FINAL PRODUCTIVITY REPORT

Context-Sensitive Visual Processing:
Segmentation and Grouping, Visual Search,
and 3-D Surface Perception

ONR N00014-94-1-0597

Start Date: April 1, 1994
Duration: 36 months, plus 3 month, no-cost extension
First-Year Budget $90,000
Total Budget $260,000

Reporting Period: April 1, 1994 to June 30, 1997

Ennio Mingolla, PI
Department of Cognitive and Neural Systems
Boston University
677 Beacon Street
Boston, MA 02215

September 24, 1997
Context-sensitive visual processing: Segmentation and grouping, visual search, and 3-D surface perception

Ennio Mingolla

ONR N00014-94-1-0597

Psychophysical experiments in visual search, texture segregation, motion segmentation, lightness perception on 3-D surfaces, and the perception of heading have been designed, executed, and analyzed. Data from these experiments and others has been used to refine parameter selection for the Boundary Contour System model of early human vision and its application to image processing. Mingolla has obtained a security clearance and consulted with Dr. Allen Waxman's group at MIT Lincoln Laboratory on night vision and image processing. Mingolla continues to work in modeling (neural architectures for brightness perception, illusory contours, figure/ground segmentation, search for targets in clutter, motion perception) and image processing (segmentation or enhancement of SAR and LADAR imagery).
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

<table>
<thead>
<tr>
<th>Block 1.</th>
<th>Agency Use Only (Leave blank).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 2.</td>
<td>Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.</td>
</tr>
<tr>
<td>Block 3.</td>
<td>Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).</td>
</tr>
<tr>
<td>Block 4.</td>
<td>Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.</td>
</tr>
<tr>
<td>Block 5.</td>
<td>Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:</td>
</tr>
<tr>
<td></td>
<td>C - Contract</td>
</tr>
<tr>
<td></td>
<td>G - Grant</td>
</tr>
<tr>
<td></td>
<td>PE - Program</td>
</tr>
<tr>
<td></td>
<td>PR - Project</td>
</tr>
<tr>
<td></td>
<td>TA - Task</td>
</tr>
<tr>
<td></td>
<td>WU - Work Unit</td>
</tr>
<tr>
<td></td>
<td>Accession No.</td>
</tr>
<tr>
<td>Block 6.</td>
<td>Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).</td>
</tr>
<tr>
<td>Block 7.</td>
<td>Performing Organization Name(s) and Address(es). Self-explanatory.</td>
</tr>
<tr>
<td>Block 8.</td>
<td>Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.</td>
</tr>
<tr>
<td>Block 9.</td>
<td>Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.</td>
</tr>
<tr>
<td>Block 10.</td>
<td>Sponsoring/Monitoring Agency Report Number. (if known)</td>
</tr>
<tr>
<td>Block 11.</td>
<td>Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in... When a report is revised, include a statement whether the new report supersedes or supplements the older report.</td>
</tr>
<tr>
<td>Block 12a.</td>
<td>Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).</td>
</tr>
<tr>
<td></td>
<td>DOD - See DoDD 5230.24, “Distribution Statements on Technical Documents.”</td>
</tr>
<tr>
<td></td>
<td>DOE - See authorities.</td>
</tr>
<tr>
<td></td>
<td>NTIS - Leave blank.</td>
</tr>
<tr>
<td>Block 12b.</td>
<td>Distribution Code.</td>
</tr>
<tr>
<td></td>
<td>DOD - Leave blank.</td>
</tr>
<tr>
<td></td>
<td>DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.</td>
</tr>
<tr>
<td></td>
<td>NASA - Leave blank.</td>
</tr>
<tr>
<td></td>
<td>NTIS - Leave blank.</td>
</tr>
<tr>
<td>Block 13.</td>
<td>Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.</td>
</tr>
<tr>
<td>Block 14.</td>
<td>Subject Terms. Keywords or phrases identifying major subjects in the report.</td>
</tr>
<tr>
<td>Block 15.</td>
<td>Number of Pages. Enter the total number of pages.</td>
</tr>
<tr>
<td>Block 16.</td>
<td>Price Code. Enter appropriate price code (NTIS only).</td>
</tr>
<tr>
<td>Block 20.</td>
<td>Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.</td>
</tr>
</tbody>
</table>
Item 1: Overview of Progress

Psychophysical experiments in visual search, texture segregation, motion segmentation, lightness perception on 3-D surfaces, and the perception of heading have been designed, executed, and analyzed. Data from these experiments and others has been used to refine parameter selection for the Boundary Contour System model of early human vision and its application to image processing. Mingolla has obtained a security clearance and consulted with Dr. Allen Waxman’s group at MIT Lincoln Laboratory on night vision and image processing. Mingolla continues to work in modeling (neural architectures for brightness perception, illusory contours, figure/ground segmentation, search for targets in clutter, motion perception) and image processing (segmentation or enhancement of SAR and LADAR imagery).
Item 2: Summary of Research Finding:
Induced motion and visual stability in an optic flow illusion

Investigators: Christopher Pack and Ennio Mingolla

(a) Description of finding: When an expansion flow field of moving dots is overlapped by planar motion, observers perceive an illusory displacement of the focus of expansion (FOE) in the direction of the planar motion (Duffy & Wurtz, 1993, Vision Research, 33, 1481-1490). The illusion may be a consequence of induced motion, wherein an induced component of motion relative to planar dots is added to the motions of expansion dots to produce the FOE shift. Such a process could be mediated by local, “center-surround” receptive fields. Alternatively, the effect could be due to a higher-level process which detects and subtracts large-field planar motion from the flow field. We probed the mechanisms underlying this illusion by adding varying amounts of rotation to the expansion stimulus, and by varying the speed and size of the planar motion field. The introduction of rotation into the stimulus produces an illusory shift in a direction perpendicular to the planar motion. Larger FOE shifts were perceived for greater speeds and sizes of planar motion fields, although the speed effect saturated at high speeds. While the illusion appears to share a common mechanism with center-surround induced motion, our results also point to involvement of a more global mechanism that subtracts coherent planar motion from the flow field. Such a process might serve as a means of maintaining visual stability during eye movements.

(b) Significance: Besides being important to the fundamental understanding of mechanisms for computing heading and maintaining visual stability during eye movements, an understanding of this illusion may be important in any task involving rapid navigation guided by artificial displays. This illusion is highly “cognitively impenetrable,” in the sense that it is experienced even if the observer is aware in advance of the conditions of the display. As a result, it may make an unwelcome appearance in a variety of situations, including the use of “head up” displays, which can superimpose imagery from one modality (e.g. an artificial sensor) with another modality (including a natural view through a windshield). A detailed understanding of the origins of the illusion can aid the design of techniques for mitigating its effects.

(c) Figures: Three color figures on paper and transparencies are attached to this report.

(d) Manuscript: A copy of Pack, C. and Mingolla, E. Induced motion and visual stability in an optic flow illusion. Technical Report CAS/CNS-97-008, Department of Cognitive and Neural Systems, Boston University is attached to this report.
Item 3: Productivity Report:
April 1, 1994 to June 30, 1997

(a) Published papers:

Grossberg, S., Mingolla, E., and Williamson, J., Synthetic aperture radar processing by a multiple scale neural system for boundary and surface representation. Neural Networks (Special Issue on Automatic Target Recognition), 1995, 8(7/8), 1005-1028.

(b) Papers in press:

Chey, J., Grossberg, S., and Mingolla, E., Neural dynamics of motion processing and speed discrimination. Vision Research, in press.

(c) Technical reports:

(d) Book chapters published:

(e) Book chapters in press:

None.

(f) Patent activity:

None.
(g) Presentations:

Brightness perception, illusory contours, and binocular corticogeniculate feedback. Colloquium presented at the Fakultaet fur Informatik, Universitaet Ulm, Germany, August, 1995.

A multiple scale neural system for boundary and surface representation of SAR data (with S. Grossberg and J. Williamson). Presentation at the IEEE Workshop on Neural Networks for Signal Processing (NNSP), Cambridge, Massachusetts, September, 1995.

A cortical architecture for real and illusory contour processing in Areas V1 and V2 (with S. Grossberg and W.D. Ross). Presentation at the annual meeting of the Society for Neuroscience, San Diego, California, November, 1995.

Recent results in early visual processing. Invited presentation at the International Workshop on Soft Computing in Industry, Muroran, Hokkaido, Japan, April, 1996.

Discussant for session on Lightness and Shading at the Fifth Hans-Lukas Teuber Symposium, MIT, Cambridge, Massachusetts, October, 1996.

Neural circuits for perceptual grouping. Colloquium presented to the Ohio State University Psychology Department, March, 1997.

(i) Transitions:

Transition 1: Pacific Sierra Research has developed Forward Looking Infrared Radar (FLIR) Minimal Temperature Resolvable Difference (MRTD) evaluation software based in part on the PI's prior work. The aim of the software is to emulate human perceptual responses to low-fidelity FLIR imagery, in order to automate FLIR calibration. In Phase I of an SBIR contract to the Army Test Center at Huntsville, success rates in classifying prototype targets as detectable or not by human operators ranged from 96% to 100%, as described in:

Point of contact: Gordon Moe
Pacific Sierra Research Corporation, Arlington, VA
Phone: 703-527-4975

Transition 2: The PI has obtained a security clearance and begun consulting with Dr. Allen Waxman's group at the MIT Lincoln Laboratory on night vision and image processing. Dr. Waxman's group has implemented a number of neurally-inspired algorithms based on the PI's modeling work with Stephen Grossberg on image segmentation and surface representation. The PI has made several visits to Dr. Waxman's lab to discuss algorithms and parameter adjustments for processing night vision imagery, SAR, and infrared imagery. Dr. Waxman's group continues to use/extend the PI's work for (1) multiresolution speckle reduction in SAR imagery; (2) off-system (darkness) processing for shadow noise cleaning in SAR imagery; and (3) opponent-color processing of multispectral (three bands) IR imagery for target enhancement in industrial/urban environments. Items (1) and (2) are for an Air Force sponsor; item (3) is supported by ONR.

Point of contact: Dr. Allen Waxman
MIT Lincoln Laboratory, Lexington, MA
Phone: 617-981-2056

Transition 3: The PI was also PI of a Navy-sponsored subcontract to Boston University from HNC, Inc., to develop improved segmentation algorithms for LADAR image segmentation for automatic target classification. Improvements in edge localization, grouping
across incomplete data, and speed-up of image processing algorithms are being developed at Boston University for transition to the Navy via HNC.

Point of contact: Dr. Robert Hecht-Nielsen
HNC Software, Inc., San Diego, CA
Phone: 619-546-8874

(j) Training:

Robert Cunningham doctoral student U.S. Citizen
Matthew Giamporcaro doctoral student U.S. Citizen
Allen Gove doctoral student U.S. Citizen
Seungwoo Hwang doctoral student not U.S. Citizen
Lars Liden doctoral student U.S. Citizen
Christopher Pack doctoral student U.S. Citizen
Luiz Pessoa doctoral student not U.S. Citizen
Harald Ruda doctoral student not U.S. Citizen

(k) Honors:

Invited to join the editorial board of Applied Intelligence, 1996.

(l) Equipment purchased (Year 1):

One Macintosh Powerbook 540C, including 16 megabyte memory upgrade and bundled software. Cost: $6948.