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Abstract

The establishment of a sufficient, field-measured database to support the
analysis of automatic target recognition (ATR) algorithms, sensor fusion
effectiveness, and sensor system performance for multiple combinations of
targets, environments, sensors, and locations will severely challenge the
limited, available resources currently within the U.S. Army research com-
munity. However, the use of a high-resolution, synthetic scene generator
model (SSGM) for time-independent applications can alleviate the database
requirement. We propose a methodology for a robust validation of SSGM
that will consist of defining sets of images (real and corresponding SSGM
imageries) and using human observers to define a baseline. First-order
comparisons of a real scene to a synthetic scene will be performed with the
use of the filters in the Tank-Automotive Research, Development and
Engineering Center (TARDEC) [1] model or a comparable computational
vision model (CVM). The similarity of target-to-background histograms as
a function of various CVM filters will need to be analyzed to define first-
order effects. Second-order metrics are defined in terms of probability of
detection, detection timeline, and false alarm rate. A metric for the target
signature will be mathematically defined to test these second-order effects.
For a given application, the necessary and sufficient metrics are discussed.

ii

1Gary Witus and Thomas Meitzler, TARDEC Visual Perception Model, Calibration and Validation, Seventh
Annual Ground Target Modeling and Validation Conference, Warren, MI (20–22 August 1996).
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1. Introduction
Many Army programs require a significant number of signature databases
in order to satisfy future program development. A partial listing of these
programs includes Intelligence Signature Assessment, Battlefield Visual-
ization Test Bed (BVTB), Automatic Target Recognition (ATR) Algorithm
Development, Sensor Performance Analyses, Multi-Sensor Fusion,
Countermeasure/Counter-Countermeasure (CM/CCM), Target Acquisi-
tion (TA) Modeling Improvement, Required Operational Capability Re-
quirements, Tri-Service Smart Missile/Munitions Testing, and Computer
War Gaming Input.

Any of these programs would require signatures related to target acquisi-
tion. Target acquisition is a function of many variables; among them are
the target, background, environment, geographical location, time, and sen-
sor. Each of these sets is composed of subsets. The number of field meas-
urements required or needed is given by

   FMeasured = iΠ
n

TA vi , (1)

where

FMeasured = field test measurement,
TA = target acquisition function,
vi = v1 = target = T (type, aspect angle, engine history, static,

           dynamic, … ),
v2 = background = B (type, homogeneity, clutter, … ),
v3 = environment = E (real, smoke/obscurant, battlefield, … ),
v4 = season = S (summer, fall, winter, spring),
v5 = location = L (Europe, Mid-East, …),
v6 = diurnal cycle = D (time),
v7 = sensor = s (type, spectral band, field-of-view mode, … ),
·
·
·
vn.

To physically measure signatures in the field to satisfy a wide dynamic
range of signature conditions would be a substantial budgetary challenge
for any project manager [2]. In addition, the timeliness of having the data
and the danger associated with the acquisition of a particular set of data
(foreign targets in hostile environment (location and weather)) would have
to be factored into the data requirements. From equation (1), it is evident
that there would not be enough manpower or dollars to completely quan-
tify the signature of one target over all the possible combinations of sets
and subsets for target acquisition. The physically measured data must not
only answer the requirements of the project, but also must be general and
of sufficient resolution to take into account other near-term signature re-
quirements [3]. Hence, there is the need to make use of synthetic databases
to augment, supplement, and/or complement field databases. However,
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this requires a robust validation [4] of the particular synthetic scene gen-
erator model (SSGM) [5] that is used so that it gains credibility and accep-
tance in the modeling and simulation community.

2. Approach
An integral step in the validation of an SSGM is comparing a set of image
pairs under the criteria that are relevant to the given application. We define
an image pair as the physically measured scene (target in background/
clutter) and the corresponding synthetically generated scene based on
model input requirements. For example, if we had a real-synthetic pair of
images of a simple block world, with well-defined lighting, angles, etc, we
would almost definitely do well by comparing the images on a pixel-to-
pixel basis. While not every pixel of the synthetic image would have the
same value as the corresponding pixel of the real image, a sufficient num-
ber would be close enough to indicate the quality of the synthesis. In this
case, the simplicity of the “world” under consideration would almost defi-
nitely permit synthesis of images that are, pixel-wise, very similar to real
images.

For most applications of synthetic images, however, a bit-wise comparison
to a corresponding real image is impractical as a validation criterion. Take,
for example, the task of comparing images of a natural scene containing
trees, grass, sky, water, etc. Here the variations that could be expected be-
tween the images would be large. For example, the wind may sway the
objects in different directions, the clouds may cast shadows in different
places, and so forth. Thus, the use of a pixel-to-pixel comparison would al-
most definitely be too exacting to effectively evaluate the quality of the
synthesis.

An alternative method of comparison that has seen substantial use in-
volves the comparison of statistics [6–11] that have been derived over the
entire image. Such statistics include gray-level histograms, local-energy
histograms, and many others. These statistics frequently give information
about the quality of a synthetic image, but rely on obtaining the statistics
from the image as a whole. Thus, they can be misleading, as the following
examples show.

An intensity histogram (also called gray-level histogram) is a necessary
but not sufficient tool for comparative assessment of an image pair. Figure
1 shows three different image pairs that would produce the same intensity
histogram for both images in each of the given pairs, while figure 2 shows
two different weapon platforms with exactly the same intensity histogram.
Figure 2 was produced by a C-program that repositions the pixels of one
image to approximate the other. Thus, virtually any image can be slightly
modified to have a gray-level histogram of another image while still re-
taining its original “look.” Therefore, given this example, sole reliance on
histogram distribution as a similarity metric for image comparison can
lead to a wrong conclusion.
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Figure 2. A tank and a
helicopter with their
identical gray-level
histogram.

Figure 1. Examples of
different images that
have the same gray-
level histograms.

Image 1

Image 2
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The approach taken by the U.S. Army Research Laboratory (ARL) is to de-
velop a robust SSGM validation methodology for any synthetic rendering
model. In particular, we would like to test this methodology against our
own model for generating synthetic images—CREATION [12–17]. Figure 3
is a generic approach to the problem of image validation. An image pair is
passed through a comparator, and its output is statistically analyzed to
identify a validation metric.

The comparator has three components: a computational vision model
(CVM), a noncomputational vision model (non-CVM) approach, and a
group of human observers used as a baseline. First-order validation
metrics are obtained from a CVM such as the Georgia Institute of Technol-
ogy Vision Model [6,7], Tank-Automotive Research Development and En-
gineering Center (TARDEC) Vision Model [1], German CAMAELEON
Model [8,9,11], or other suitable candidates. These metrics define the fun-
damental attributes of the scene and are not the final output of the model.
Second-order metrics are obtained by using trained military observers to
provide probability of detection, highest level of acquisition (classification,
recognition, identification) given detection, detection timeline, and false
alarm rate. The aforementioned models also provide some of these second-
order metrics as model output. In figure 3, note that military observers are
used as a baseline. We purposely elected not to use an ATR algorithm as a
baseline because the threshold for correct acquisition can possibly change
from algorithm to algorithm. Instead, we chose to use the ATR as one of
the comparators belonging to the non-CVM class. The non-CVM approach
can provide either first-order or second-order metrics. If an image has the
same second-order metrics as another, this does not necessarily mean that
their validation metrics will be the same. Consider as an example two im-
ages that provide all the same second-order metrics as previously men-
tioned. Such a condition can be satisfied, for example, by a low-observable
tank at close range versus a high-contrast tank at long range (all other vari-
ables being equal). A robust set of validation metrics should provide an in-
dication of two different scene conditions.

FIELD DATA     
(Same scene at 
different times)

FIELD DATA     
(Same background,

different targets,
approx. same time.)

CREATION
(Real, Synthetic)

COMPUTATIONAL
VISION MODEL

NON-CVM
APPROACH

BASELINE
(OBSERVERS)

TARDEC

GEORGIA TECH

CAMAELEON

OTHERS

2nd ORDER
METRICS

MASTER LIST

CANDIDATE
VALIDATION

METRICS

METRIC RANKING
0 ≤ |Si| ≤ 1

APPLICATIONS

Intel  Signature  Assessment

BVTB

ATR   Algorithm  Dev.

Sensor  Fusion

CM/CCM

T A  Modeling  Improvement

Cmptr  War  Gaming  Input

ANY OTHER
METRIC?

START END

YES

NOYES NECESSARY
&

SUFFICIENT

1st ORDER
METRICS

DATA SET OF
IMAGE PAIR INPUT

COMPARATOR NO

F 1(T1, T 2, ...)

F1(D1, D2, ...)

C
1(I1, I2, ...)

ANALYSES

Figure 3. Diagram of
an approach to image
validation.
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From the comparator, a master list of candidate validation metrics is com-
piled. A sufficient set of image pairs is parsed through the particular com-
ponent of the comparator that is being tested for statistical analysis. These
metrics are then rank-ordered from zero to one in terms of how similar the
synthetic scene is compared to the real scene. A similarity of one is a per-
fect fit, while a similarity of zero signifies no correlation between the two
images being compared. The number of validation metrics required is a
function of the SSGM application. For high-resolution applications, such as
target acquisition modeling improvement, most if not all the validation
metrics with high similarity values may be required. For low-resolution
applications, such as real-time computer war gaming, only a certain por-
tion of the validation metrics may be needed, and their similarity metric
requirement will be less stringent. It is therefore necessary to rank-order
the validation metrics from the master list for a given synthetic scene-
rendering application. In the CREATION model, we lack enough field-
measured data from which we can generate a synthetic scene. Part of the
problem is that the CREATION model requires a diurnal cycle target sig-
nature history for us to be able to create a synthetic scene. Although ARL
needs to validate the CREATION model, it must first be able to develop a
robust validation methodology. To alleviate the image pair database prob-
lem, some pairs could be created from real-field data, for example, scenes
at different times or for the same time and background, but different
targets.

3. Present Methodology
Our current validation approach is to postulate a similarity metric that is
defined as

   0 ≤ Si ≤ 1 , (2)

where

   
Si = 0, no match

1, perfect match

and i = statistical validation metric (0, 1, 2, …n) in the master validation
metric list.

A wide dynamic range of signature image pairs is created from field-
measured data and their corresponding synthetic scene or from field data
with differences in either time, background, target, environment, or other
measurable variables. Each image set is parsed through a comparator with,
in this case, the German CVM CAMAELEON. This model outputs the
first-order metrics such as gray-level, frequency, orientation, and local en-
ergy distributions. For each of these metrics, a statistical analysis is applied
in terms of mean, median, mode, variance, standard deviation, absolute
deviation, skew, kurtosis, and entropy. Figure 4(a) shows the field-
measured data of an M60-A1 tank scene taken with a DL calibrated infra-
red sensor at FT AP Hill, VA. A data artifact was introduced unintention-
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ally because every other field was missed during the digitization process,
resulting in a lower quality image than what a high-resolution, calibrated
DL forward-looking infrared (FLIR) instrument [18] is capable of showing.
Figure 4(b) is the synthetic infrared rendering by the CREATION model. It
contains some statistical sampling rather than first-principle rendering of
background data. Figure 5 shows the comparison between the real and the
synthetic scene based on the output of the CAMAELEON model. Figure 6
shows our use of the similarity metric with our present validation ap-
proach. Two non-CVM approaches developed by ARL for comparing im-
ages, the region-based and the symmetric difference methods, are dis-
cussed next.

Figure 4. M60-A1
tank.
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3.1 A Region-Based Method of Comparing Images

Historically, there have been two different approaches for comparing a real
scene to the synthetically rendered scene. One approach relies on very lo-
cal information such as pixels, and the other relies on global information
such as statistics generated over the entire image. Our approach is to use
the middle ground between these approaches. We call it a region-based
method of comparing images.

In region-based image comparison, we produce a mask that defines nomi-
nally 40 to 100 regions in the real or the synthetic image under comparison.
This mask is then applied to both the real image and the synthetic image,
and image statistics (gray-level histograms, local energy, etc) are computed
over each region. Comparisons are then made of the statistics obtained
from each region to the statistics obtained from the same region in the
other image. A real-synthetic image comparison is then obtained by com-
puting the area-weighted average of the similarity metrics that resulted
from each of these local comparisons.

For example, note that the images in figure 2 have identical global gray-
level histograms. Thus any comparisons based on global gray-level histo-
grams will indicate that the two images are identical. Suppose, alterna-
tively, that we generated any arbitrary tessellation and applied that tessel-
lation to both images. We could then generate the gray-level histograms
over each of the regions produced, and compare the histogram of a par-
ticular region to the histogram in the corresponding region in the other im-
age. While the gray-level statistics over the images as a whole would be
identical, the same statistics over a small portion of each of the images
would most likely not be.

Thus, regionalization has the potential to reduce the negative effects of
false matches that can occur when comparisons based on global image sta-
tistics are used. Additionally, the use of regionalization cannot produce

Figure 6. Image
similarity.
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results that make images appear to be statistically more similar than those
that would be obtained from a global comparison. Specifically, if the im-
ages compare favorably on a region-to-region basis, they will also compare
favorably on a global basis. In short, regionalization can be used to allow a
more rigorous application of common global statistics, and achieves a bal-
anced medium between the very demanding bit-wise image comparisons
and the somewhat ineffectual global comparisons.

As to the question of which regionalization to use, we think that any
regionalization or tessellation would be acceptable because an arbitrary
regionalization has the potential for producing more accurate image com-
parisons than the corresponding global comparison, and no
regionalization has the potential for producing comparisons that are less
appropriate than global comparisons. We, however, also see an advantage
in producing regionalizations that are consistent with the low-frequency
variations that are naturally present in the image.

Next we give a step-by-step description of a region-based approach of
comparing two images under a low-frequency mask. Step 1 aligns the two
images with each other, step 2 matches the average brightness of one im-
age to that of the other image, step 3 creates a low-frequency mask, and
step 4 uses the mask to apply a global image comparison metric.

Step 1: Register and crop the images.

The first step in comparing images is to make sure they are (1) registered
(or aligned) with each other and (2) of identical size. We accomplish this as
follows. A human operator locates a well-defined point in each image and
determines the pixel coordinates of that point. At present, a tool such as xv
(x-windows view) is used to determine the coordinates of that point. The
real and synthetic images have not been previously registered, so the coor-
dinates of the “well-defined point” will in general be different for the two
images. Our program “crop” is then used to produce a new image for each
of the two original images. The new images will be of a specific size and
centered at the chosen point. We used a size of 256 by 256 pixels for the ini-
tial trials. At this point we have a real-synthetic pair of images that are the
same size and registered with each other.

This registration process involves translation only. A more sophisticated
method of registration would also include rotation and scaling. However,
this would necessitate a method of mapping the rectilinear grid of pixels of
the original image to another grid of a different angular orientation and
having a different scale. Methods for performing such a mapping exist,
though they generally introduce artifacts, and the artifacts would have a
great potential to pose problems for the comparison. Thus, we insist that
the real and synthetic images be made to the same scale and oriented at
the same angle, and then the registration is done by performing only a
translation.
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Step 2: Gamma-match the images.

A process that we call “gamma-matching” is used to change the brightness
levels of the synthetic image so that the total brightness of the synthetic
image is within a small factor of the total brightness of the real image. This
is done with gamma-correction as follows. If the synthetic image is dim-
mer than the real image, gamma values are successively chosen starting at
1 and increasing in steps of 1 until the brightness of the corrected synthetic
image exceeds the brightness of the real image. If the synthetic image is
brighter than the real image, gamma values are successively chosen start-
ing at 1 and decreasing in steps of 0.1 until the brightness of the corrected
synthetic image is less than the brightness of the real image. When such
cross-over points are found, the process is repeated with smaller step sizes,
specifically step sizes of one-tenth the size currently being used. This entire
process is repeated until the ratio of the total brightness of the synthetic
image to the total brightness of the real image is within a small constant of
1. We have been using the constant 0.001.

Step 3: Construct a template for one of the two images.

The process of constructing a low-frequency template for an image in-
volves three steps: low-pass filtering the image, multilevel thresholding
the image, and uniquely labeling the regions that result. These three steps
are explained next.

Step 3a: Low-pass filter the image.

The image is low-pass filtered by convolving it with a square template con-
taining a normalized Gaussian function. Here, the user specifies the size of
the “radius” of the template to be used and then the template is automati-
cally generated. For example, if the template radius is chosen to be 5, then
an 11 by 11 template will be generated. This template is then filled with a
two-dimensional Gaussian function centered at the center pixel in the tem-
plate and having a sigma chosen so that the area under the Gaussian curve
over the template is 99 percent of the total area under the Gaussian curve
over the entire real plane. The entries in the template are then normalized
over the template (i.e., scaled so that they sum to 1). When the image has
been convolved with such a template, the brightness values of the image
will be “smooth” in the sense that there will be no rapid changes in bright-
ness. The image will actually appear blurred. This is done so that the next
step of thresholding will not produce many small regions, which would be
possible if the image contained high-frequency components.

Step 3b: Apply multilevel thresholds to the image.

After step 3a, the image will have brightness values that do not change
rapidly throughout the image. In fact, the image can be thought of as a
landscape in which the brightness values represent altitudes. After the
low-pass filtering, all the hills and valleys will be smooth and gently
rounded. There will be no sharp peaks, no spikes, no cliffs, no abrupt
changes of any sort.
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We now apply a multilevel thresholding process to the low-pass filtered
image. Here, we (arbitrarily) choose four levels of brightness uniformly
spaced between the dimmest pixel value and the brightest pixel value.
Thus, every single pixel in the image falls into exactly one range. Each
pixel is then assigned a number from 1 to 5 corresponding to the range into
which it falls. After this thresholding process, the image appears some-
what like a topographic map in that the regions shown correspond to the
brightness range of the pixels in the region. This looks very similar to topo-
graphic maps that show the altitude ranges between the curves on the
map.

Step 3c: Label the regions produced.

The next step is to give the regions that result from the above step a unique
label and to give all pixels the label of the region into which they fall. To
accomplish this, we initially set all pixels to be unlabeled and then start in
the upper left corner of the image and proceed in a raster-like scan. During
the scan, we do the following. When an unlabeled pixel is encountered, we
use a recursive process that we call flooding to label each pixel in the same
region as the newly encountered pixel with the “next available label.”
When the single raster scan is complete, all pixels in the image will be la-
beled, either from the scan itself or from the recursive flooding process.

Here we scan the image from left to right and from top to bottom in a ras-
ter pattern. If a pixel is encountered that is unlabeled, it is given the “next
available label” and the recursive flooding procedure is invoked. This pro-
cedure will attempt to recurse one pixel left, one pixel right, one pixel up,
and one pixel down from the recently labeled pixel. Specifically it will
recurse in those directions if and only if the pixel in that direction has not
been previously labeled, the pixel in that direction exists (i.e., it is not at the
edge of the image), and the pixel in that direction has the same brightness
value (after the thresholding) as the recently labeled pixel. Thus the recur-
sion will proceed to label all pixels in the given region and it will not pro-
ceed across region boundaries. At the completion of recursively labeling a
region, the raster scan will continue until another unlabeled pixel is en-
countered, at which point the region containing it will be flooded in a simi-
lar manner. This continues until the entire image has been scanned and
labeled.

Step 4: Apply a global-metric according to the mask produced.

Upon completion of the mask, or tessellation, that was produced by step 3,
we can now use that mask to apply a similarity metric in a region-based
fashion. As an example, let us consider using the “common area overlap”
of the gray-level histogram as our metric. Recall that if we were using this
metric in the global sense, we would generate the gray-level histogram for
the real image and also for the synthetic image, normalize each of those
histograms, and then determine the area under the histograms that is com-
mon to both histograms. This area will be zero if the histograms are com-
pletely disjointed and it will be one if the histograms are identical. In the
region-based method, we apply this metric not to the images as a whole,
but to each of the individual regions of the tessellation. Thus, we will
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obtain a number between zero and one for each of the regions, which indi-
cates the extent to which the gray-level histograms of the two images re-
semble each other in that region. To obtain the final image metric, we sim-
ply take an area-weighted average of the similarity metrics that we
obtained for the regions. The equation for the region-based metric is

   
vj =

φ r j – φ s j

max φ r j , φ s j

a j
A , (3)

   Vi = vi , j ,Σ
∀ j

(4)

Si = 1 – Vi   , (5)

and

0 ≤ Si ≤ 1  , (6)

where
i = first-order validation metric,

vj = region-based difference,
φ = statistical operator,
rj = region j of the real image,
sj = region j of the synthetic image,
aj = area of region j,
A = area of the whole image,
Vi = difference between real and synthetic over the entire image, and
Si = similarity of real versus synthetic over the entire image.

Equation (4) is defined as in equation (5) in order to preserve the concept of
the similarity metric we postulated earlier, i.e., the closer to the value of 1,
the better the scene rendering (see eq (2)).

3.2 The Symmetric Difference Method of Comparing
Images

The segmentation of images into regions as described above can also be
used to produce a figure of merit of comparison between two images. Con-
sider generating one mask based on the real image and another mask
based on the synthetic image. Comparison of the masks, then, could be
used as a method of comparing the images.

The manner in which we compare the masks is as follows. For one of the
two masks derived from the real image, consider a particular region in the
mask. Calculate the symmetric difference between this region and every
region in the mask of the other (synthetic) image and choose the minimum.
Notice that if this region closely coincides with a region in the other image,
this minimum will be small. In fact, if there is a region in the other mask
that is identical to the region under comparison, this minimum will be
zero. Now choose a second region in the real image and repeat this process
to obtain another “minimum symmetric difference.” If we continue this for
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all regions in the image, we will develop a string of minimum symmetric
differences. We use the sum of this sequence as a scene metric.

Notice that this sum will be small when each region in the real image
closely coincides with a related region in the synthetic image, and it will be
large otherwise. Thus, we have a metric that will be zero when comparing
two identical images, will be small when comparing two images with simi-
lar low-frequency structures, and will increase for images that have few
such commonalities. The non-CVM approach can be expressed by the fol-
lowing figure of merit:

   
ΨSDMj = min r j ∆ sk ∀k *

r j ∪ sk
A , (7)

where the same definition for the parts apply as in equation (3) and

ΨSDMj = area weighted minimum symmetric difference found and
N = total number of comparisons made between real region ri and

synthetic regions sj.
Thus,

   

Ψi =

ΨSDMjΣ
∀ j

N , (8)

Si = 1 – Ψi  , (9)

0 ≤ Si ≤ 1  , (10)

and

r ∆ s = (r ~ s) ∪ (s ~ r) = (r ∪ s) ~ (r ∩ s)  . (11)

These two proposed figures of merit as part of the scene metrics will have
the strength of distinguishing between the two images in figure 2 with
identical global intensity distribution. A sufficient amount of co-registered
data would need to be analyzed to enhance these scene metrics and prop-
erly define their limitations and usefulness in conjunction with the valida-
tion metrics and figures of merit previously defined. For image pairs
where translation, scaling (magnification), and rotation are factors to be
considered, more extensive analyses and resources would be required. For-
tunately, for the intended application of this validation methodology (ARL
CREATION model), this SSGM can negate the problems described. The
threshold for creating the masks is anticipated to be a function of the appli-
cation of the SSGM.

4. Goals
The near-term goals are to be able to generate a sufficient number of image
pairs over a wide dynamic signature range based on high-quality field
measurement data. Investigation of other candidate validation metrics [19]
will need to be analyzed.
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The long-term goal is to compare various target acquisition models in
terms of their capability to predict second-order effects, again over a wide
dynamic signature range. The prediction results from these various
models can be compared to the baseline (human observers), and the differ-
ences can be analyzed using validation metrics identified to date from this
work.

A vision to allow optimization of resources in this particular research area
is to apply this methodology for dual technology application (military and
nonmilitary). The methodology being developed for validation will lend
itself well for the analysis to allow improvement of target acquisition mod-
eling, understanding of the ATR technical underpinnings via the scene
metrics under analysis [20], and broadening of our technical interaction
with the research and development community. One pristine area for
target acquisition enhancements for the military, as well as for law enforce-
ment, is in the littoral environment [21–23]. A coalition force is being at-
tempted between Department of Defense (DoD) agencies that could be ex-
tended to North Atlantic Treaty Organization (NATO) working groups
that are interested in this particular area of research and development.
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