondary structure of real proteins, especially in the category of beta-sheets. We have completed the final testing (known as jack-kniving) to see that the network can predict well over divisions of the total database into different training and test sets. We have submitted a manuscript to report these results.

We have also revised our objectives this year to improve the energy surface descriptions for protein structure by incorporating new models of aqueous solvation. This type of improvement is vital for energetically distinguishing native protein folds from misfolded proteins. The original gas phase energy surfaces would involve optimization applied to an objective function that looks like a golf course. The addition of aqueous solvation, a physically motivated and more realistic description of proteins and their environment, qualitatively changes the surface to have a distinct global energy region corresponding to the native structure, and to correctly distinguish that region from all misfolded structures which are now higher in energy. These improved energy surface descriptions will provide a more realistic energy surface and meaningful application of global or constrained optimization to the prediction of protein structure.

3. Status of effort:
Protein structure prediction involves two major areas of research: (1) a realistic energy surface (or objective function), and (2) a means for rapidly characterizing that energy surface by determining the global minimum and all low-lying minima on that surface. Our current status is a major gearing up of my laboratory to use global optimization
methods (stochastic/perturbation from the Schnabel and Byrd groups at U. of Colorado, Jorge More' at Argonne National Labs) and soft constraint optimization (defined from my designed neural networks) together to predict protein structure using high performance computing platforms such as the Cray T3E. We have also made important progress this year on a new direction for improving the energy surface, by going from gas phase function to energy surfaces which can ultimately describe an aqueous solvent environment, energy functions which are manageable in the context of optimization. This new energy surface will ultimately be combined with our designed neural networks and global optimization.

4. Accomplishments/New Findings:
One new accomplishment this year is the recognition of how to extract potential of mean force functions that describe aqueous solvation between amino acid pairs using a combination of neutron scattering (experimental collaborator: Prof. Robert Glaeser, UC Berkeley) and molecular dynamics simulations. These will be numerically-based functions and derivatives that will be interfaced with gas phase energy functions such as AMBER to describe a protein in aqueous environment. We have realized one publication in press, and two in preparation. The longer term goal is to use the new energy surfaces in conjunction with global and constrained optimization. The success and predictive capacity of global and constrained optimization methods to find low energy or even global energy structures will rely heavily on a qualitatively correct energy surface.

Our second accomplishment is the that all pieces of the protein structure prediction approach are in place: physically derived constraints from neural networks, global optimization in small subspaces from the Byrd and Schnabel groups (and future collaborations with Jorge More' and global continuation), and substantial high performance computing resources at NERSC. My group has built a "front end" piece of code that sets up the energy surface for a given protein for subsequent global optimization using neural networks and stochastic/perturbation, has ported this combined piece of software to the Cray T3D and T3E platforms which exist at the newly established supercomputer center (NERSC) at LBNL, and starting new improvements on our neural network designs to predict secondary structure biases that will be used in our optimization schemes.

5. Personnel Supported
Dr. Teresa Head-Gordon (PI)
Richard C. Yu (research assistant)

6. Publications:
Published:

Submitted manuscripts or in preparation

7. Interactions/Transitions:
My research has appeared in a publically distributed business opportunity manual which encourages CRADAs between industry and LBNL in 1995 and 1996 and 1997, and we have copyrighted our algorithm. I have had inquiries from industry on using this algorithm.

8. New discoveries, inventions, or patent disclosures
Our patent office determined that software can not be patented, and copyrighted it instead.

9. Honors/Awards
Promotion to computational biology group leader at LBNL (do promotions count? maybe not!)