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ACTIVE VIBRATION QUENCHING USING INVERSE DYNAMICS 
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Eduardo  Bayo 
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University of California 
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ABSTRACT 
An inverse dynamics algorithm is derived for active 

vibration quenching of structures. The algorithm uses 
frequency domain technicques to compute an input function 
needed to produce a desired response at a particular degree of 
freedom. The desired response is a transition from the initial 
vibrating condition to a non-vibrating condition. The 
algorithm can also be used to modify the input function to 
correct for system disturbances while the input function is 
already being applied to the system. 

The algorithm is demostrated in a simulation of a simply 
supported beam controlled by a torque actuator at one end of 
the beam. The finite element method is used to discretize the 
equations of motion of the beam. 

1.     INTRODUCTION 
Active vibration quenching may be useful for structures 

where passive damping is not practical such as space based 
structures. Inverse dynamics may be applicable to active 
vibration quenching of such structures. Inverse dynamics of 
structures is the process of determining load profiles to 
produce a given displacement profile as a function of time at 
some point of a structure. Forward dynamics is the process of 
finding displacements given the loads. Forward dynamics is 
much simpler than inverse dynamics because it is causal 
whereas inverse dynamics may be non-causal. Because 
forward dynamics problems are causal, they can be solved by 
integrating forward in time. Many numerical integration 
schemes are available for the forward dynamics problem. In 
the non-causal problem encountered in inverse dynamics, the 
load profile to be computed begins before the known 
displacement profile begins so the solution cannot be 
determined by integrating forward in time.   Inverse dynamics 

requires methods which look both forward and backward in 
time. One method which has been used for integrating in both 
directions in time is to use frequency domain techniques 
involving Fourier transforms. Another method is to use 
convolution integrals in the time domain. A third method is to 
separate the system into causal and non-causal components 
and integrate the non-causal component backwards in time and 
the causal component forward in time. 

Most of the research in inverse dynamics has been for 
applications in controling flexible robot arms. Bayo (1987) 
introduced the inverse dynamics method with frequency domain 
techniques for open loop control of a single-link flexible 
robot. The position of the tip of the flexible link was 
controlled by a torque actuator at the pinned end of the link. 
The problem was solved for the link initially at rest. The 
method was validated experimentally by Bayo, Movaghar, and 
Medus (1988). A similar method presented by Bayo and 
Moulin (1989) was solved in the time domain by converting 
the Fourier transform equation into a convolution integral. 

Chapnik, Heppler, and Aplevich (1993) used inverse 
dynamics with frequency domain techniques to control the 
impact response of a flexible link. 

Lopez-linares et al. (1991) used inverse dynamics with 
frequency domain techniques and feedback to control a flexible 
link. Inverse dynamics was used to compute feed forward 
torques with the link initially at rest and feedback control was 
used to correct for initial conditions and disturbances. Kwon 
and Book (1990) presented a similar approach using a 
combination of inverse dynamics and feedback control. The 
inverse dynamics was computed by separating the system 
equations into causal and non-causal components. 

Inverse dynamics has also been used for multibody flexible 
manipulators. Bayo, Papadopoulos, and Stubbe (1989) and 
Ledesma and Bayo (1993) solved multibody problems with the 
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system initially at rest. Paden et al. (1993) used inverse 
dynamics and feedback to control a multibody flexible 
manipulator. The inverse dynamics was computed for the 
system initially at rest and the feedback control was used to 
correct the trajectories for initial conditions and disturbances. 

Jayasuriya and Choura (1990) presented a method for 
vibration quenching which was demonstrated on a pinned- 
pinned beam with a single fixed point actuator. The forcing 
function was a sum of sines and cosines at the natural 
frequencies of the system. The coefficients to the sines and 
cosines were determined so that all the displacements and 
velocities were zero at some future time. This method controls 
the structure at the end point of a time interval as in the 
slewing problem whereas the inverse dynamics methods 
mentioned above control a degree of freedom through a 
predetermined trajectory during a time interval. 

In the present paper, inverse dynamics is used to quench 
vibrations in a pinned-pinned beam. A torque actuator acts on 
one end of the beam to control the angular deflection at the 
other end of the beam. The beam is modeled with the same 
physical properties as modeled by Jayasuriya and Choura. The 
equations of motion are discretized using finite element 
methods assuming Bernouli-Euler beam theory. An inverse 
dynamics algorithm is derived using frequency domain 
techniques. The algorithm is demonstrated in computer 
simulations of vibration quenching of the pinned-pinned 
beam. Three problems are demonstrated. The first problem is 
to quench the beam when only the first vibration mode is 
active. The second problem is to quench the beam when many 
modes are active. In the third problem, a disturbance is added 
to the system after the forcing function is initiated, and the 
forcing function is then changed to compensate for the 
disturbance. The ability of the algorithm to correct the forcing 
function may lead to the ability for real time control by 
continually updating the forcing function. 

2.     MODELING 
The inverse dynamics algorithm will be demonstrated in a 

simulation of a pinned-pinned beam as shown in Figure 1. A 
torque, fit), as a function of time, t, acts on the left end of the 
beam to control the angular displacement at the right end of 
the beam. The beam has a total length L, Young's modulus E, 
constant cross section area A, constant area moment of inertia 
I, and density p. 

We will use finite element methods to discretize the 
equations of motion. We assume Bernoulli-Euler beam theory 
and small deflections, and neglect gravity, rotory inertia, and 
axial loading. A typical element is shown in Figure 2. Let 
v(s,t) be the tranverse displacement as a function of time, /, 
and distance, s, along the element. Let v be the nodal 
displacements and u be the corresponding nodal loads applied 
to the element. The potential energy of the element is 

V = U    E(V"(S,of ds 
2Jo 

where the primes denote partial derivatives with respect to s 
and Le is the length of the element. The virtual work done by 
inertia forces is 

[U 
SWinertia=\      8v[-pAv(s,t)]ds 

Jo (2) 

where the dots denote partial derivatives with respect to time. 
The virtual work done by nonconservative forces is 

SWnc = (5vTu (3) 

The principle of virtual work can be stated 
-8Wi„ertia+8V-8Wnc = 0 (4) 

Substituting equations (1), (2), and (3) into this equation, we 
obtain 

pA&vfs.Orfs +       ElSv"v"(s,t)ds - <5vTu = 0 
Jo i 

We discretize the displacements as follows. 
v(s,t) = h(j)v(f) = vThT 

(5) 

(6) 

In this equation, h is a row vector of shape functions based on 
the Hermite polynomials (Meirovitch, 1990). The shape 
functions are 

Ai(*) = U [xlU - txlUf + (xlUf] 

*3W = 1 - ^{xiuf + 2(x/Le)
3 

h^m^x/Uf-^xIL^ (7) 

From equation (6) we can derive the following expressions. 
Sv= 5vThT 

v= hv 
8v"= Sv (h") 
v" = h"v 

Substituting equations (8) into equation (5), we obtain 

<5vT pA     hTlufcv + El|    (h")1 

.   Jo Jo 
h"dsv -u = 0 

(1) 

(8) 

(9) 

(10) 

(11) 

(12) 
The matrices Me and Ke are the mass and stiffness matrices 
respectively for an element. The beam is modeled with several 
elements as shown in Figure 3. Assembling the elements we 
obtain the matrix equation of motion for the system, 

Setting the part in the brackets equal to zero, we obtain 

M«v + Kev = u 
where 

M, = pA     hJhds 

and 

: = pA      hT 

Jo 

K«=El|    (h")Ti 
Jo 
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My + Ky = bf(0 (13) 

where M is the system mass matrix, K is the system stiffness 
matrix, y is a vector of degrees of freedom, and b is a loading 
vector with a unit value at the degree of freedom at which the 
torque is applied and zeros in the rest of the vector. 

We   add   Rayleigh   damping  to  the  system  using  the 
expression 

C=aM+ßK (14) 

where C is the damping matrix, and a and ß are constants. The 
matrix equation of motion of the system with damping 
becomes 

My + Cy + Ky = b/(r) (15) 

The damping ratio at each natural frequency can be calculated 
from 

<;i=i/cL+Pc0i) 2\ci)i / (16) 
where £f is the damping ratio and 0); is the natural frequency in 
radians per unit time. 

3.     INVERSE  DYNAMICS 
We want to solve for the torque profile, fit), which will 

quench the initial vibrations in the system. Taking the Fourier 
transform of equation (15), we obtain 

(-«a2M + iüjC + K)y(ü)) = bflffl) 
or 

Ay=b/ 

where 

A(<u) = (-ü)2M+i<üC + K) 

(17) 

(18) 

(19) 

The caret denotes the Fourier transform and a is frequency in 

radians per unit time.  Solving equation (18) for y, we obtain 

J'tf (20) 
where 

~-i 
g=A   b=(-ü/M+iaC + K)''b (21) 

Without damping in the system, matrix A would not be 
invertible when (O is equal to a natural frequency.   For this 
reason, it is necessary to have some damping in the system for 
the algorithm to be usable. 

We can write equation (20) in an expanded form as follows. 

V y i 

\yn \gnl (22) 

The kth equation corresponding to the controlled degree of 
freedom, yk, gives us 

yk = gkf 

Solving for / , we obtain 

f=yk Igk 

(23) 

(24) 

We need to define a profile for yk(t) which will cancel the 
vibrations due to the initial conditions. We also need the 
profile to be finite in time so that we can compute its fast 
Fourier transform (FFT). To cancel the vibrations for a finite 
time, we need the profile to be the negative of the 
homogeneous response for a finite time. Therefore, we create a 
windowed profile, z(t), as follows. 

z(t) = -w(t) yk(0 (25) 

where w(t) is a windowing function and yk(t) is the 
homogeneous response to the initial conditions. The 
homogeneous response can be computed using numerical 
integration. The general shape of the windowing function and 
its first two derivatives are shown in Figure 4. The time from 
to to tf is the window of time for the FFT computation. We will 
go into more detail on the windowing function later in our 

discussion. We compute the FFT of z(t) and substitute it for yt 
in equation (24) to obtain 

/=«/» (26) 

where gk is computed at the same frequencies used to compute 
the FFT.   Taking the inverse fast Fourier transform (IFFT) of 

A 

ßco), we obtain the torque profile, ßt). We can think of fit) as 
a composition of two parts. The first part cancels the 
vibration and the second part causes the system to transition 
back to the vibrating condition. We need to eliminate the part 
of the forcing function which causes the system to transition 
back to the vibrating condition. We do this by eliminating 
the second half of ßt) as follows. 

f2(t) = 
\f(t)  , t0</ <am 

0 tm<f (27) 

In this formula, to is the starting time for the FFT window, t„, 
is the midpoint of the FFT window, and f2(t) is the desired 
forcing function which will cancel the vibrations. There will 
be some error due to truncation and overlap of the two parts of 
the torque profile, ßt). This error can be made negligible by 
choosing large enough time spans in the windowing function. 
In the time spans where z(t) is following a homogeneous 
response, the torque profile approaches zero as the rest of the 
system approaches the homogeneous response. 

We may want to modify the forcing function while it is 
being applied to correct for disturbances in the system. We 
assume we already have a forcing function, ft(t), which will 
produce a profile of ytft) which will follow a homogenous 
response after a time t2 and has zero force after V The forcing 
function, f2(t) from equation (27) will have these properties. 

241 



Using numerical integration, we compute the response of y^t) 
due to initial conditions and the forcing function from 

My + Cy + Ky = b/i(/) 

The windowed profile is then computed from 

z{t) = -w(t)yk(t) 

(28) 

(29) 
We compute g*((D) at discrete frequencies using the following 
equation. 

g = (-üJ2M+iü)C + K)"1b 

We compute the FFT of z(t) and then solve for / from 

f = Z Igk 

(30) 

(31) 

We compute the IFFT of f(a>) to obtain fit) and add the first 
half of fit) to fj(t) to obtain the new desired forcing function 
fid). 

J2(t) = 
f(t)+f\{f) ,   to <t Stm 

0 tm< / (32) 
Using numerical integration we can compute the new response 
of the system from 

My + Cy+ Ky = b/2« (33) 

Equations (28) through (33) summarize the algorithm. The 
algorithm can be continually repeated by using the profile of 
f2(t) or a portion of f2(t) with an apropriate time shift 
substituted for f,(t) in equation (28). 

The derivation of the windowing function, w(t), follows. 
We want w(t) to produce smooth functions of z, £ and z so 
that the resulting torque profile, fit), is also smooth. For z to 
be smooth, we need z" to be continuous. The windowed profile 
and its derivatives are 

z = -wyk 

z = -wyk-wyk 
Z = -wyk - 2wyk - wyl 
Z   = -wyk - 'iwyk - 3wy'k - w y'k (34) 

The windowing function, w(t), transitions from zero to one 
between t! and t2. For z, z and z to be smooth at t, and t2, we 
have the following requirements on w(t). 

w(t\) =w(t\) =w(ti) =w'(ti) = 0 
w(t2)=l 
w(t2) =w(t2) =w'(t2) = 0 

(35) 
Between   times   t, and t2, we let w(t) be described by a 
polynomial, p(6). 

«f)=M (36) 
where 

t2 - ti (37) 

Then, p(6) will have the foUowing requirements. 

P(0)=p'(0)=p"(0)=p"'(0)=0 
P(D=1 
pV)=p"(l)=p"'(l) = 0 

(38) 

The primes denote derivatives with respect to 0. We have 

eight constraints on p( 6) so we need a polynomial with eight 

constants. The polynomial, p(6) , and its derivatives can be 
written as 

p{6) = ao+ai0+a20 +a303+a404+a50
5+a606+a707 

p'(&) = ai+2a20+3a3Ö2+4a403+5a50
4+6a6Ö5+7a706 

p"(0) = 2a2+6a30+12a402+2Oa503+3Oa60
4+42a705 

p"\9) = 6a3+24a40+6Oa502+12Oa603+21Oa70
4 

(39) 

where ao through a7 are constants.   From the requirements 
/>(0)=p'(0)=p"(0)=/>'"(0)=0, we obtain 

ao = ai = a2 = a3 = 0 

From the other four requirements we obtain 

a4 + as + a6 + a7 = 1 
4a4 + 5a5 + 6a6 + 7a7 = 0 
12a4 + 20a5 + 30a6 + 42a7 = 0 
24a4 + 60a5 + 120a6 + 210a7 = 0 

or in matrix form 
1111 
4   5   6   7 
12  20  30  42 

L 24  60 120 210 J 

The solution to these equations is 

(40) 

(41) 

[a-»' " 1 " 
35 = 0 
36 0 

La7J -0 J (42) 

~ M~ 35 
35 -84 
36 70 

La?] - -20 J 

and we obtain the polynomial 

(K&) = -2O07 + 70S6 - 8405 + 3504 

where 

0 = ±ÜL 
t2-ti ti <, t <, t2 

(43) 

(44) 

(45) 

Between t3 and t4, we can use p(<f>) where <f> is given by the 
following expression which will give us a transition from one 
back to zero. 

t4-t3       ,        t3£/<t4 (46) 
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Putting the pieces of w(t) together, we obtain the following 
formula. 

0 , to < t < ti 

p(9(t)), ti<f  <t2 

1 , t2 < t   < t3 

/>(#')). t3<f   <U 

0 , U £ '  < tf 

w(0 = _ / 

(47) 

This formula was used to make the plots of w, w, and w shown 
in Figure 4. 

4.     APPLICATION 
The inverse dynamics algorithm will be demonstrated in a 

computer simulation of a pinned-pinned beam as shown in 
Figure 1. The beam is modeled with six finite elements and has 
the following properties: 

L = 0.762 m = total length 
A = 1.613 x 10"5 m2 = cross sectional area 
I = 9.6361 x 10"13 m4 = area moment of inertia 
p = 2710 kg/m3 = density 
E = 71 x 109 N/m2 = Young's modulus 
a = .01/sec, ß = .0001 sec,   Rayleigh damping constants 

(48) 

The windowing function, w(t), shown in Figure 4 will have 
the following values for to through tf. 

to = 0.0 sec 
ti =0.1 sec 
t2 = 0.2 sec 
tm = 0.3 sec 
t3 = 0.4 sec 
t4 = 0.5 sec 
tf = 0.6 sec (49) 

The first six natural frequencies of the discretized system are 

(ö! = 3.38 Hz = 21.2 rad/sec 

o>2 = 13.5 Hz = 84.8 rad/sec 

co3 = 30.6 Hz = 192 rad/sec 

co4 = 54.7 Hz = 344 rad/sec 

co5 = 86.8 Hz = 545 rad/sec 

co6 = 135 Hz = 848 rad/sec (50) 

The damping ratios associated with the first six natural 
frequencies are 

Si = .0013 

C,2 = .0043 

^3 = .0096 

C4 = .017 

Cs = -027 
C6 = .042 (51) 

We can see that this system is very lightly damped at the lower 
frequencies. 

The inverse dynamics algorithm will be demonstrated on 
three problems. The first problem is to quench the vibrations 
when only the first mode is active. The second problem is to 
quench the vibrations when many modes are active. In the 
third problem, a disturbance is added to the system while the 
torque profile is already being applied, and the inverse 
dynamics algorithm is used to change the torque profile to 
correct for the disturbance. 

4J First  Mode   Active 
The initial displacement profile of the beam is the first mode 

shape with a displacement of .075 m at the center of the beam. 
The initial velocities are all zero. The inverse dynamics 
algorithm is used to compute a torque profile which will cancel 
the vibrations in the beam. The response of the beam is 
computed using Newmark's constant-average-acceleration 
method (Bathe, 1982). The torque profile and displacement 
profiles are shown in Figure 5. Angular displacements at the 
right end of the beam and mid-span displacements are shown 
with and without the torque. 

We see that the torque is at a negligible level at 0.0 second 
and at 0.3 second where the torque profile is truncated. These 
times correspond with to and tn, shown in the graph of the 
windowing function in Figure 4. 

The angular dispacement which is the controlled degree of 
freedom settles down by 0.2 second which corresponds with 
the time t2 shown in the graph of the windowing function. 
The torque profile continues to damp the rest of the system for 
a short time after the controlled degree of freedom has already 
settled down. We see that the mid-span displacement settles 
down after the angular displacement settles down. 

4.2 Many  Modes  Active 

The initial conditions of the vectors y and y are all zero except 
for an angular velocity of 10 rad/sec at the left end of the beam. 
These initial conditions include many vibration modes. The 
inverse dynamics algorithm is used to compute the torque to 
quench the vibrations. The torque profile and displacement 
profiles with and without the torque are shown in Figure 6. As 
in the previous problem, we see that the angular displacement 
settles down by 0.2 second and the mid-span displacement 
settles down after the angular displacement settles down. 

4J—Correct for a Disturbance 
Starting with the previous solution, we add a disturbance to 

the torque profile from time t=0.02 second to time t=0.03 

243 



second. At time t=0.06 second, we apply the inverse dynamics 
algorithm to correct the torque profile. Torque profiles with 
the disturbance and displacement profiles are shown in Figure 
7 with and without the correction. 

Since the algorithm to correct the profile is started at time 
t=0.06, we expect the angular displacement to settle down by 
0.26 second. As we see in the plot, the angular displacement 
does settle down by 0.26 second as expected. 

5.0     CONCLUSION 
An inverse dynamics algorithm for quenching vibrations 

has been presented. The algorithm was demonstrated 
analytically on a pinned-pinned beam with a torque actuator at 
one end and has shown good results. The vibrations are 
damped out quickly and the required torque profiles are smooth. 
The algorithm can be repeated to correct for errors and 
disturbances after the forcing function is initiated. This will 
lead to the ability for real time control by continually updating 
the algorithm at discrete time intervals. 

The algorithm can be applied to more complicated 
structures. The torque or force actuator should be applied to a 
degree of freedom which is not a node of one of the natural 
frequencies. The actuator must also be non-colocated with the 
controlled degree of freedom. The controlled degree of freedom 
should not be at a node of any natural frequency which is to be 
quenched. 

The algorithm is robust to errors in initial conditions. 
Because the algorithm uses superposition, we can superpose 
the assumed initial conditions and the error in the initial 
conditions. Applying the algorithm will eliminate the 
vibrations due to the assumed initial conditions. The response 
after the algorithm is applied will be the homogeneous 
response to the error in the initial conditions. Each time the 
algorithm is applied this error will be reduced. 

The algorithm is also robust to errors in damping, but is not 
very robust to errors in mass and stiffness. Errors in mass and 
stiffness can cause the computed response to be out of phase 
with the actual response especially at the higher frequencies 
and we would not get the desired cancelling effect when 
applying the algorithm. The robustness can be improved by 
using inverse dynamics to compute a feed forward control and 
adding closed-loop tracking control to track the trajectories 
computed by the inverse dynamics algorithm (Kwon and Book, 
1990), (Lopez-Linares et al., 1991 ) and (Paden et al., 1993). 

More research is needed to make the computations more 
practical for real applications. Simpler models could be used if 
only the first one or two vibration modes need to be actively 
quenched. If we assume only the first two modes are present, 
then less sensors will be needed to estimate the initial 
conditions of the system. Simplifying the model and reducing 
the number of sensors would reduce the computations at the 
cost of losing some accuracy. The computations can also be 
made more efficient by using the time domain approach 
presented by Bayo and Moulin (1989) instead of the frequency 
domain approach. 
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FIG. 3. FINITE ELEMENT MODEL 

FIG. 4. WINDOWING FUNCTION, w(t) (SOLID LINE), 
AND ITS DERIVATIVES, w(t) (DASHED LINE) AND 

w(t) (DOTTED LINE), NORMALIZED TO ONE. 
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FIG. 5. FIRST MODE ACTIVE - TORQUE TO CANCEL 
VIBRATIONS, ANGULAR DISPLACEMENT AT RIGHT END, 

MID-SPAN DISPLACEMENT, WITH TORQUE (SOLID 
LINE), WITHOUT TORQUE (DASHED LINE). 
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FIG. 6. MANY MODES ACTIVE - TORQUE TO CANCEL 
VIBRATIONS, ANGULAR DISPLACEMENT AT RIGHT END 

MID-SPAN DISPLACEMENT, WITH TORQUE (SOLID 
LINE), WITHOUT TORQUE (DASHED LINE). 
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FIG. 7. DISTURBANCE IN TORQUE PROFILE - TORQUE 
ANGULAR DISPLACEMENT AT RIGHT END, MID-SPAN 
DISPLACEMENT, WITH CORRECTION (SOLID LINE) 

WITHOUT CORRECTION (DASHED LINE). 
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