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Computation of the 3-D Unsteady Flow Past Deforming Geometries 

1. INTRODUCTION 

The graceful motions of swimming fish, which appear almost effortless, have fascinated people 
for thousands of years, dating at least back to Aristotle, and possibly earlier, according to Lind- 
sey [1]. In recent years, since the early 1970's, there has been increased experimental and analytical 
investigation of the physiology, biomechanics, and hydrodynamics of fish propulsion, for the pur- 
poses of quantifying the energy budget and actual swimming speeds for a variety of fish propulsive 
modes. These modes were classified by Breder [2] in 1926 and characterized steady forward swim- 
ming according to the occurrence and extent of body undulations, fin oscillations, and combinations 
of the two. For example the eel generates thrust via undulatory motion, while the tuna produces 
thrust almost exclusively through the oscillation of its lunate tail, or caudal fin. Webb [3,4], who 
has studied the morphologic adaptations of fish for optimized locomotion, characterizes the tuna 
as a cruising specialist that has adapted for long distance steady swimming. Since the tuna body 
is relatively free from undulation it is an excellent case to examine analytically. The traditional 
hydrodynamics methods of slender body theory and elongated body theory unfortunately do not 
apply to the lunate fin of the tuna, as is discussed in detail by Yates [5], thus necessitating the use 
of unsteady lifting wing theories, which themselves require a number of simplifying assumptions to 
be made. Only recently has a capability for computing three-dimensional, unsteady incompressible 
flow over a changing geometry become available [6]. In that work, the flow field generated during 
a torpedo launch from a submarine was computed. In this paper we describe the extension of that 
work to carry out a direct computation, making no geometric simplifications, of the unsteady flow 
past geometries which are themselves varying in time. In particular, we describe the computation 
of unsteady flow past a tuna, including the oscillatory caudal fin motion with its associated surface 
deformation. We also describe the computation of the time variation of the pressure distribution 
over both surfaces of the caudal fin, as well as the body and the integration over all surfaces to 
obtain the unsteady thrust. This is the first such three-dimensional incompressible flow, unsteady 
thrust computation for a deforming body that we are aware of. 

2. THE FLOW SOLVER 

The governing equations employed are the incompressible Navier-Stokes equations in an Arbi- 
trary Lagrangian Eulerian (ALE) formulation which are written as 

dv 
-^ + va - Vv + Vp = V • a , (la) 

V • v = 0 , (16) 

Manuscript approved September 9, 1997 
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where p denotes the pressure, va = v - w the advective velocity vector (flow velocity v minus mesh 
velocity w) and both the pressure p and the stress-tensor a have been normalized by the (constant) 
density />, are discretized in time using an implicit timestepping procedure. It is important that the 
flow solver be able to capture the unsteadiness of a flow field if such exists. The present flow solver 
is built as time-accurate from the onset, allowing local timestepping as an option. The resulting 
expressions are subsequently discretized in space using a Galerkin procedure with linear tetrahedral 
elements. In order to be as fast as possible, the overhead in building element matrices, residual 
vectors, etc. should be kept to a minimum. This requirement is met by employing simple, low-order 
elements that have all the variables (u,v,w,p) at the same location. The resulting matrix systems 
are solved iteratively using a preconditioned gradient algorithm (PCG). The preconditioning is 
achieved through linelets [7]. The flow solver has been successfully evaluated for both 2-D and 
3-D, laminar and turbulent flow problems by Ramamurti et al. [8,9]. The flow solver was also 
parallelized in order to improve its efficiency and portability to various supercomputer architectures. 
The parallelized grid generation and flow solver codes have been run on Intel iPSC/860, IBM SP-2 
and CRAY C-90. 

3. RIGID BODY MOTION 

In order to fully couple the motion of rigid bodies with the hydrodynamic or aerodynamic 
forces exerted on them, consistent rigid body motion integrators must be developed. The governing 
equations of motion for rigid bodies [10] and for multiple bodies in relative motion [11] are well 
known. In the present work the pressure distribution on the surface is integrated to compute forces 
and moments at each time step and the equations of motion are advanced in time to produce self- 
consistent trajectories. A more detailed description of the equations and the incorporation of the 
rigid body motion in the numerical scheme for solving the fluid flow are described in [6].. 

4. GRID GENERATION, GRID MOTION, AND ADAPTIVE REMESHING 

In order to carry out computations of the flow about oscillating and deforming geometries 
one needs to describe grid motion on a moving surface, couple the moving surface grid to the 
volume grid, and describe the remeshing of the volume grid in proximity to the moving surface. A 
representative application requiring these gridding capabilities is the computation of the vorticity 
shedding from the edges of oscillating foils, such as the tuna caudal fin which is described below. It 
is also essential for computing the flow past objects which are both accelerating and deforming. In 
deformations, the surface motion may be severe, leading, in the absence of remeshing, to distorted 
elements which in turn lead to poor numerical results. If the bodies in the flow field undergo 
arbitrary movement, a fixed mesh structure will lead to badly distorted elements. This means that 
at least a partial regeneration of the computational domain is required. On the other hand, if the 
bodies move through the flow field, the positions of relevant flow features will change. Therefore, 
in most of the computational domain a new mesh distribution will be required. One approach 
to solve these problems is to regenerate the whole computational domain adaptively, taking into 
consideration the current flow field solution. A typical simulation where bodies undergo severe 
motion typically requires hundreds of remeshings. It is thus clear that a fast reliable regridding 
capability is essential. In order to generate or regenerate a mesh reliably and quickly, we use the 
advancing front technique [12,13]. 

The use of optimal data structures, filtering of points and faces and automatic reduction of 
unused points along the advancing front has increased the speed of the grid generation process [6]. 
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Currently, the advancing front algorithm constructs grids at a rate of 60,000 tetrahedra per minute 
for very small grids to 80,000 tetrahedra per minute for large grids on the CRAY-C90. 

Our earlier simulations of two-body dynamics, where the two bodies were in close proximity, 
revealed that badly distorted elements occurred more often than expected. Given the relatively 
high cost of global remeshing, we explored the idea of local remeshing in the vicinity of the elements 
that became too distorted. In the local remeshing process the badly distorted elements and the 
elements that surround it are removed. Then, a new mesh is generated in the holes left by the 
removal of these elements. This is a fast process and takes 5-6 times less CPU time compared to 
global remeshing. 

The identification of the region of moving elements and the mesh movement algorithm to be 
employed are also important from the point of view of mesh distortion and remeshing requirements. 
These are also discussed in detail in [6]. 

The capability to adaptively remesh and to selectively move the mesh enables one to describe 
the evolution of the surface deformation of objects such as air bags, parachutes, flexible tubing, 
living organisms such as flying birds and swimming fish, and human organs dynamics such as 
the flow in blood vessels and through the heart. We have chosen for this initial computation, a 
swimming fish. We have chosen this application for two reasons: 1.) An accurate specification of a 
realistic geometry was readily available, and 2.) The geometry has immediate practical implications 
for the design of submarines and other undersea vehicles. The geometry selected was that of the 
bluefin tuna. The tuna is of particular interest for naval applications since it is reported [3] to swim 
primarily via oscillation of the caudal (tail) fin, while most other fish use primarily undulatory 
motion of the body to generate propulsive thrust and maneuvering forces. The maneuvering of a 
submarine via stern plane oscillation is clearly analogous to the tuna caudal fin swimming mode. 
Recent experimental work at M.I.T. [14] on robotic tuna swimming has shown that undulatory 
motion coupled with properly phased caudal fin oscillation leads to drag reduction. We, however, 
have chosen not to incorporate body undulation in our computations since our primary motivation 
here is to demonstrate a capability for computation of unsteady forces on moving vehicle control 
surfaces, not to investigate the dynamical processes of vorticity control on actual tuna swimming. 
It is planned to incorporate body undulation in subsequent computations where vorticity dynamics 
will be the focus. As an initial step, prior to the 3-D computation on the tuna, several 2-D 
computations were carried out. These computations were aimed at computing the time-varying 
pressure distribution over an undulating surface, which was chosen to resemble that of an eel. 

5. NUMERICAL EXAMPLES 

5.1 2-D Undulatory Motion 

In order to observe the process of longitudinal force generation by body undulation, 2-D com- 
putations of a deforming surface were carried out. The computations were performed primarily to 
test the coupled rigid body motion with the adaptive remeshing flow solver. Therefore the param- 
eters were not chosen to correspond to specific cases of swimming by objects such as snakes or eels. 
Furthermore, any such comparisons made to real swimming creatures can only be qualitative since 
the computations are 2-D. 
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The body undulation was prescribed as a sinusoidal wave traveling from the head to tail as 
follows: 

y = Asinl.2n{tf-j)\ (2a) 

The amplitude A is given by 

{0, x < x0, 
Amax B(x),    x0< x <xx and (26) 
■A-maxi X y- X\. 

where Amax is the maximum amplitude, B(x) is a blending function in the region x0 to x1? t is the 
time, / is the frequency and A is the wavelength of the traveling wave. 

Several computations were performed by varying the traveling wave speed and the amplitude 
of the wave. The computational grid, Fig. 1, shows adaptation to the body motion where 8 layers 
of elements that surround the surface move with it rigidly. In all the cases studied, the frequency 
/ was maintained to be 1.5 Hz. 

Case 1: The first simulation was performed with A = 1.0 L, Amax = 0.1 L, where L is the length of 
the object. The variation of the thrust and the side force with time is shown in Fig. 2a. The mean 
thrust in this case is 0.0495 directed towards the head. 

Case 2: Next, the wavelength of the traveling wave A was decreased to 0.5 L while keeping Amax = 
0.1 L. The variation of the force components are shown in Fig. 2b. The mean thrust in this case is 
0.047 directed towards the tail. This is due to the cancellation of the pressure force in the region 
of the tail which is responsible for a major contribution to the thrust. 

Case 3: With Amax still held at 0.1 L, A is increased to 1.25. The mean thrust is observed to 
increase to 0.0817, directed towards the head. The force component variation is shown in Fig. 2c. 

Case 4: Finally with A held fixed at 1.25 L, the maximum amplitude, Amax, was increased to 0.2 L. 
In this case, the mean thrust increased to 0.33 directed toward the head. The history of force 
components is shown in Fig. 2d. Figure 3 shows the instantaneous pressure distribution for this 
case. 

One conclusion which can be drawn from these computations is that the adaptive remeshing and 
grid motion algorithms are sufficiently robust to compute the time-varying flow about this simple 
deforming surface for all frequencies of interest. It is also clear that the amplitude and frequency 
of undulation must be chosen properly to result in forward thrust. This is of course well known 
but it is nevertheless encouraging that our simple 2-D computations give results consistent with 
experimental observations of the anguilliform motion swimming eels [3] which show one or more 
wavelengths of large amplitude along the length of the body. Having demonstrated a capability 
to compute the flow past a 2-D deforming surface, we next proceeded to a 3-D deforming surface 
including fin oscillation. 
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5.2 3-D Deforming Body With Fin Oscillation 

The surface definition and coordinate system for force computations is shown in Figure 5. The 
geometry is that of a bluefin tuna. As mentioned earlier, we intentionally selected the tuna since 
it is classified as a thunniform swimmer. That is, its primary means of thrust generation is from 
cadual fin oscillation rather than body undulation. The motion of the caudal fin was prescribed as 
follows: 

z = AsinM).(a     *o)* (3) 
[Xj-Xo)2 

where A is the amplitude of the motion at the tip of the caudal fin, u; is the angular frequency, XQ 

is the location of the peduncle, which is the smallest part of the body where the caudal fin begins, 
and x\ is the location of the tip of the caudal fin. The motion is shown in Fig. 4. The frequency of 
the caudal fin oscillation was chosen to be 12.5Hz as suggested by [15]. The mean line is prescribed 
as a parabolic arc from the peduncle so as to maintain C\ (slope) continuity throughout the entire 
body. This also implies that the caudal fin must deform during the motion. 

Several steady state solutions were obtained at various caudal positions during one quarter 
of a cycle. Forces generated by the caudal fin and the body were computed. Unsteady flow was 
computed for 3 cycles and the results compared with the steady-state one quarter cycle data. 

Since our main purpose in this work was to demonstrate the capability of the code to compute 
the .unsteady flow about deforming geometries it is sufficient, and considerably faster and thus 
cheaper, to consider the fluid as inviscid. An inviscid flow will require a much coarser grid, which 
translates to fast turnaround. 

The speed of the tuna was chosen to be 10 LI sec. [15], which is at the high end for fast cruising 
and feeding activity. First a steady state solution was obtained. Figure 6 shows the convergence 
history of pressure. It can be seen that convergence by almost 4 orders of magnitude on the residual 
error in the pressure equation is achieved in 750 iterations. 

Using the steady flow field as the initial condition, the unsteady flow was computed for 3 cycles 
of the caudal fin oscillation. The time step At = 10-4 was employed throughout and the entire 
unsteady computation was performed in 2400 steps. The grid for this computation consisted of 
approximately 52K points and 262K tetrahedra. 161 local remeshings and only 1 global remeshing 
occurred during the simulation. This is a very encouraging result that indicates that significant 
grid deformation which required remeshing was localized in small regions of the domain. The total 
computational time for this computation was approximately 12 CPU hours on a CRAY C-90. The 
time taken for advancing the flow 1 timestep was 17 seconds, the time for 1 local remeshing was 38 
sees, and the time for 1 global remesh was 300 sees. 

The time variation of the force components for the first 3 cycles is shown in Fig. 7. Notice that 
the direction of positive thrust is —x. This shows, not unexpectedly, that the thrust developed by 
the caudal fin motion is not quite sufficient to balance the nearly constant form drag on the body. 
The selected combination of flow speed, caudal fin frequency and amplitude of oscillation, and the 
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total exclusion of body undulation are no doubt responsible. It is perhaps worth repeating at this 
point that the intent of this work was not to compute the total force on a swimming fish for use 
in the analysis of fish dynamics. The fish is merely a convenient geometry with practical naval im- 
plications. An unsteady flow computation for a deforming geometry must have as a sine qua non, 
the capability for computation of the unsteady flow as the body is continuously deforming. We 
therefore intentionally excluded body undulation and viscous action from the present computations 
and thus would not expect to compare the results to any experimental fish data. We have demon- 
strated in this work the success of the method in accurately describing the deforming geometry and 
self-consistently computing the flow about it. This is particularly important for any bodies in mo- 
tion as is vividly shown in Figure 8. Figure 8 shows the effect of the caudal fin position on the force 
components, both for the steady and unsteady simulations. It is clear that the results of the steady 
state simulation agree in neither the magnitude nor the trend with the variation of the forces seen 
in the unsteady simulation results. It is traditional to analyze the forces of moving control surfaces 
by computing the force and moment on the foil at successive positions through its complete cycle. 
The traditional approach is obviously not including the dynamics of the unsteady flow, which is 
the total flow associated with both the upstream unsteady pressure distribution variations caused 
by the moving or deforming surface and the unsteady flow about the continuously moving surface 
itself. Our results indicate that the flow field must be treated in its entirety and it is not amenable 
to spatial decomposition or temporal, quasi-steady approximations. Figures 9 and 10 emphasize 
this finding. They show the differences in the surface pressure distribution between the steady 
state and unsteady computation on the pressure and suction sides of the caudal fin, respectively. 
The minimum pressure in the unsteady computation is lower for all the three instants of time. The 
maximum pressure which occurs at the leading edge of the fin remains almost unchanged. In the 
steady state computations, Figs. 9a-c and lOa-c, the pressure contours are symmetric about the 
'centerline' of the fish whereas the unsteady computations result in a higher pressure on the lower 
side of the peduncle. Figure 11 shows the surface pressure distribution at the end of 3 cycles. The 
high pressure regions in this case are near the mouth, the leading edges of the fins and near the 
gill. The velocity vectors on the surface, Fig. 12, show a low velocity region extending from the 
mouth to the tail along the centerline. We believe this is due to the fixed open mouth geometry. 
Since the fish mouth is not always open but is opening and closing, the low velocity regime does 
not persist but is rather more intermittent. We chose, again to avoid unnecessary complexity for 
our purpose, not to include opening and closing of and flow through the mouth and gills, although 
the code has the capability to do this. The magnitude , extent, and time variation of the leading 
high pressure region would clearly be altered were this to be done. A small recirculation region is 
also evidenced near the peduncle region. This could actually occur due to the corner flow that is 
set up at the maximum amplitude of oscillation and has potential for practical consequences in the 
selection of control surface oscillation strategies. 

Recently, new data on swimming tuna has become available. Dewar and Graham [16] observed 
that for a tuna of approximately 14 inches in length, the mean swimming velocity is approximately 
1 LI sec and the corresponding mean frequency of the caudal fin oscillation is approximately 2 Hz. 
We have also carried out computations for these parameter values. First a steady state solution 
was obtained. With the steady state solution as the initial condition, the unsteady simulation was 
performed. Figure 13a shows the time history of the force component in the x direction for two 
cycles of the caudal fin oscillation. The drag produced by the body up to the peduncle region 
remains almost constant at approximately 5.951bs. The thrust produced by the caudal fin, Fig 
13b, shows a sinusoidal variation, with a significantly smaller amplitude compared to the previous 
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simulation. This is due to the combination of the swimming speed and the frequency of oscillation. 
The total force of nearly 0.41bs, from Fig. 13a, is again in the positive x direction, indicating that 
the body drag still overwhelms the thrust produced by the caudal fin oscillation. As mentioned 
before, the drag on the body is mainly due to the open mouth configuration. Hence, the drag 
due the mouth region was computed separately. It is approximately 5.31bs. This amount was 
subtracted from the total force to give a corrected total force, which is shown in Fig. 13a. The 
result is a positive thrust of approximately, 4.91bs. These computations indicate that a closed mouth 
configuration is necessary if true swimming dynamics computational investigations are desired. 

6. CONCLUSIONS 

A new, 3-D incompressible unsteady flow solver based on simple finite elements with adap- 
tive remeshing and grid movement for both moving and deforming surfaces has been developed. 
The main algorithmic ingredients were described in this paper. We have demonstrated how the 
combination of adaptive remeshing techniques, an implicit incompressible flow solver for transient 
problems with moving grids, and integrators for body motion allows the simulation of fully coupled 
fluid-deforming body interaction problems of arbitrary geometric complexity in three dimensions, 
which geometry can be both moving and simultaneously deforming. The demonstration computa- 
tions on the geometry of the bluefin tuna showed that the code can accurately describe moving and 
deforming surfaces and compute the unsteady flow about those surfaces. The results of the unsteady 
computations were found to be considerably different in both magnitude and trend from the results 
from steady computations. The results suggest that the unsteady flow about moving, deforming 
geometries is not amenable to spatial decomposition or temporal, quasi-steady approximations. 
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Fig. 1. Adapted Mesh About an Undulating Eel, nelem= 9,792, npoin= 5,091 
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Fig. 3. Pressure Distribution on Undulating Eel, A = 1.25 L, Amax — 0.2 
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z = A sin (cot) (x-xo)2 /(X^XQ)2 

A = 0.1L 
(o = 2itf 
f = 12.5 Hz 

*-  X 

t= 0.0 Sec. 

t= 0.01 Sec. 

t= 0.02 Sec. 

Fig. 4. Position of Caudal Fin at Various Times 
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Fig. 5. Surface Definition and Coordinate System 
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Fig. 7. Time Variation of Force on a Swimming Tuna 
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Fig. 8. Effect of Caudal Fin Position on Forces 
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Fig. 9. Comparison of Pressure Distribution on the Pressure Side of the Caudal Fin 
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Fig. 10. Comparison of Pressure Distribution on the Suction Side of the Caudal Fin 



Flow Past Deforming Geometries 19 

Pressure 

1.56E+01 

1.50E+01 

wm 

1.45E+01 

1.39E+01 

1.34E+01 

Fig. 11. Surface Pressure Distribution on a Swimming Tuna, t=0.24 Sees 
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Fig. 12. Velocity Vectors on the Surface of a Swimming Tuna, t=0.24 Sees. 
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Fig. 13. Time Variation of Drag Force on a Swimming Tuna 
for V = 1 L/sec. and j'caudal = 2 Hz. 


