
0UNCLASSIFIED

INSTITUTE FOR DEFENSE ANALYSES*IDA.

Software Reengineering of
Department of Defense Information Systems

Using Object-Oriented Technology

Kathleen A. Jordan, Task Leader

Brian A. Haugh
Larry H. Reeker

July 1995

Approved for public release;
distribution unlimited.

IDA Paper P-3145

Log: H 96-003622

19970610 043

UNCLASSIFIED

0

S

S

S

This work was conducted under contract DASWO1 94 C 0054, Task
T-S5-1266, for the Defense Information Systems Agency. The
publication of this IDA document does not indicate endorsement by the
Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

© 1995, 1997 Institute for Defense Analyses, 1801 N. Beauregard Street,
Alexandria, Virginia 22311-1772 9 (703) 845-2000.

This material may be reproduced by orfor the U.S. Government pursuant
to the copyright license under the clause at DFARS 252.227-7013
(10/88).

0

UNCLASSIFIED

* INSTITUTE FOR DEFENSE ANALYSES

Software Reengineering of
Department of Defense Information Systems

Using Object-Oriented Technology

0

Kathleen A. Jordan, Task Leader

Brian A. Haugh
Larry H. Reeker

0

UNCLASSIFIED

PREFACE

This document was prepared by the Institute for Defense Analyses (IDA) under the task

order, Object-Oriented Technology Implementation in the Department of Defense (DoD), in

response to a task objective to develop strategies for the implementation of object-oriented

technology (OOT) within specific information technology areas within the DoD. This docu-

ment is one of a set of four reports on OOT implementation. The other reports, focusing on oth-

er areas of OOT, are IDA Paper P-3142, An Object-Oriented Development Process for

Department of Defense Information Systems; IDA Paper P-3143, Object-Oriented Program-

ming Strategies for Ada; and IDA Paper P-3144, Legacy System Wrapping for Department of

Defense Information System Modernization. All of this work was sponsored by the Defense

Information Systems Agency.

The following IDA research staff members were reviewers of this document: Dr.

Edward A. Feustel, Dr. Richard J. Ivanetich, Dr. Reginald N. Meeson, Dr. Judy Popelas, Mr.

Clyde G. Roby, and Mr. Glen R. White.

11,.

Table of Contents

EXECUTIVE SUMMARY .. ES-1

CHAPTER 1. INTRODUCTION .. 1

1.1 PU RPO SE .. 1

1.2 B A C K G R O U N D .. 1

1.3 ORGANIZATION OF DOCUMENT ... 2

CHAPTER 2. TRANSITION APPROACHES FOR REENGINEERING SYSTEMS .. 3

2.1 REENGINEERING PROCESS .. 4
2.1.1 Functional Process Reengineering ... 4
2.1.2 Software Systems Reengineering ... 5
2.1.3 Scoping the Reengineering Effort ... 5
2.1.4 Related D ocum ents .. 6

2.2 REVERSE ENGINEERING .. 7
2.2.1 Artifacts and Products of Reverse Engineering 7
2.2.2 Scoping Reverse Engineering .. 8
2.2.3 Reverse Engineering Guidance .. 9

2.3 FUNCTIONAL PROCESS IMPROVEMENT MODELS 9
2.3.1 ID EF0 M odels ... 10
2.3.2 IDEFIX M odels .. 14

2.4 PROCESS-BASED SYSTEM MODELS ... 19
2.4.1 Transitions to 00 Analysis .. 20
2.4.2 Transitions to 00 Design ... 26

CHAPTER 3. SOFTWARE REENGINEERING EXAMPLE 31

3.1 BLSM M ISSIO N ... 31

3.2 PROGRAM OBJECTIVES ... 32

3.3 AIR FORCE OPERATIONS RESOURCE MANAGEMENT SYSTEM 33

3.4 ENTERPRISE ANALYSIS .. 34
3.4.1 Sources of Analysis Input .. 34
3.4.2 IDEF Business Process Models ... 35
3.4.3 Software-Level Analysis ... 35
3.4.4 0 0 A nalysis ... 36
3.4.5 Products of Analysis ... 36

3.5 SOFTWARE ENGINEERING ENVIRONMENT .. 37

3.6 BUSINESS CASE ANALYSIS PHASE .. 44

3.7 TASK-LEVEL PLANNING .. 45

v

Table of Contents

3.8 SYSTEM ANALYSIS ... 46

3.9 SYSTEM DESIGN .. 50

3.10 SOFTWARE ANALYSIS .. 50
3.10.1 00 Analysis Model and Information Management Model 53
3.10.2 Software Requirements Specification .. 55

3.11 PRELIMINARY DESIGN .. 62

3.12 DETAILED DESIGN ... 65

3.13 CODE AND TEST ... 67

3.14 FORMAL SOFTWARE TESTING .. 69

3.15 QT&E SUPPORT .. 69

CHAPTER 4. SUMMARY OF GUIDELINES AND ISSUES 73

4.1 GOT REENGINEERING GUIDELINES .. 73

4.2 OOT REENGINEERING ISSUES .. 74

LIST OF REFERENCES .. References-1

G L O SSA R Y .. G lossary-1

LIST OF ACRONYMS ... Acronyms-1

vi

List of Figures
Figure 1. Non-OO to 00 Transitions .. 3

Figure 2. Information Management Process Model ... 4

Figure 3. CIM Software Systems Reengineering Process Model 5

Figure 4. IDEFO Notation .. 11

Figure 5. AMS Context Diagram in IDEFO ... 13

Figure 6. AMS Top-Level IDEFO Diagram ... 14

Figure 7. AMS Candidate Scenarios ... 15

Figure 8. IDEF1X Notation .. 17

Figure 9. AMS in IDEF1X ... 19

Figure 10. AMS in Object Orientation ... 20

Figure 11. Structured Analysis Notation ... 21

Figure 12. AMS Context Diagram (Structured Analysis) ... 25

Figure 13. AMS Data Flow Diagram (Structured Analysis) 25

Figure 14. AMS in Object Orientation (Partial Object Model) 26

Figure 15. AMS Data Flow Diagram (Structured Analysis) 28

Figure 16. AMS in 00 Design ... 29

Figure 17. AFORMS Architecture Overview .. 34

Figure 18. Software Engineering Development Environment 38

Figure 19. BLSM Software Development Tools ... 40

Figure 20. BLSM Software Development Process ... 43

Figure 21. Business Case Analysis .. 44

Figure 22. Task-Level Planning ... 45

Figure 23. System Analysis ... 47

Figure 24. AFORMS CSCI Overview .. 48

Figure 25. System Design .. 51

Figure 26. Software Analysis .. 52

Figure 27. 00 Analysis Model ... 54

Figure 28. Information Model ... 55

Figure 29. Cardinality Example ... 60

Figure 30. Preliminary Design .. 63

vii

List of Figures

Figure 31. Logical Database M odel .. 64

Figure 32. Physical Database M odel .. 66

Figure 33. Code and Test .. 68

Figure 34. Form al Software Testing .. 70

Figure 35. QT&E Support .. 71

viii.

List of Tables

Table 1. IDEF1X to Object Model Mapping .. 18

Table 2. List of Potential High-Commonality BLSM Objects 37

0

0i

EXECUTIVE SUMMARY

Purpose

Systems reengineering is building a new system using an existing system as the basis

for requirements or design. As an activity that encompasses a combination of other activities,

systems reengineering has the goal of improving the software system in terms of functionality,

performance, and/or implementation. This report describes a set of strategies using object-ori-

ented technology (OOT) for reengineering information systems in the Department of Defense

(DoD). It specifically addresses the transition from the process-oriented business and systems

analysis models used in legacy systems to the use of object-oriented (00) analysis models. The

audience of this report includes DoD software development managers, project managers, tech-

nical leads, and software engineers.

Transition Issues

Two issues were identified as critical in comprehending the effort required for an 00-

based systems reengineering effort.

Non-O0 specifications in legacy systems. Artifacts (requirements, design, and data-

base specifications) obtained from a legacy system will probably not be in an 00

form. The majority of older systems were built before either OOT or even structured

techniques were in common use. Consequently, it may not be a simple issue to for-
ward engineer a new system using these non-OG specifications.

* Non-OO functional process improvement policy. Current DoD policy requires that

a functional process improvement activity be carried out before reengineering an

information system, but the techniques and models to support functional process
improvement are not object oriented. These functional process improvement mod-

els are supposed to be used as input to the information system reengineering or

development.

To help address these issues, this document focuses on transitioning extracted require-

ments and design products that are not object oriented to an 00 form. The transition of mod-

eling paradigms is a relatively unexplored area but has become more important with the

ES-1

reengineering of functionally based systems to 00 form. The strategies presented in this doc-

ument do not constitute formal mappings between original model types (IDEFO, IDEFlX,

structured analysis) and the resulting model types (use case/scenarios, 00 analysis, 00

design), but are ideas for extracting objects with the goal of creating 00 specifications.

In order to effect system reengineering based on 00 analysis models, a paradigm shift
is required from either the system artifacts or functional process improvement models. While

strategies and guidelines are given here on using these extant models, the paradigm shift will

not be automatic. The building of an 00 system will still require substantial effort by system

developers to construct 00 specifications and models.

Software Reengineering Example

To help illustrate some of the specific considerations that must be addressed, this paper

includes a detailed example of a legacy system that was reengineered to use OOT. This system

is part of the Base-Level System Modernization (BLSM) program at Gunter Air Force Base,
Alabama. BLSM has been designed to modernize base-level automated information systems

(AISs) at U.S. Air Force bases and illustrates some of the reengineering strategies described in

this report. The low level of interoperability and the difficulties in maintaining the current stan-

dard base-level AISs are principal drivers of the BLSM program. The software has become

more difficult and expensive to maintain because of the magnitude of the code changes made

over time. This situation is characteristic of many DoD legacy systems that face major mod-

ernization challenges.

One of the BLSM application systems-the Air Force Operations Resource Manage-

ment System (AFORMS)-serves as an example of BLSM's approach to full-scale software

reengineering using OOT. AFORMS is a legacy system that provided operations management

information to operations supervisors to support effectively the implementation of Air Force

flight management policies.

The presentation of the BLSM approach in this document outlines the general BLSM
methodology and illustrates the application of that methodology to AFORMS, with a focus on

the 00 aspects of this reengineering program. Discussions are centered on the enterprise anal-

ysis for the entire BLSM program, an overview of the general BLSM software engineering

environment, and the structure of individual software development phases for specific applica-

tions. These phases are illustrated with examples of OOT usage from AFORMS.

ES-2

CHAPTER 1. INTRODUCTION

1.1 PURPOSE

This document presents strategies for using object-oriented technology (OOT) when

reengineering information systems in the Department of Defense (DoD). These systems

include systems for command, control, communications, computers, and intelligence such as

the Global Command and Control System, as well as information management systems for

areas such as administration, personnel, supply, and maintenance. The document specifically

addresses the transition from the process-oriented business and systems analysis models used

in legacy systems to the use of object-oriented (00) analysis models. Risks, problems, and

issues are identified when using OOT in DoD information systems. The document does not dis-

cuss issues related specifically to legacy system wrapping, nor does it provide a review of 00

analysis and design techniques for new systems development.

To illustrate the transition issues related to reengineering, an example of a software

reengineering project is discussed in detail, the Base-Level Systems Modernization (BLSM)

from the United States Air Force Standard Systems Center, Maxwell Air Force Base, Gunter

Annex, Alabama.

The audience of this report includes DoD software development managers, project

managers, technical leads, and software engineers.

1.2 BACKGROUND

Systems reengineering is essentially building a new system using an existing system as

the basis for requirements or design. It is an activity that encompasses a combination of other

activities such as reverse engineering, forward engineering, restructuring, redocumentation,

and code translation, with the goal to improve the software system in terms of functionality,

performance, and/or implementation [CIM94].

When reengineering a legacy system, the use of OOT introduces certain complexities

into the software analysis, design, and implementation. First, the software system was not orig-

inally designed and implemented using an object-based approach. The products of reverse

engineering, such as requirements or design specifications, will probably reflect a functionally

based approach. As a result, some degree of "transformation" of analysis and design models

will be necessary in order to use those specifications. Second, the current policy in the DoD

regarding information system reengineering requires that a functional (business) process

improvement activity precede the systems reengineering activity [DOD92]. DoD Directive

8020.1 specifically requires the use of two analysis techniques, IDEFO and IDEF1X, for func-

tional process modeling. Neither one is object oriented, and their use can result in an awkward

transition to systems using 00 analysis.

It should be noted that while reengineering is applied to a legacy system, it differs from

the wrapping strategies discussed in a companion document [IDA95b]. System wrapping iso-

lates the legacy system or system components, but does not dramatically alter the existing sys-

tem. Reengineering, on the other hand, can alter the code, design, and requirements of the

system. The new system may need to reflect a new functional process, or it may reflect the old

functional process but have additional system requirements. In other cases, the system require-

ments maybe sufficient, but the system requires a new design or an improved implementation. 0

1.3 ORGANIZATION OF DOCUMENT

Chapter 2 discusses the transition from a non-object-oriented environment to an object-

oriented systems development, with the primary discussion focusing on transitioning extracted -

requirements and design products that are not object oriented. Details are provided concerning

what reengineering involves, what decisions are required during the reengineering process, the

determination of project scope, and the type of software elements to extract during reverse

engineering. 0

Chapter 3 describes the BLSM effort, outlining the general BLSM methodology and

illustrating the application of that methodology to AFORMS (Air Force Operations Resource

Management System). It begins with discussion of an enterprise analysis for the entire BLSM

program, proceeds to provide an overview of the general BLSM software engineering environ-

ment, and then focuses on structure of individual software development phases for specific

applications. These phases are illustrated with examples of OOT usage from AFORMS.

Chapter 4 summarizes the guidelines and issues regarding reengineering.

References, glossary, and a list of acronyms are provided at the end of the report.

0

2

0

CHAPTER 2. TRANSITION APPROACHES FOR
REENGINEERING SYSTEMS

This chapter discusses aspects of systems reengineering that are of concern when tran-

sitioning to an 00 implementation. Primarily we focus the discussion on transitioning extract-

ed requirements and design products that are not object oriented to an 00 form. There is

background discussion concerning what reengineering involves, what decisions are required

during the reengineering process, the determination of project scope, and the type of software

elements to extract during reverse engineering. It should be noted that the transition of model-

ing paradigms is a relatively unexplored area but has become more important with the reengi-

* neering of functionally based systems to 00 form. The strategies presented here do not

constitute formal mappings between models but are ideas for extracting objects with the goal

of creating 00 specifications. Specific model transitions are shown in Figure 1.

*'FOriginalgModel Type Resulting Model Type

FunctonalIDEFO - .Use Cases/Scenarios
Process

*Improvement 00 Analysis
Models IDEFiX - o- 00 Analysis

Process-Based ow.00 Analysis
* 7.System Models

(e.g., Structured .

Analysis)........00 Design

- o Strong Correlation

-*+ ~Weak Correlation......

Figure 1. Non-00 to 00 Transitions

3

Throughout this chapter, we use a hypothetical Aircraft Maintenance System (AMS) to

illustrate transitions and mappings from non-OO to 00 paradigms. Different aspects of the

AMS are highlighted and discussed. Example object models are shown with Rumbaugh's

Object Modeling Technique (OMT) notation [RUMB91].

2.1 REENGINEERING PROCESS

2.1.1 Functional Process Reengineering

Whenever an information system is to be reengineered, current DoD policy requires

that a functional process improvement activity precede the systems reengineering [DOD92b,

DOD93a]. This functional process improvement is the first activity within the DoD's Informa- 0
tion Management Process as depicted in Figure 2.

Operational Experience

Perform Functional (Business) Requirements
Functional
Process
Improvement

All Perform Technical Requirements

Techn"ical pr'oTeenil Develop

.. :.. ::Opportunities !: :::,:. .: 'I; ,|Tr n io to [. ::: .

S.:: :: :: : l: Tr anintion anc Mainta:::: n
&... T Ainn A5

DoD Directiv 80.1Revalsecifl ystrequirs t e of two naily .Steie D

Tehia Im rvm n A3.: :, : : , tJipe et

and D Opp, orthemoeingoneterpise TDFrisatcnsiqeadnttion t haoodl

:: ' : :: :.:• : - :::: : I Operate, &

theacivie or m s eti Transition Plan frMaintain~ ~~~& . .: ... &Training " lA5

S... :. . .Operational Experience ,A

Source: [CIM94]

Figure 2. Information Management Process Model

DoD Directive 8020.1 specifically requires the use of two analysis techniques, IDEF0 -

and IDEF1X, for the modeling of an enterprise. IDEF0 is a technique and notation that models

the activities of an enterprise; IDEF1X models its entities. The use of IDEF0, further discussed

in Section 2.3.1 on page 10, supports the reorganization and revision of an enterprise's business

activities.

4

2.1.2 Software Systems Reengineering

The Defense Information Systems Agency Center for Information Management (DISA/
CIM) has defined a process for informations systems reengineering, depicted in Figure 3, in the
CIM Software Systems Reengineering Process Model [CIM94]. This model divides a major
reengineering effort into three major activities: (1) Define Project, (2) Reverse Engineer, and
(3) Forward Engineer. Forward engineer encompasses activities associated with traditional
developments, i.e., requirements analysis, design, implementation, test, and maintenance. The
difference from traditional developments is that there is a base of existing products (the system
and anything reverse engineered) upon which to proceed.

0Available Reeng Technology Technical Architectures
Limitations Regs, ... Policy, Stds :G:uidelines ?i ::: :::::i.;. : :

Information.candidate

Reuse Assets

Analysis Results DefineS::: : :: e~g: roroje...
Al ~~Reeng ProjetPa

:AIv Revers.
Engnneered

P roducts F orw ard
:.__"__ : _ _. ..._ : ::::::::::: -Engineer Reengineered

A3 System

Methodologies
Project Team
Tools
Repositories
Comp/Comm Infrastructure

Source: [CIM94]

Figure 3. CIM Software Systems Reengineering Process Model

2.1.3 Scoping the Reengineering Effort

Since reengineering includes a variety of software engineering activities that range
from simple code restructuring to full-scale reverse and forward engineering with new require-
ments, it will be necessary to consider the scope of the reengineering carefully. Examples of
questions to consider include the following:

5

0

" Does the specification accurately (correctly and completely) represent the require-

ments of the new system requirements? In some cases of reengineering, there will

be no change to system requirements and the reengineering can start with the design

phase of development.

" Are there changes to the functional (business) process? It may be possible for the

existing automated system to support a new functional process, but a new functional

process will very likely impose new requirements. For example, there may be a dif-

ferent set of users and data sources.

" Are there new requirements for the system but no change in functional process. The

requirement for better system performance, for example, often motivates the exam-

ination of existing system resources with resulting reengineering or upgrade efforts.

It should be noted, however, that given the quality of the legacy system and its components,

it may not be worth the effort to reengineer those components, which essentially leaves a

new development activity. One should not assume that system reengineering is less costly

than a new development, particularly given the tools now available. A careful comparative

analysis of the costs, risks, and benefits of varying system options should be made before

embarking upon a reengineering effort.

2.1.4 Related Documents

The following references are a source for general guidance to the overall reengineering

process:

[DOD92] Department of Defense, Functional Management Process for Implementing the

Information Management Program of the Department of Defense, DoD 8020. l-M,

draft, August 1992. 0

[CIM94] Center for Information Management, Center for Information Management Soft-

ware Systems Reengineering Process Model, Version 2.0, draft, Defense Informa-

tion Systems Agency, Joint Interoperability Engineering Organization, September

1994. S

[CIM93a] Center for Information Management, Automated Information Systems Software

Reengineering Risks Taxonomy Report, Defense Information Systems Agency,

Joint Interoperability Engineering Organization, September 1993.

6

S

[CIM93b] Center for Information Management, Information System Criteria for Applying

Software Reengineering: Guidelines for Identifying Candidate Information Systems

for Software Reengineering, Defense Information Systems Agency, May 1993.

[IDA86] Institute for Defense Analyses, A Descriptive Evaluation of Automated Software

Cost-Estimation Models, Alexandria, VA, October 1986.

[IDA95a] Institute for Defense Analyses, System Reengineering Assessment Method, IDA

Paper P-2904, Alexandria, VA, January 1995.

[IDA93] Institute for Defense Analyses, User's Manual for the Functional Economic Anal-

ysis Model (Version.3.0), Alexandria, VA, December 1993.

[JLC93] Joint Logistics Commanders Joint Policy Coordinating Group on Computer

Resources Management, "Reengineering Economics Handbook," Proceedings of

First Software Reengineering Workshop - Santa Barbara I, March 1993.

[STS93a] Software Technology Support Center, Reengineering Technology Report, Hill Air

Force Base, UT, August 1993.

[STS93b] Software Technology Support Center, Software Estimation Technology Report,

Hill Air Force Base, UT, March 1993.

2.2 REVERSE ENGINEERING

Reverse engineering is an essential part of the reengineering process. DISA's CIM Soft-

ware Systems Reengineering Process Model defines reverse engineering as "the process of

examining an information system by analyzing its documentation, application software, and

data structures within the environment in which the information system operates. This analysis

is performed to (1) identify the system's components and their interrelationships, and (2) create

representations of the system in another form or at a higher level of abstraction. The goal is to

understand the existing software system (functional, performance, or implementation).

* Extracted information is represented in a format which can be integrated into the life cycle for

development of a software system" [CIM94].

2.2.1 Artifacts and Products of Reverse Engineering

The reverse engineering activity can use a variety of legacy components (artifacts) to

develop better representations of the existing system.These products have varying levels of

usefulness to the forward engineering activity. In some cases, the existing specifications (arti-

facts) are sufficient to convey an understanding of the system. In other cases, specifications will

7

need to be developed from reverse engineering source code. The following are typical of the

artifacts from reverse engineering.

"Source code. The source code is the formal representation of the system. In other

words, legacy requirements and design specifications may be either informal or

simply out of date. By examining the source code, it is possible to develop the

design structures, data requirements, system requirements, functional requirements,

and business rules. There are tools on the market that help with the reverse engi-

neering of code, either by restructuring old code or by identifying module struc-

tures. Bruce [BRU92] provides some guidance on the extraction of data elements

from Cobol code.

" Data models. This includes database schema, data element definitions, and data

files. Since legacy systems are often information intensive, the extraction of data-

base schemas, file structures, etc., is essential to any data reengineering. It is often

the case that flat file structures of the legacy system will be reengineered into a rela-

tional form. The entities in the data model can also provide a good start to the devel-

opment of an object model since these entities reflect the items in the problem

domain on which we want to keep information.

" Design specifications. The design specifications (if up to date) can provide struc-

tural information for both preliminary and detailed design levels. However, the use

of design specifications may have limited usefulness since module names may be

cryptic and understandable only to the original developers.

" Requirements specifications. The requirements specifications (if up to date) can

provide system and functional requirements. The system specifications, however,

are not the implementation and may not accurately represent the current system. So

some degree of caution should be used when evaluating design and requirements

documentation. Design documentation, if used, should be verified against the code,

and requirements documentation should be verified with current users.

2.2.2 Scoping Reverse Engineering

Deciding which elements to reverse engineer is important since this activity can be time

consuming and labor intensive. Reverse engineering source code can provide design, require-

ments, business rules, and data specifications. An assessment of the reengineering project can

help determine which elements need to be extracted. It may be the case that only the data

requirements are necessary since a new functional process and application will be developed.

8

0

In this situation, it will probably not be necessary to reverse engineer the old application code.

It should be noted that each situation is different, and the software engineers need to assess

carefully those products they need to extract.

Reverse engineering also has its limitations, especially as a means to extract require-

ments. The existing code (on its own) may not provide an accurate representation since (1) sys-

tem reengineering is often accompanied by functional (business) process reengineering, which

will introduce new requirements; and (2) the existing code may not be fully exercised by the

current group of functional users. As systems evolve over the years, they are upgraded,

patched, and reworked, often leaving areas of non-executed code. This type of code may not

be obvious to identify and even if the code can be executed, the function it supports may no

longer be needed by the functional user. As a result, if there is any change to system require-

ments, it will be necessary to work with functional users to identify or validate requirements

for the reengineered system.

2.2.3 Reverse Engineering Guidance

The following sources provide guidance and experience on reverse engineering:

[AIK94] P. Aiken et al., "DoD Legacy Systems-Reverse Engineering Data Requirements,"

Communications of the ACM, Vol. 37, No. 5, May 1994.

[ARN93] R. Arnold, ed., Software Reengineering, IEEE Computer Society Press, 1993.

[BRU92] T. A. Bruce, Designing Quality Databases with IDEFIX Information Models, Dor-

set House Publishers, New York, 1992.

0 [NIN94] J. Ning, A. Engberts, and W. Kozaczynski, "Automated Support for Legacy Code

Understanding," Communications of the ACM, Vol. 37, No. 5, May 1994. pp. 50-

57.

[PRE94] W. Premerlani and M. Blaha, "An Approach for Reverse Engineering of Relational
Databases," Communications of the ACM, Vol. 37, No. 5, May 1994.

[RUG90] S. Rugaber, "Recognizing Design Decisions in Programs," IEEE Software, January

1990.

* 2.3 FUNCTIONAL PROCESS IMPROVEMENT MODELS

As noted earlier in Section 2.1.1, DoD Directive 8020.1 requires that a functional pro-

cess improvement activity be carried out before any significant system reengineering. The

intent of this directive is to verify that an outmoded functional process is not simply automated

9

since it is generally believed that improvements in the functional process will yield substantial-

ly higher benefits, in terms of cost savings, than upgrades or reengineering of the supporting

automated systems. Therefore, the directive requires the use of two particular modeling tech-

niques, IDEFO and IDEFIX, before any system development or reengineering takes place.

These techniques model the activities and entities of an enterprise, providing in one case

(IDEFO) a functionally based view of the enterprise and in the other (IDEF IX) an entity-based

view. It is the IDEFO model that often provides the insights for process improvements and may

be the only model available at the time when system analysis begins. The IDEF1X model,

which is initially derived from the IDEFO, often serves as the basis for database design of the

eventual information system. Neither of these models provides a true 00 view of the enter-

prise, so the question arises as to how to use these artifacts of the functional process improve-

ment activity when employing 00 approaches in the system-level development.

2.3.1 IDEFO Models

In general, little has been published regarding the transition of IDEFO models to an 00

form. In comparing IDEFO to 00 models, there are two basic differences. First, the semantics

defined in each are substantially different: IDEFO is activity based, while an 00 analysis model

is object based. Second, the perspective of each model will likely be different: IDEFO will prob-

ably be broader in scope providing a view of the enterprise, while an 00 analysis model will

be more constrained to a system-level view.

In the following sections two general strategies are presented for using existing IDEFO

models when pursuing an 00 system development. In the first strategy, the IDEFO model

serves as a basis for constructing use cases or scenarios (Section 2.3.1.1 and Section 2.3.1.2).

In the second strategy, potential "objects" are extracted from the IDEFO in a manner similar to

constructing the IDEF1X model (Section 2.3.1.3). However, this particular strategy is rather ad

hoc and leaves substantial work to achieve a finished object or class model. An example tran-

sition, using an information system that manages an inventory of aircraft parts, is given in Sec-

tion 2.3.1.4.

2.3.1.1 IDEFO Notation

IDEFO uses the paradigm of top-down functional decomposition to provide a picture of

the enterprise. In this technique, depicted in Figure 4, an overall activity is decomposed into a

small set (three to six) of subactivities that are needed to realize the behavior of the original

activity, and the decomposition can be continued for as many levels as necessary. The activities

are affected by inputs, controls, and mechanisms, and produce outputs. An activity is represent-

10

ed with a box, and the inputs, controls, outputs, and mechanisms (ICOMs) are represented with

arrows. The mechanism, which may be a person or device that carries out a function, or even

a "tool" (hardware or software) that is used in the process, is the least important, particularly at
the modeling levels most often used, and it is often omitted. But every box will have a control

arrow that specifies the conditions under which the activity is invoked. This is often the output

of another activity. The input is the item that is transformed, and the output is result of the activ-
ity. The arrows in IDEFO are not thought of as sequences (as in a traditional flowchart) but as

availability (of data or other items needed for the activity to work). Any sequencing is implicit,

based on the availability of inputs, controls, and mechanisms.

Control

Activity Output N

tMechanism

Figure 4. IDEFO Notation

2.3.1.2 Use Case or Scenario Transitions

0 Since IDEFO models depict the major activities of the enterprise, they can serve as a
starting point for use cases or scenario development. Use cases or scenarios are step-by-step

descriptions of the process or event sequences of a system or enterprise. Use cases and scenar-

ios are advocated by Jacobson [JACO93], Booch [B0094], and Rumbaugh [RUMB91] as part
* of 00 analysis. Jacobson and Booch scenarios are developed prior to constructing an object

model, while Rumbaugh scenarios support the construction of interaction diagrams during

dynamic modeling.

Depending upon the level of detail in the IDEFO model, each activity may be represent-

ed as a distinct use case. If the activities are broken into smaller subactivities, then these sub-

activities may better correspond to the specific steps within an interaction diagram or scenario

script. It is important to note that this transition will not be automatic and requires some degree
of judgment in developing scenario details.

11

2.3.1.3 Extraction of Objects

But suppose one is starting from an existing IDEFO model and wants to use the system

information in that model to move to an object model or to supplement the model with objects?

The original model may have tried to avoid the mention of entities in function names. Here the

suggestions of Ruegsegger [RUE93] can be used.

Ruegsegger's method produces the objects in a fairly straightforward manner. It is

based on the observation that most IDEFO arrows consist of either objects in the problem space,

object attributes in the problem space, or object aggregates in the problem space, and that the

mechanisms correspond to objects in the solution space. Thus, if the labels on the arrows are

gathered, one gets the set of candidate objects.

The trick, of course, is to gather the labels at the appropriate level of granularity. If

objects that are obtained which are not intuitive, in terms of either their initial appearance to

the modeler or an organization expert working with the modeler, then it is important to move a

level deeper. Likewise, if it is not possible to formulate the desired methods to go with the

objects without adding additional constructs, this will force a deeper examination of the origi-

nal IDEFO decomposition as well.

The next step is to check for potential objects that are redundant (i.e., two names for the

same thing). Ideally, these redundancies should have been resolved in the original modeling

process, but this is a common flaw in modeling. Others redundancies will be attributes or rela-

tionships. Those that remain are the candidate objects, placed in an IDEFIX-like framework

with the relationships labeled. This is circulated to various expert reviewers to get a consensus

view of the model. If no consensus is forthcoming, then the modeler must decide the arrange-

ment of objects and data flows.

It should be remembered that a group of people probably will not have a common view

on the importance or arrangement of objects and data in a model. Different people are likely to

have different models of the world, based on their experiences, and they adapt their internal

models of any new systems they meet to the models with which they are familiar. There are

stylistic differences in the way people think, like active and passive views, nominal and verbal

modes of expression. But if one can attempt to reach some consensus, then even those who

have different models in their minds will usually come to be able to understand the system in

terms of the models developed.

12

2.3.1.4 Transition Example: IDEFO to Scenarios

The example is an information system that manages an inventory of aircraft parts for an

Aircraft Maintenance Facility (AMF). Organizations that require aircraft parts place a parts

order with the AMF, which in turn processes the order, extracts the requested part, and sends it

to the requesting organization. If the AMF has depleted its supply of a particular part, then a

request will be made to the part supplier to replenish its supply. To support the management of

its parts inventory, the AMF plans to reengineer its primary information system, known as the

Aircraft Maintenance System (AMS). The reengineered AMS will process new shipments,

send needed parts to requesting organizations, and issue new shipping requests when inventory

levels drop below a preset threshold.

An example of an IDEFO context diagram is shown in Figure 5. The AMS is the main

activity, with Parts Order and New Shipment as inputs; Part Information as a control; Receiving

Clerk, Shipping Clerk, and Inventory Administrator as mechanisms; and Shipping Requests

and Aircraft Parts as outputs.

Part Informato

Parts Order 10ASShipping Requests
* ~New Shipment AS JAircraft PartsIReceiving Clerk

Shipping Clerk

* Inventory Administrator

Figure 5. AMS Context Diagram in IDEFO

If we decompose the AMS activity, depicted in Figure 6 on page 14, we see that it com-

prises three subactivities: Process New Shipment, Send Aircraft Parts, and Order New Parts. A

New Shipment comes into the AMS and is processed by the Receiving Clerk resulting in an

* Augmented Inventory. A Parts Order is handled by the Shipping Clerk to send out requested

13

0 ::.: : • ? '::::i.::. :'i:i::•~•i: :•:'::::: ! •:•• ~ • • • • :::::: i+''::+:•.:::•+ + ::: :

S

Aircraft Parts. Last, the Inventory Administrator periodically reviews the inventory and issues

a Shipping Request when stock levels fall below a set threshold. Although these activities are

depicted in a left to right manner, there is not an explicit sequence between these activities, such

as "do A1, then A2, then A3." As noted previously in Section 2.3.1.1, any sequence is the result

of the availability of inputs, controls, and mechanisms.

.. :... • i.. :/ [: Part Information

New Process Augmented
Shipment New InventoryS• ' . : .Aircraft... Shipment Al at

Parts Or

New Request

Administrator~

Figure 6. AMS Top-Level IDEFO Diagram

In Figure 7 on page 15, the IDEFO activities are represented as like-named scenarios of

the AMS. Each scenario has specific steps, and each scenario is associated with a specific actor

or type of user. The Receiving Clerk is the actor for Process New Shipment, the Shipping Clerk

the actor for Send New Parts, and Inventory Administrator for Order New Parts.

2.3.2 IDEF1X Models

Databases have generally been developed by the same processes as software: analysis

followed by design and implementation. But for more than a decade now, there has been a shift

in emphasis from function-centered design to data-centered design, and the analysis has shifted

correspondingly from problem centered to data centered. The reasons for this change in per-

spective are many, but the strongest has probably been that databases are now so common that
they are used everywhere in organizations, and since data elements tend to be common over

different parts of the organization, it does not make sense to have a single-purpose database.

Thus, it makes sense to model the data once and then consider all the functions on it-and to

14

1. Process New Shipment.
0 - Input shipment code.

- Input item number and count.
- Update inventory.

: "2. Send Aircraft Parts.
- Scan Parts Order for part number, quantity, and destination.
- Retrieve requested parts.
- Package and label parts for shipping.

3. Order New Parts.
- Check inventory level.
- Identify needed items and quantity.
- Identify lowest cost supplier.
- Print Shipping Request.

Figure 7. AMS Candidate Scenarios
be able to add more functions as needed-than to build the database system about func-

tions. On the corporate information management level, the use of common data elements
0 cuts duplication of effort and aids in departmental interchange of data, implementation of

common software, and communication with extramural organizations.

Preceding this data-centered approach, but very much serving as a catalyst in bring-

ing it about, is the realization that if data is to be multi-use, it needs to be handled at a level

that abstracts from both its physical structure and any particular use to which it might be

put. This is the notion of a conceptual schema for data in a database, or as it is often called,

a conceptual model for an organization. (Synonyms are semantic data model and informa-

tion model.)

IDEF1X is a conceptual modeling notation and technique based on the entity-rela-

tionship (E-R) approach that allows the development of databases from the conceptual

model. IDEF IX and similar modeling techniques allow more than the development of data-

• bases. Conceptual models of entities, attributes, and relations are vital parts of detailed

enterprise models since the types of information handled in an organization tell a lot about

the functioning of that organization. IDEFIX is organized around the entities on which

information is being kept; therefore, it is not so terribly far from the 00 view. In this sec-

• tion, we will discuss how one can extract from IDEFIX models the information that can be

15

0

used in forming 00 models. We will also discuss the limitation of doing this: what information

may be missed and where one needs to look for that information.

Although IDEF1X can be used to define database schemas, it can be extended to pro-

vide models of anything in the domain being modeled that is an entity and has attributes and

relationships to other entities. This can include animate or inanimate objects, physical objects

or virtual objects, and/or textual or non-textual media objects.

In an enterprise model, it is advantageous to include anything that is considered an

important entity in the processes of the organization. There are some entities, including orga-

nizational entities such as departments that people manage, that may be irrelevant to the pro-

cesses, and if so, they are not needed in the models (and probably not in the enterprise, either,

if one is trying to develop the most effective enterprise to get the job done). For this reason, it

is useful to consider processes in defining entities. More will be said in the next section about

the need to alternate between analyzing processes and analyzing entities.

2.3.2.1 IDEF1X Notation

In an IDEFIX model, depicted in Figure 8, the basic unit around which data is orga-

nized is an entity. From that point of view, the model is very much like an object model, which

provides some promise that a mapping can be found. It should be noted that the description here

is a quick overview of IDEF1X. The IDEFIX notation has an extensive set of rules for its use.

References such as [BRU92] should be consulted for complete details on IDEF 1X syntax and

semantics.

The following are definitions for the basic components of the IDEF1X notation

[BRU92]:

" Entity. "Any distinguishable person, place, thing, event, or concept about which

information is kept... An entity is represented by a closed box with the name of

the entity at the top and the attributes of the entity listed inside the box."

"* Independent entity. "An entity that does not depend on any other for its identifica-

tion... Independent entities are represented by square-cornered boxes."

"• Dependent entity. "An entity that depends on one or more other entities for its iden-

tification... Dependent entities are represented by boxes with rounded comers."

" Associative entity. "An entity that inherits its primary key from two or more other

entities (those that are associated)... Associative entities record multiple associa-

tions (relationships) between two or more entities."

16

ENTITY-2
EN Y Dependent Independen

(key aEntity .Ent key attributes 4--Primary.Key Area

non-primary 4- Data Area
Inon-prim ary .;: :. .key attributes
Ikey " i::ii:Relation~ship

k tattributes

*4 4- Category Discriminator

ENITY -3 Entity-21 Entity-22

key attributes .key attributes Ckey attributes

non-key non-key non-primary
attributes attributes key attributes

Figure 8. IDEF1X Notation

0 Instance. "A single occurrence of an entity."

0 Attribute. "A property of an entity."

* Primary key: "An attribute or group of attributes that has been chosen as the unique

identifier of the entity."

* Primary key attributes. "An attribute that, either by itself or in combination with
0 other primary key attributes, will form the primary key."

* Non-key attributes. "An attribute that has not been chosen as a part of the primary

key of the entity."

0 a Relationship. "A connection between two entities."

* Foreign key. "A primary key of an entity that is contributed to another entity across

a relationship."

0 Category discriminator. "An attribute that determines to which category a generic

parent instance belongs."

17

S

2.3.2.2 IDEFIX to Object Model Mapping

The first thing to be aware of in transitioning from IDEF1X to an object model is

the point discussed previously in Section 2.3.2.1. The IDEFIX model is oriented to data,0

and if it has been produced for database purposes, the entity is an item about which data is

kept in a store. It may not even be all of the data that would be in a data entity which is

intended to be kept in a database, which may not cover all of the data in a full enterprise

model. Furthermore, if there are non-informational entities to be included in the model, a

model developed for database purposes will not have it. So if the object model is to be a

fairly broad enterprise model, the IDEFIX models of the same enterprise may be much nar-

rower and may only help with parts of the object model. Since IDEF1X models can be used

for broader entity relation models which include non-informational data, this will depend -

on the particular model, who did it, and what was its purpose.

The perspective of object orientation is that the object provides the means of access-

ing data about itself. This is not such a leap from IDEF 1X, merely a reinterpretation. Anoth-

er subtle change between IDEF1X and object rModel has to do with the interpretation of the

attributes. They are not thought of as passive data lying in a repository, necessarily. The

object model allows them to be calculated or retrieved in any way. It is not necessary to

specify the details of how the attributes are retrieved or calculated. Again, this is not a

major shift in what can be described but a shift of perspective.

In general, there is a fairly direct mapping going from the IDEF1X model and to an

object model. Although there are some terminology differences, the object model appears

to be a superset of the IDEF1X concepts. Table 1 provides a summary of the mappings from

IDEFIX to an object model.

Table 1. IDEF1X to Object Model Mapping

IDEF IX Model Object Model

Entity Class

Attribute (non-foreign key) Attribute

Relationship Same

Cardinality Same

Generalization (category discriminator) Inheritance (without foreign keys)

Instance (Relation Tuple) Class Instance (object)

18

2.3.2.3 Transition Example: IDEF1X to Object Model

In Figure 9, there are five entities shown for the hypothetical AMS: four are indepen-
dent entities (Part, Supplier, Order, and Organization), and Supplied-part is an associative enti-
ty. Since Part and Supplier can have a many-to-many relationship, Supplier-part is added as an
associative entity.

* Part Supplier

part-no.

part-name uses provides suppiname:::::::;::: part-descript supp-address :::'::::::

Su lied- art
u ,e,3-i ar

part-no.(FK)
is specified byy/ supp-no.(FK)
specifies 4netoy

::.::.::•,inventory-

Order location
0 Organizationorder-no.

eorg-no

org-no.(FK) acquires parts with org-name
supp-no.(FK) org-address

Figure 9. AMS in IDEF1X

0 In the object model, depicted in Figure 10, the IDEFIX entities, Part, Supplier, Order,
and Organization map to classes. The associative entity, Supplied-part, maps to the class Sup-
plied-part, which has a ternary relationship with Order where Order requires a specific part
from a specific supplier. Generally, attributes that are foreign keys in the IDEF1X model do not
need to be represented in the object model. Relationships in IDEF1X, including cardinalities
and generalization, can map fairly directly to an object model; however, some relationships,
such as the "uses" between Part and Supplied-part, may be eliminated or revised with the
removal of associative entities. It should be noted that the resulting object model is only a par-

* tial model since no services or operations are identified.

2.4 PROCESS-BASED SYSTEM MODELS

The reengineering of an existing system may require the revision and transition of spec-
* ifications that were written using non-OO techniques, such as Structured Analysis (SA) or its

19

Part

part-no. ,:. is pro Ivide d b Iy/ sp-o
part-name provides supp-name
p a rt-de script su p - d re .

Supplied-part
:;:i~i:: :i.• i ISupp-part-no. I:::

IS

i L :.!specifes .l inventory- :.

S:Order a ' I lo1cation Organization": . .

order-no r -o
order-date • :•: pr•ovides parts to!/. org-name

• acquires part s with org-address

Figure 10. AMS in Object Orientation

successor, Modem Structured Analysis (MSA). Many of these "older" techniques were process

based which allowed the distribution of data throughout the specification as well as the even-

tual program. This section examines those issues encountered when the forward engineering

encompasses the requirements analysis and design stage. In this case, the options will be to

transition an existing (or reconstructed) specification to an 00 form or to create a new 00 0

specification that will not have a close dependence upon the previous requirements specifica-

tion.

2.4.1 Transitions to 00 Analysis 0

SA and MSA are software analysis methodologies that partition a system into commu-

nicating asynchronous processes. This approach originated with DeMarco [DEM79] and was

popularized by Yourdon's SAIMSA [YOUR89] and other analysis techniques such as the Hat-

ley-Pirbhai [HAT87] real-time extensions to data flow diagrams. For the purposes of simplicity,

we will refer to this general class of models as SA models since their semantics are similar.

2

20

2.4.1.1 Structured Analysis Notation

SA notation, depicted in Figure 11, uses the data flow diagram (DFD) as the primary

graphical notation, although it is supplemented with entity-relation and state transition dia-

grams. In this notation, the process is represented by a circle, data flow is represented by direct-

ed arcs, data stores are represented by two horizontal lines, and external sources and sinks

(terminators) are represented by boxes. Typically, the terminators, which represent outside

* users or systems, are only shown on top-level context diagrams. The SA process can be decom-

posed into more detailed diagrams, containing processes, data flow, and data stores. In other

words, the SA process can represent an entire system or subsystem and more than just a simple

function.

(Source) Flow Process Data
* B Flow

Process Data
A Flow Data

Flow Terminator
0 (Sink)

Data Store

0 Figure 11. Structured Analysis Notation

It should be noted that although this technique is process based and looks similar to the

IDEFO discussed in the previous section, there are some differences. First, SA often represents

* a more detailed level of abstraction than the IDEFO. With SA, we are often modeling the infor-
mation system exclusively, whereas IDEFO is employed for modeling the enterprise at large.

Second, the ICOMs in IDEFO do not represent data flow and hence do not have a direct corre-

spondence to the data flow arcs in SA. Third, SA does not distinguish between data that are

* transformed (such as an IDEFO input) and data that are used but not transformed (an IDEFO

control). Last, the IDEFO notation does not specifically identify data stores as does structured

analysis.

21

0

2.4.1.2 Structured Analysis to 00 Analysis Mapping

It is possible to construct some semblance of an object model given an SA representa-

tion. This object model, however, will very likely be a partial model, with incomplete class or

object definitions. The primary strength of using a DFD at this level is that the SA model uses

the vocabulary of the domain. That is, the SA model attempts to model the domain from the

user's point of view, using language that the user can understand as opposed to a design model

of the system that depicts system modules, etc., using system-specific names that are not under- 0

standable to a user. This is important because we will depend upon that "domain vocabulary"

represented in the SA model to assess the type of item being represented. Following is a sum-

mary of the mapping of the SA model to an object model.

"• Terminators will generally map to a class or object in the problem domain. While

terminators show up as class within a generalized object model, there may not be

the need to represent such a class within the design.

"* Data stores will map to a class or objects. Data stores generally represent passive

objects within the system solution.

" Data flows can correspond to classes, objects, or attributes. Data flows can also rep-

resent attribute values. So it will be necessary to assess each data flow carefully for

correspondence to an object model. 0

"* Control flows often correspond to specific events since they represent some sort of

signal to a process such as "start" or "stop."

" Processes can correspond to services or operations within a class. However, this

correlation should be made very carefully since an SA process could be assocIated

with more than one class.

2.4.1.3 Bailin's Approach

Another method for developing an object model from a process model is Bailin's

[BAI89], which was developed as a method of doing the original analysis of a system. This

method, known as Object-Oriented (Requirements) Specification (OOS), works with data flow

models and with E-R models. It produces an E-R diagram and a hierarchy of entity-datival (not 0

function-data flow diagrams, which together constitute an object model). The major practical

weakness of his method is in the selection of objects, which is insufficiently well-defined.

Bailin writes that his method is not really new, that "under the guise of structured anal-

ysis, engineers have been doing 00 specifications for years... Analysts have tacitly chosen

22

S

to specify and decompose entities when appropriate, disguising them as structured analysis

processes." Bailin believes that decomposition in terms of processes is not a loss if one wants

to find objects. If one already has SA models, and these are understood by analysts in the orga-

nization, then it may make sense to start with those.

Step 1 of Bailin's OOS is, then, to produce a sort of normalized representation. The dia-

grams will have objects appearing in process names, in phrases of the form of an action-object

pair, with a few extraneous words allowed, as long as the main pair appears. These objects will

tend to be in the problem or enterprise domain.

Step 2 of OOS is to distinguish between what Bailin terms "active entities" and "pas-

sive entities," according to the following requirements:

"• Active entities should appear as processes, passive entities as data flow.

"* Every function must be performed by some entity.

The Bailin criteria for active entities are less stringent than those for active objects.

When OOS is being used for software development, the rule of thumb is that an active entity

is one in the problem domain that will be considered in the design phase (because it contains

functions that must be specified in that phase) and a passive entity is one in the implementation

domain that will be considered later in the design phase.

Step 3 depicts a top-level data flow diagram created with the active entities as objects

(in boxes) and the passive entities assigned to stores or to data flows. An E-R diagram is devel-

oped for the relationships embodied in the flow diagram. Bailin gives some rules for maintain-

ing consistency between object data flow diagrams and E-R diagrams:

"• The entities in the two diagrams must correspond exactly.

" Any relationship in the E-R model must be manifested somehow, either (1) through

containment, (2) as a data flow that is a passive entity being related to an active enti-

ty that it passes into or out of, or (3) as two active entities connected by a data flow.

He admits there may be some exceptions to this rule, in which relations are perceived

to occur but cannot be shown.

Step 4 is to decompose the entities or functions, using the following rules:

"* Entities are decomposed into sub-entities and/or functions.

"• Functions can only be decomposed into subfunctions.

23

Finding the functions of entities is just determining what they do, and these may be

reflected in the original SA diagrams. If, in the original analysis of Step 1, there were action-

object pairs, then the action is likely to appear here as a function of the object, or of some sub-

object. One continues to refine both the data flow and E-R diagrams.

Step 5 is to check whether new objects have been introduced as functions are decom-

posed. This question is asked repeatedly, and if the function is naturally expressed in terms of

the action-object pair, the object should be in the diagrams or should be introduced. Passive

entities may be left implicit if they are deemed too minor to introduce in the E-R model, but all

new active entities must be shown.

As new entities are introduced, it is necessary to group the functions under the appro-

priate entities. This is done in Step 6, where an attempt is made to give a complete list of func-

tions performed by or on the new entities. At the same time, old groupings of functions need to

be examined to see if they more naturally fall under a new entity.

Step 7 is to organize the entities into domains. To get a good object mode, we would 0

develop "is-a" hierarchies and show where inheritances take place, which should be implicit in

the E-R diagrams, what functions go with each entity, etc.

2.4.1.4 Transition Example: Structured Analysis to Object Model _

In Figure 12 is the AMS example starting with an SA context diagram. The AMS is

shown as the primary process with New Shipment coming from a Supplier and Parts Order

coming from user Organizations. As output, the AMS produces Shipment-Requests to the Sup-

plier and Ordered-Parts to the user Organization. Both the Supplier and Organization are ter- -

minators in this model.

In the decomposition of the AMS, depicted in Figure 13, we identify a number of con-

stituent processes within the AMS bubble. The data flow Parts-Order is input to the Delete Part

process (part of Send Aircraft Parts), which in turn sends a specific Part-No. to the Parts-Inven- -

tory to be deleted. In a similar manner, New-Shipment is input to the Add-Part process (com-

ponent of Process New Shipment), which in turn sends a specific Part-No. to Parts-Inventory

to be added. One of the things to notice with DFDs is that, at this level, it is difficult to tell the

level of complexity within a DFD process. 0

In developing a possible object model, depicted in Figure 14, both the context diagram

and the AMS DFD are sources of possible objects or classes. While the data store Parts

Inventory and the terminators Supplier and Organization are obvious as objects, the data flow

24

0

0

Ne Shipment
Supplier .

Parts Order
0 en AMS •

0[
Request

Organization
Ordered
Parts

Figure 12. AMS Context Diagram (Structured Analysis)

Parts Order New-Ship-
Delet Addats Par

Part:!:•::: (Process • • :.(Sn New Shipment Shipmen
AJircraft Parts) PaNew Soh ipmn Request

•~ ~ ~ ~ ~~ ~~~~~~Pr No. :i:::ar re •~i•:i l•i:

Count

Parts Inventory

Figure 13. AMS Data Flow Diagram (Structured Analysis)

maps to possible objects (Parts Order, New Parts, Shipment Request) and to attributes (Part

No., Count). The Parts object has the services Add-part and Delete-part and the attribute, Part-

no. However, further interpretation will be needed to complete the object model. For instance,

both Supplier and Organization will likely have attributes of name and address, but this is not
0 represented in the context diagram. These attributes may be components of the Parts-Order and

New-Shipment, possibly showing up in further development of the AMS DFDs. Some basic

relationships are evident such as the send and receive relationships with Supplier and Organi-

zation.

25

S

sends receives
S sends I•..

Shipment New Parts-Order Ordered-Part-Request Shipment

Count

Figure 14. AMS in Object Orientation (Partial Object Model)

2.4.2 Transitions to 00 Design

Before 00 analysis techniques were developed, software developers were faced with

transitioning from process-based analysis techniques, such as SA, to 00 design. This transition

presented a challenge since, as with the IDEFO to OOA transition, there is a mismatch between

modeling paradigms. Booch does not recommend using SA or process models with object

modeling since this combination results in limited success [B0094]. One of the problems

encountered with going from SA to 00 design is that the analysis picture of the system is par-

titioned along functional lines. SA processes may also be more complex than simple functions.

SA processes can represent complex activities or subsystems that in themselves contain data

stores or data flows. For further discussion on 00 design and 00 programming in Ada, see

IDA95b.

2.4.2.1 Structured Analysis to 00 Design Transitions S

The shift from SA to 00 design requires two elements of transition. The first element

of transition is from the process-based paradigm to 00 paradigm, and the second element is

from the requirements analysis phase to the design phase. Within the functional SA picture,

potential objects may not be obvious or may be distributed throughout the system. New objects

will also appear at the design phase. These objects are necessary to build the system but are not

part of the application domain. In addition, it is also necessary to consider the implementation

26

language at the design phase. The example in the next section (Section 2.4.2.2 on page 28) pre-

sumes an Ada implementation, using Buhr diagrams to illustrates Ada constructs.

* Nielson and Shumate [NIE88] define an approach for developing 00 designs from SA

specifications, called the Layered Virtual Machine/Object-Oriented Design (LVM/OOD). This

approach is "based on the concepts of creating objects in layers of abstraction, information hid-

ing, and stepwise refinement (deferring design decisions)" [NIE88]. In LVM/OOD, require-

ments specifications are first represented with DFDs, depicting major functional transforms

and data flows. Nielson and Shumate then look for concurrent processes. They consider a basic

process as an anonymous class and a concurrent process as an "object" which can be imple-

mented as an Ada package, subprogram, or task. DFD processes are grouped along lines of con-

currency. However, data abstraction is also employed, particularly when a process acts as a data

manager or monitor around a data store. Since this approach is intended to support real-time

system design, it is not always clear whether they want to emphasize data abstraction or con-

currency as a means for grouping DFD processes. But this is one the few design approaches

* that transitions a specification from SA to 00 design.

It may be possible to employ the principle of data abstraction primarily when evaluating

a DFD. In that case, some of the following transitions may apply:

Terminators. Although terminators will generally map to classes or objects in the

problem domain, they may be outside the scope for system implementation. If a ter-

minator represents an external device, then there may be a device handler for any

input/output between the terminator and the system. Such a handler would consti-

tute a new class or object within the 00 design.

Data stores. As with the analysis mapping, data stores should transition to classes

or objects, and since they generally represent passive objects within the system

solution, additional classes may need to be created to protect the data store, such as

a transaction manager or monitor, to ensure mutual exclusion of access to the data.

Additional buffer classes may be needed to queue and dequeue data. Nielson and

Shumate [NIE88] discuss these types of elements and provide guidance on using

00 design and Ada. However, as noted previously, their work is based upon exam-

ining the concurrent aspects of design to support real-time and concurrent program-

ming, and not solely to achieve 00 designs.

* Data flows. Data flows may map to classes or objects, attributes, or specific values.

27

" Control flows. Control flows can indicate some behavioral aspect of the system and

are less likely to have representations as classes or objects, attributes, or values.

" Processes. If the process is relatively simple and appears to be associated with one

specific data flow, then it may map to a class or object operation. Sometimes pro-

cesses represent complex activities that contain multiple processes, data flows, and

data stores. A great deal of care must be exercised when assigning operations based

upon DFD processes. At the detailed design level, these operations should map to
procedures and functions within the Ada package.

2.4.2.2 Transition Example: Structured Analysis to 00 Design

Since the goal here is to produce an 00 design of the system, the notation can be an

object model from the 00 analysis notations discussed previously, which represent classes, or

the notation used is the Buhr diagrams to represent Ada structure charts. In this case, as depict-

ed in Figure 15, processes are organized around the data store, Parts Inventory. Delete Part is a

component of the process, Send Aircraft Parts, and Add Part is a component of Process New

Shipment.

Parts Order New-Shipment

:: •Delete

Sh Nipment) Shpmn
Pat\ r No% Part No.. : Ore

Request

Count:
0PParts Inventory

Figure 15. AMS Data Flow Diagram (Structured Analysis)

In looking at the design, the AMS can be implemented as a package that provides the

interfaces of ProcessNewShipment, SendAircraftParts, and OrderNewParts. Packages

(Figure 16) are then built around the data store (Parts Inventory). Part and Parts Inventory rep-

28

resent the same basic object or class of Part. The Part object or class is implemented with two

packages, PartsManagerPkg and InventoryPkg. Parts_Manager_Pkg acts as a monitor to

serialize access to the actual file of Parts, contained in the InventoryPkg. The Part class also

has the associated operations of Add-Part and Delete-Part, which are implemented as subpro-

grams in PartsManager_Pkg and InventoryPkg. Other classes, Supplier and Organization

may be implemented external to AMS.

0

AircraftMaintenancePkg

ProcessNew_ 7

Shipment

S Send_-Aircraft- PartsManagerý_Pkg

Parts
:: • InventoryPkg

OrderNew _Part Det - N

Figure 16. AMS in 00 Design

29

CHAPTER 3. SOFTWARE REENGINEERING EXAMPLE

The Base-Level System Modernization (BLSM) program is an example of OOT use in
reengineering a DoD information system. Its mission is to modernize base-level information

systems at U.S. Air Force bases. The low level of interoperability and difficulties in maintain-

ing the current, standard base-level information systems are principal drivers of the BLSM pro-
gram. Most of the information systems are between 20 and 30 years old. The software has

become more difficult and expensive to maintain because of the magnitude of the code changes

made over time. Originally, specific functional requirements drove the designs of these infor-
mation systems and most still work fairly well. However, many of the information systems no
longer meet the needs of the user because of mission changes and advances in technology, and
modification has become increasingly difficult. As a result, these legacy systems need to be

reengineered to take advantage of modem software engineering principles and to meet current

user needs.

The age and design of the software, databases, and interfaces, the dependency on pro-
prietary operating systems and hardware, expiring hardware contracts, the availability of new
technology to assist in development and maintenance, and the need for interoperability are all

documented in the requirements recorded in the Statement of Operational Need (SON)
[USAF89] and the HQ USAF/SC Program Management Directive (PMD) [USAF92] for Sys-
tem Modernization for Standard Base-Level Communications-Computer Systems (also cap-

tured in [BLSM93]).

0 Most of this chapter is extracted directly from BLSM project reports.

3.1 BLSM MISSION

The mission of BLSM is to support the process reengineering of base-level systems,
* providing a consistent architecture designed to survive 20 to 30 years and ensuring complete

interoperability among the information systems. A standard system is a system used by more
than one Major Command (MAJCOM) and is supported by centralized management. The

domains covered by this program are in the functional areas of base civil engineering, services,
* comptroller, logistics plans, supply, maintenance, medical, operations, manpower, contracting,

31

personnel, and transportation. Additionally, the following functional areas may be involved in

BLSM: communication-electronic, administration, data automation, materiel management,

security police, and information management [BLSM93, p. 4]. 0

3.2 PROGRAM OBJECTIVES

The overall objectives of BLSM are to create standard information systems which can

be used effectively during war and in peacetime, to provide a human-computer interface which 0
minimizes the cost and duration of user training, and to move all the standard base-level sys-

tems into an 00 and open systems environment.

More specific program objectives include the following [BLSM93, pp. 7-9]:

" Ensure user satisfaction. The DoD Technical Architecture Framework for Infor-

mation Management (TAFIM) and the BLSM PMD both call for increased user pro-

ductivity through the use of standard, consistent user interfaces and integrated

applications that share data. The BLSM program is developing systems with con-

sistent interfaces that share data, fulfill the user's current needs, and are flexible

enough to meet expanding requirements.

" Improve business practices. To meet this objective, the BLSM program is manag-

ing information through centralized control and decentralized execution, validating

new methods prior to implementation, simplifying by elimination and integration,

and continually re-examining and redefining to improve operations.

" Decrease life cycle costs. The PMD calls for a decrease in life cycle costs by elim-

inating and reducing maintenance and training costs. 0

" Develop and use reusable components. The BLSM methodology provides high

potential for life cycle reuse by providing a separate group whose responsibilities

include reviewing all object models during initial phases and creating abstractions

that are understandable and reusable by many systems. BLSM will also use the

products from established DoD programs to meet its needs. Software modules and

components are stored in the Defense Software Repository System (DSRS) for

future use.

" Develop a single logical database. Data standardization and the methodology to

perform database design in an 00 methodology are fundamental in the effort to cre-

ate a single logical database. An enterprise analysis model documents the data inte-

gration of common objects, classes, and data elements at a logical level. 0

32

Implement open systems standards. BLSM is establishing the process and meth-

ods for implementing open system, OOT, and reuse.

Develop scalable and flexible systems. BLSM projects will be developed for flex-

ibility to changes in the military environment (i.e., doctrine, force structure, politi-

cal changes, base closures). By conforming to and supporting various modes of

operation, BLSM will support one to many users and one to many wings-in other

words, scalability. Establish a software engineering environment. BLSM is using

the best available software engineering tools and techniques combined with man-

agement policies, decision points, and activities to establish a state-of-the-art soft-

ware engineering environment.

3.3 AIR FORCE OPERATIONS RESOURCE MANAGEMENT SYSTEM

BLSM is the umbrella program for the incremental modernization of all Air Force stan-

dard base-level systems. Three lead BLSM application systems were elected to develop and
* refine the BLSM methodology, establish the technical support base (e.g., skill base, computer-

aided software engineering (CASE) tools), and implement the technical-management infra-

structure (e.g., risk management and reuse programs) prior to full-scale BLSM implementation

[HARR93, p. 1-1]. We have selected one of these applications, the Air Force Operations
0 Resource Management System (AFORMS), to serve as a model example of BLSM's approach

to full-scale software reengineering using OOT.

AFORMS is an existing system that provides operations management information to

operations supervisors to support effectively the implementation of Air Force flight manage-

ment policies. This system ensures that the status of Air Force flying programs is available to

assist operations managers in making resource allocation decisions. AFORMS ensures accu-

rate tracking of flying and ground training programs for each weapons system at each base;

availability of flying program statuses to allow immediate analysis and effective resource allo-

cation decisions; and effective base-level, MAJCOM, and Air Force support for weapons sys-

tems requirements [HARR93, p. 1-2]. Figure 17 provides a high-level overview of AFORMS

architecture.

* The presentation of the BLSM approach here will both outline the general BLSM meth-

odology and illustrate the application of that methodology to AFORMS, with a focus on the

00 aspects of this reengineering program. It begins with discussion of an enterprise analysis

for the entire BLSM program, proceeds to provide an overview of the general BLSM software

* engineering environment, and then focuses on structure of individual software development

33

Server

DDN AFNET

O O "(• GaplrF--" •

pasbroadeanals oorpcfi teisting t. Teprases r identry e Om enith esamong dfereT uaeas,

AFORMS.

3.4 ENTERPRISE ANALYSIS

BLSM is a broad program, covering 12 functional areas with 36 major automated infor-•

mation systems affecting all active USAF bases [BLSM93, p. 4]. Its effective pursuit requires

a broad analysis of the existing enterprise to identify commonalities among different areas,

establish standard object models for them, and to set priorities for modernization. The entire

base-level computing environment is the enterprise analyzed under the BLSM umbrella. Sev- 0
eral external areas also serve as input to the BLSM enterprise analysis in order to ensure coop-

eration and harmony with outside efforts and requirements [BLSM93, p. 42].

3.4.1 Sources of Analysis Input

The external inputs to enterprise analysis include data modeling efforts from other areas

at the Standards Systems Center (SSC), the United States Transportation Command

(USTRANSCOM), the Theater Battle Management Group (TBM), the Defense Information

Systems Agency (DISA), and the DoD functional communities. BLSM uses the output of a

34

Wing-Level IDEFO and IDEFIX models to bring the Air Force enterprise together, identify the

current state of the Wing business process, and to identify areas for potential business process

improvements. Other requirements which may not be identified by the Wing-Level IDEF mod-

els but are critical to the enterprise analysis are MAJCOM, Air Force, and DoD directives, pol-

icies, and guidance, as well as Congressional policies and laws which must be supported by the

Standard Base-Level Computing Systems [BLSM93, p. 44]. Some of the policies used as input

include Defense Management Review Documents (DMRD), the DoD TAFIM, the DoD Tech-

nical Reference Model (TRM), the Open Systems Environment for Imminent Acquisitions

(OSE/IA), and the policy on use of Ada [BLSM93, p. 43].

3.4.2 IDEF Business Process Models

The business process changes identified by the Wing-Level IDEF models are a critical

input to modernization of the BLSM enterprise. The restructuring of the Air Force into Com-

posite and Objective Wings and the long-term goals of the program dictate the development of

a "system of systems" that supports war fighting needs, as well as the day-to-day operations of

the Wing. The output of the Wing-Level IDEF models is a critical input to modernization of

the BLSM enterprise, as well as any needed restructuring of existing processing capabilities.

The outcome of this process identifies the priorities for the next step, the definition of function-

* al domain IDEF models.

IDEF models of each of the functional domains are generated to ensure that modernized

information systems support newly identified requirements and are adaptable to future comput-

ing needs. The computing needs of the functional community are optimized and incrementally

0 developed, based on the functional domain model [BLSM93, p. 43].

3.4.3 Software-Level Analysis

A software-level analysis of the existing data and processing requirements supported

0 by the Standard Systems Center at Gunter Air Force Base, AL, provides the information nec-

essary to develop an object model and pieces needed to develop interoperable systems. The

objective of this analysis is to create a single information model which supports the Wing-level

and functional area business process analysis and improvement efforts. This analysis identifies

0 and models many of the objects, components, and modules necessary to actively support min-

imizing and eliminating duplicated processing and data across the wing as defined by the IDEF

process.

35

However, analyzing the information requirements of all information systems at one

time is a monumental undertaking. Resolution of this problem involved selecting a key infor-

mation system from each functional area as a starting point for the analysis. The remainder of 0

the information systems are analyzed as they are modernized, according to the BLSM devel-

opment schedule [BLSM93, pp. 44-45].

3.4.4 00 Analysis

A comparison of the existing data elements and processing in each of the information

systems is used to identify the common needs of the functional domains. Base objects in the

object model are generated by grouping data elements and processes based upon frequency of

use and common associations with domain objects (e.g., aircraft, organizations, equipment, 0

events, accounts, etc.). An 00 analysis is accomplished once all information is grouped into

objects with relationships between objects, such as inheritance.

Once the object requirements are identified, libraries are built using a prioritization of

the objects based on statistics and the BLSM development schedule. During the analysis pro-

cess, statistics on which elements are used by the most information systems were gathered.

Table 2 lists some of the objects that were found to have an extremely high level of common-

ality across BLSM information systems. The gathered statistics prioritize which objects are

developed first. If an object has a high incidence of commonality across the information sys-

tems, it receives a high priority for development. The BLSM development schedule also plays

a large role in determining priorities to ensure the availability of objects required by the first

information systems going through the development cycle [BLSM93, pp. 45-46].

3.4.5 Products of Analysis

The products from the enterprise analysis are as follows:

"* The object model based on the software-level analysis of enterprise-wide existing 0

data and processing requirements;

"* A schedule for prioritized object development;

"* Identification of common use components and modules across the BLSM enter-

prise;

"* A schedule for prioritized component and module development; and

0

36

An incremental development schedule of information systems based on available

pieces and the needs of the user community as identified by the Wing-Level and

functional area IDEF models [BLSM93, p. 44].

Table 2. List of Potential High-Commonality BLSM Objects

accounts dates installation places
addresses engines inventories receipts
aircraft equipment invoices reports
allocations/authorizations errors items requests
assignments evaluations itineraries schedules
cargo events jobs shipments
catalogs of information examinations maintenance tracking shipping agent
classes/courses files/records manifests simulators
clearances/security flight information mission data student information
configurations/profiles fuel mobility task and work breakouts
containers funds owners time and.time zones
contracts govemment bills of lading passengers training
conveyances guns/weapons pay information transactions
countries hazards/special handling payments units/organizations
crews helicopters personnel information vehicles
customers inspections phone numbers vendor information

3.5 SOFTWARE ENGINEERING ENVIRONMENT

Figure 18 shows the computers used in the development environment, the activities per-

formed on each computer, and the software tools that execute on each computer. The software

engineering development environment consists of three primary platforms:

"* Unix-based workstations used for analysis activities, documentation, window code

generation, design activities, and prototypes;

0 Rational computers used for the design, coding, testing, and configuration manage-

ment of Ada software; and

"• VAX computers used to host the relational database and perform configuration

management.

In addition, personal computers (PCs) are used to support planning, storyboarding, and

graphics activities. All computers are connected via a local area network (LAN) using TCP/IP

(Transmission Control Protocol/Internet Protocol). The target computer environment is also

connected to this LAN. The number and capacity of each platform in the development environ-

37

TARGET COMPUTER DEC WORKSTATION

- Unit Testing - Independent Test Manage-
- Integration Testing ment

- Independent Testing - DEC Test Manager
- Screen Machine -

Hyperhelp
- Oracle
-Ada/C (POSIX)
- INX

WORKSTATIONS RATIONAL VAX
- Systems Analysis - Design, Code, & Test - Office Automation
- Software Analysis - Development CM - Database Server

- Porting to Target - Implementation CS
- OOATool
- Interleaf/Microsoft Word - Rational Environment - Oracle
- Screen Machine - Remote Compilation - Wordperfect
- Smalltalk Integrator - CMS
- Visual Works - Rational Design Facility - E-Mail
- ASTER *X - Rational CMVC

- Screen Machine (Client)
- AdaMAT
- Insight PCs

• All computers are con- - Task Management

nected via a LAN and are
accessed via X-terminals, - Time Line/Microsoft
PCs or VT-type terminals Project

- Visual Basic
- Checkpoint

CM Configuration Management - System Architect

CMS Code Management System - Microsoft Office
CMVC Configuration Management and Version Control

LAN Local Area Network
PC Personal Computer

POSIX Portable Operating System Interface for Computer Environment
VT Virtual Terminal

Figure 18. Software Engineering Development Environment

ment is dependent on the number of developers and the size of the application being developed.

For example, a VAX 4000 is used for the Logistics Module - Base Level (LOGMOD-B)

project, while a VAX 6000 is shared between AFORMS and the Manpower Data System

(MDS) projects.

At the beginning of the software development life cycle, the analysis team and Systems

Engineering Group use workstations to perform system and software analysis using OOATool

38

and Smalltalk. Each tool takes advantage of the strong graphical capabilities and computing

power of the Sun workstation. Screen Machine is used to develop windows during the Software

Analysis Phase.

As the project moves through design, the analysis team electronically transfers infor-

mation from the OOATool model to the Rational computer. This allows for a direct relationship

between the Ada design information on the Rational and the analysis information developed on

the workstation using OOATool.

The Rational platform is used for the designing, coding, unit testing, and configuration

management of the Ada application. The Rational environment and support tools (e.g., Design

Facility) are used by the software engineers to automatically generate the requirements and

design documents (i.e., Software Requirements Specification, Software Design Document)

from information maintained in the OOATool. Coding and testing of increments are performed

by the task team using the Rational editors and debugging tools. The team also uses Screen

Machine on a workstation for the human-computer interface (HCI) and Oracle on the VAX as

the relational database management system (RDBMS). During execution, remote procedure

call (RPC) mechanisms allow the application on the Rational to directly access Oracle and

Screen Machine on the workstation.

Once the increments of the application are coded and tested, software can be ported and

tested in the target environment. This early porting lowers the risk of encountering portability

problems during final integration on the target computers. The Independent Systems Test

Group performs testing on the target computer while using the DEC Test Manager for regres-

sion testing.

Software Items

A description of each software item used in the software development process follows. Figure

19 illustrates which tools are used during which software development phase.

a. OOATool. Used to model requirements and the design of the system. It supports the

00 methodologies used during BLSM. Class and object models developed in

OOATool are used in the development of the software requirements and preliminary

* software design.

b. Rationale Environment. The primary development system used in designing, cod-

ing, testing, and integration of BLSM systems. This environment provides an array

of CASE capabilities such as configuration management; documentation genera-

39

Wz>-rcOz2WzIý--

0 0 LU

z1 C. W.

F- 0

L Zz C..) (L0U wi u -2

l0I 0 2 Fr 00~i z ----- W -.J c
Co 0I "I C Ll

0 0.

0 C CL

j cn 0
E LU0

ClV) z--
LU Z 1 0 (n0

0 nZ U
-JM

F<zn
LU 0 2Ccc........

Fiur 19 B S SotaeDvlo m n ol

CL cn40

tion and requirements tracking; an automated, incremental target build facility; Ada

library incremental compilation, synchronization, and status; semantic editing; and

automated enforcement of coding standards.

1. Rational Configuration Management and Version Control (CMVC). Ratio-

nal's sophisticated configuration management tool set. Once objects (text files

or Ada units) are placed under CMVC control, their change history from that

point on is recorded. Change history includes the tracking of software changes

during development and allows regression when needed. Any object may have

historical information tracked. CMVC also provides a mechanism for making a
"release" of a Rational subsystem. This freezes a snapshot of the subsystem in

time.

2. Rational Design Facility (RDF). A layered product which supports the devel-

opment of DOD-STD-2167A documentation. RDF provides capabilities such

as document generation and requirements tracking.

3. Remote Compilation Integrator (RCI). Supports universal host software

development. This utility can be used to support transfer of software to the tar-

get computer and the generation of target machine compilation scripts.

c. VAXset. A collection of DEC tools that support the software development process

and all of the DEC-provided programming languages. This tool set includes the

Code Management System (CMS) and DEC Test Manager (DTM).

1. CMS. Provides an efficient method for storing files in a project and tracking all

changes to those files-it keeps track of files at every stage of development.

CMS provides for mutual exclusion, generates project activity reports, main-

tains a history of library activity, and can store files created by other DEC tools.

CMS maintains the electronic Software Development Files (SDFs).

2. DTM. Provides flexibility in organizing tests, in selecting tests for execution,

and in reviewing and verifying test results. DTM also automates the regression

testing process by comparing established benchmarks with tests.

d. VAX C Compiler. Provides support for developing C programs that will be used

for particular Ada bindings (e.g., Ada/SQL binding). It is fully integrated with the

VAX debugger and VAXset tools.

0

41

0

e. Oracle RDBMS. Provides an relational database management system for use in the

development environment. A portable Ada/SQL binding will be used to allow

application software to communicate with Oracle.

f. Screen Machine. Provides tools for building user interfaces that include pull-down

and pop-up menus, action buttons, and complex data entry forms. Screen Machine

eliminates the need for an Ada binding to a C-based graphical user interface (GUI).

g. AdaMAT. A static code analyzer designed for use with the Ada language. The user

can assess the overall quality of software. AdaMAT monitors more than 150 param-

eters and produces reports which identify quality problems in the code and isolates

their causes. AdaMAT also helps determine the difficulties of porting and maintain-

ing the code. It is a general tool that can be used by different functions in different

ways. For example, the test manager can determine the minimum quality levels for

the code to meet prior to acceptance for testing.

h. Checkpoint. Resides on a DOS-based machine and provides three capabilities: 1)

project assessment, 2) measurement and analysis, and 3) estimating. The Check-

point user can make assessments of project status at various points in the projects

life cycle against industry standards using function points, feature points, or lines of

code. It also supports measurement and analysis, including the analysis of quality,

productivity, and defect removal efficiency. Another application, System Evalua-

tion and Estimation of Resources (SEER), has been adopted by the Air Force and is

currently under evaluation to replace Checkpoint.

i WordPerfect. Provides word processing capability to anyone on the network.

WordPrefect is used for the generation of textual material to be used in documents

and briefings. Working files of required deliverables are drafted in WordPerfect and

then exported to Interleaf for finalization and delivery.

j. Interleaf. A document production/publishing system that supports integrated text

and graphics. Interleaf is used for the publication of program documentation during

all phases of development.

k. Microsoft Project. A project-planning tool on the DOS-based machines used to

maintain the top-level and detailed schedules for the BLSM effort.

1. ASTER*X. An office automation tool which provides word processing, spread-

sheet, and graphics functions on the Sun workstations.

42

m. Smalltalk. Used as a prototyping tool. It supports inheritance and polymorphism to

enable the design of fully 00 modules and comes with a complete class library for

quick prototyping. Visual Works is a front end to the Smalltalk prototype which pro-

duces the human interface.

n. Visual Basic. A tool used to "storyboard" screens. Visual Basic is used on the DOS-

based machines.

o. Insight. A design tool on the Rational which produces Booch diagrams.

p. System Architect. Used to produce the data modeling diagrams and to automati-
cally generate the schemas from the models.

Sections 3.7 through 3.16 describe at a high level what activities take place during each
phase of software development. Each description is accompanied by a diagram showing all

components of that software development phase. It is important to note that throughout the

software development process the DSRS is continually queried for, and updated with, reusable
components. It should also be noted that, although the following phases are discussed end-to-
end in a sequential manner, they are used to develop systems incrementally by looping back
through certain phases. Figure 20 depicts the incremental development loop within the soft-

ware development process.

Preliminary Detailed Code and
11- Design Design Test

Incremental loop

Formal
Software Q&
Testing

QT&E Qualification Test & Evaluation

Figure 20. BLSM Software Development Process

43

3.6 BUSINESS CASE ANALYSIS PHASE

The purpose of this phase is to review each of the processes in the functional program
to determine what the current "as is" processes are, evaluate the validity of each process and

then improve it prior to determining what will be automated

This process contains a myriad of subactivities under each of the major activities listed
in Figure 21. The process modeling is supported by IDEFO and IDEFIX models as well as cost-

INPUTS ACTIVITIES OUTPUTS

Activities Conduct Baseline Analysis Improved Process
Policies Conduct Improvement Alter- Business Case
Benchmarks natives Analysis Process Models
Best Practices Implement Immediate Im- Bills of Activities

provement Actions Output Measures
Conduct Detailed Business Simulations

Process Modeling
Conduct Functional Eco-

nomic Analysis
Build Business Case

TOOLS TRAINING DELIVERABLES

IDEF CASE Tools BCA Training for Partici- Business Case Analysis
Interleaf/Microsoft Word pants Functional Economic

Interviewing Techniques AnalysisCost Modeling Tool TQM Training ORDObject CASE Tools Metrics Training CONOPS

BCA Business Case Analysis
CASE Computer-Assisted Software Engineering

CONOPS Concept of Operations
ORD Operational Requirements Document
TOM Total Quality Management

Figure 21. Business Case Analysis

ing tools such as spreadsheets and economic models. The following subactivities occur under

each of the major activities in accordance with the Corporate Information Management (CIM)
Business Process Improvement (BPI) process.

44

3.7 TASK-LEVEL PLANNING

Task-Level Planning includes all activities leading up to the System Analysis Phase

which was previously depicted in Figure 20 on page 43. The major activities are illustrated in

Figure 22.

INPUTS ACTIVITIES OUTPUTS

Operational Concept Conduct Phase "Kick-Off' Meeting Baselined Budget
Document IDEFO/ Perform Detailed Planning Detailed Schedule
1X Model - Staff the Project Training Plan

ORD Baseline the Budget DID Tailoring
SOW & CDRLs Establish Software Development Staff Transition
Contractor Proposal Environment Plan
Size Estimate Develop Interface Requirement Metrics
BCA Strategy

Train Technical Team
Train Managers on 00 Model
Review BLSM DID Tailoring
Conduct Phase Readiness

001 Review

TOOLS TRAINING DELIVERABLES

Time Line/Microsoft 00 Analysis IRR Minutes
Project Interleaf

Checkpoint Project Estimation & Measure-
Interleaf ment
Microsoft Word (Checkpoint & Function Point)
Microsoft Office Interviewing Techniques

DOD-STD-2167A/BLSM2
OOT for Managers
Screen Standards (Visual Basic)

Review(s): IRR (occurs anytime during this phase)

CDRL Contract Data Requirements List
DID Data Item Description
IRR Initial Requirements Review
00 Object-Oriented

ORD Operational Requirements Document
SOW Statement of Work

Figure 22. Task-Level Planning

One of the major outputs of this phase is a detailed schedule showing major milestones,

development phases, delivery dates from the CDRL, and training course dates. A detailed plan

45

for staffing the task is also produced, indicating when staffing increases and when individuals

will become available to other tasks.

The Initial Requirements Review (IRR) is held during the Task-Level Planning phase

to brief the Government on the proposed scheduled activities and methods for modernizing the

system.

OOT use is represented primarily by training and by tailoring of the DIDs in preparation

for subsequent phases in which DIDs are generated based upon the objects and classes devel-

oped in the 00 analysis model.

3.8 SYSTEM ANALYSIS

The System Analysis phase determines the system-level requirements of the problem

domain (or functional area) to be modernized. The major activities of this phase are illustrated

in Figure 23.

The Visual Basic tool is used during this phase to demonstrate or storyboard the system

windows to the users to gain their involvement and confidence early in the development pro-

cess. Smalltalk training with an emphasis on prototyping, in particular the patterns needed to

implement a construct from the 00 analysis model, will be provided during this phase.

At the conclusion of this phase, the integrated team holds a System Requirements

Review (SRR) to determine the acceptability of (1) the system requirements as documented in

the draft System/Segment Specification (SSS) and (2) the system design as documented in the

draft System/Segment Design Document (SSDD).

One of the main outputs of this phase is the system-level 00 analysis model of the

problem domain. At this point in the task's development cycle, the 00 analysis model contains

preliminary subject areas of the problem domain and major functional requirements of the sys-

tem.

OOT comes into focus in this phase as work is begun on the 00 analysis model. In

AFORMS, this required dividing the model into subject areas that are aligned with the four

major functional areas of the system (Resource, Training, Hours, and Schedule) and three sup-

port areas (System Utility, External Interface, and Report). Figure 24 depicts the relationship

between these seven subject areas and each area's sets of class and object(s).

46

INPUTS ACTIVITIES OUTPUTS

Reusable Compo- Conduct Phase "Kick-Off' Meeting Interview Plan
nents (DSRS) Build the Analysis Team Interview Results

Software Architecture -I1 Gather Requirements -1. 00 Analysis
Previous 00 Analysis Build System Level 00 Analysis Model

Results Model Storyboards
SOW Create/Update Documentation Draft IRAs
Current System Perform Reverse Engineering

Documents Develop Draft IRAs
Modernization SDP Conduct Phase Readiness
Operational Concept Review'

Document Conduct the SRR
, .01 Update the 00 Analysis Model

TOOLS TRAINING DELIVERABLES

Visual Basic Smalltalk Training + Draft SSS
OOATool SRR Minutes
Interleaf/Microsoft Word + Draft SDP*
Time Line/Microsoft Project + Draft SSDD
Microsoft Office
Checkpoint
CMS

CMS Code Management System
DSRS Defense Software Repository System

IRA Interface Requirements Agreements Audits/Internal Reviews: +Red Teamed Deliverables
00 Object Oriented Review(s): System Requirements

SOW Statement of Work Review (at end of phase)
SDP Software Development Plan
SRR Software Requirements Review

SSDD System/Segment Design Document
SSS System/Segment Specification

Figure 23. System Analysis

AFORMS Subject Areas and Classes

The following description of AFORMS is by subject area grouping and gives a brief

overview of the function of the system and those objects that constitute each function. The

complete list of objects for each subject area has been previously depicted in Figure 24 on page

48.

Resource Subject Area. The Resource subject area represents the core of AFORMS by

providing the capabilities required to manage human flight resources. It allows for the admin-

47

C0 0

00
(1 z~

oz 0
1z e z Z

zzw Oz

> LU LUf2 enU LL U) Z -(-
Z0.0W 000 z

__r > W ZW4 ZZ4
0 . r~(e) en

0.oo Zf<00e Z I- M--I ~. ~ a~~
wopýZ W jWooenzzo -

L LLLJ U) ~ '6 W 3:Z cn zena.

LU u)0o (nneen) ~ u>)Ze o 00000..0 0...rcr eneen

«««««««<o00(. p ~ 0z - m wx eWnL8en>-o-

8 ýaýýi MO P W@E2 LUW c W0) 1) - . W o;2ZM~t<M(.)-J-i< m C en c zozýý,ý
0_~WWW WU M 00 --

x~~<0~F 0- -D-.< O =< 00 I -MMI

0~ cc cr

cc 0LU

000
P2 ZOOOI. = _0

o<0.0. ~ - enCC<Dc
0~w. PU en - W

-ZL Z p o<ZU <<UU-jo-W0O0QZ3ZO~ oo
____________< omZoJJ.J <LL

LU 0 WWLU -jo:0 z<5< xýz
y m~oa« «« «««wcmmgmow

2 enW00W -= W z U
L o K K _ _._n~ 0

W0

LU 2 (01 Qni-I

mU en 00 0 CC cc
(D ILon~Z 0. F- coL <

CCl cr cc cc 0~~W oZC

-o5-0 90F 00 eL00 50000x~~~~. < ~ cco 0CC«z ~ 0 0 w <~
LUxmj-- -enW5 LUM 0 W U 0 .Z~ : z ~ ZWý-W0-< 5jjLU«ienenn««<M

I- LU<00
U0 _WWWUlX WWZ4j z WWU iW 0[<P WMWLO

LU) NZ Z DD- Uo z 00LLn 0. enngI

Figure 24.<< AFOMSCSI Oerie
48coo w)00

wpopzz wcc M 7

istration of USAF flight management policies while supporting the Aviation Career Incentive

Act (ACIA) by maintaining those records required to qualify personnel for Aviation Career

Incentive Pay (ACIP) and Hazardous Duty Incentive Pay (HDIP).

The Resource group, coupled with Hours and Schedule, allows AFORMS to monitor
individual flight pay entitlement and initiates Military Pay Order (MPO) actions to start and

stop flight pay. Additionally, AFORMS automates the preparation of aeronautical orders for

changes to entailment status, aeronautical ratings and for the award of badges. The result is the

capability to monitor an individual's aviation career.

Training Subject Area. The Training subject area provides the capabilities to specify

training requirements and build the training plans required for each air crew member. These
0 training plans can be individualized and used to track accomplishments. The relationship

between the objects of this group and those of Resource, Schedule, and Hours provides

AFORMS with the capability to maintain continuation and additional training plans for indi-

viduals, thus eliminating redundant record keeping caused by the difference between the Air

Force standard and MAJCOM unique systems.

Hours Subject Area. The Hours subject area provides the capabilities to maintain infor-

mation on flights, flight evaluations, and sonic booms. Through connections between objects

within this area, and with connections to objects within the Resource area, the AFORMS CSCI

(computer software configuration item) will create and maintain aircraft flight activity records,

career total records, and an active flight record for each human resource.

Schedule Subject Area. The Schedule subject area, in conjunction with the Training and

Resource areas, provides the capabilities to build flight training schedules and to monitor an
individual's adherence to these schedules. In addition, this area will produce products that will

assist schedulers in assigning air crews to a mission and in checking for scheduling conflicts.

Information concerning scheduled activities will be stored.

System Utility Subject Area. The System Utility support area provides general system

capabilities such as installation and shutdown procedures and ad hoc report generation. These

capabilities will be met by reusable software components to be identified and obtained via the

Common Utilities/Bindings Task Order.

External Interface Subject Area. The External Interface support area provides the exter-

nal interface capabilities for AFORMS. The 00 analysis model shows those systems outside

of AFORMS interfaced with as objects that are associated with the External Systems. The

External Interface subject area consists of a single class and object.

49

Report Subject Area. The Report support area provides the capabilities to produce

standard reports. These capabilities will be met by reusable software components to be

identified and attained via the Common Utilities/Bindings Task Order.

3.9 SYSTEM DESIGN

An important activity of the System Design phase, as depicted in Figure 25, is iden-

tifying what system requirements can be fulfilled by bindings, commercial off-the-shelf

(COTS) software, hardware, and manual procedures. To aid in this analysis, reuse reposi-

tories are queried to determine if any existing software architectures, bindings, previous

00 analysis results, or Corporate Object Model objects can be used to satisfy any of the

system requirements.

The 00 analysis model is further refined during System Design. The model's

objects depict things or components that the problem domain contains and is responsible

for. Examples of objects include events, reports, people, equipment, authorizations, and

organizations. Objects are described by their "attributes." Their "services" define the pro-

cesses they are responsible for performing.

During this phase the SSS and SSDD are finalized and the Software Requirements

Specification (SRS) is drafted.

The System Design Phase concludes with the System Design Review (SDR) and

the establishment of the Functional Baseline. The initial function point count for the system

is reported at SDR.

3.10 SOFT WARE ANALYSIS

The Software Analysis phase, depicted in Figure 26, is characterized by acquiring

a detailed understanding of problem domain software requirements. When this phase is fin-

ished, the 00 analysis model will be complete and contain not only the objects, their struc-

tures, and services, but the objects attributes (data element names), and all messaging

connections between the objects.

An important activity of this phase is using the Smalltalk tool to prototype the mod-

el of the problem domain component as it is being built. The use of Smalltalk helps ensure

that necessary attributes, services, and messages are defined to permit the finished system

to perform its intended functions. The Systems Engineering Group performs periodic

audits on the BLSM task's 00 analysis models and determines if there are candidate

objects for the Corporate Object Model. If the candidate objects are determined to be reus-

50

INPUTS ACTIVITIES OUTPUTS
00 Analysis Model Conduct Phase "Kick-Off' 00 Analysis
Existing Software Architecture Allocate System Requirements Model
Selected Hardware Architecture Create and Update -Op- Updated System
Reusable Components (DSRS) Documentation Architecture
Previous 00 Analysis Results Conduct Phase Readiness
Approved Documents from SRR Review

Storyboards Conduct the SDR
Corporate Object Model Establish Functional Baseline

TOOLS TRAINING DELIVERABLES
OOATool/System Architect Ada +Draft STP
Interleaf/Microsoft Word DSRS +Draft SRS
Time Line/Microsoft Project Smalltalk +Final SSS
Microsoft Office +Updated SDP
Checkpoint SDR Minutes
CMS +Final SSDD

Audits/Intemal Reviews: +Red Teamed Deliverables
00 Analysis Model (Systems
Engineering)

CMS Code Management System Review(s): System Design Review (at end of
DSRS Defense Software Repository System phase)

00 Object-Oriented
SDP Software Development Plan
SDR Software Design Review
SRR Software Requirements Review
SRS Software Requirements Specification

SSDD System/Segment Design Document
SSS System/Segment Specification
STP Software Test Plan

Figure 25. System Design

able, they are moved to the Corporate Object Model. Abstracts for all objects are submitted to

the DSRS. The reuse repositories are used heavily by the analysis team as they are queried for
possible reusable components, previous 00 analysis results, and objects. In turn, the reposito-

ries are updated throughout the Software Analysis phase with the completed 00 analysis mod-

el, approved data elements, and new corporate objects.

51

INPUTS ACTIVITIES OUTPUTS

Reusable Conduct Phase "Kick-Off" Smalltalk Prototype
Components Train Software Analysis Team Completed 00 Analysis
(DSRS) p Review IRAs -po Model

Software Complete 00 Analysis Model 00 Analysis Increments
Architecture Complete Data Analysis Updated Corporate

Previous 00 Internally Audit the 00 Analysis Object Model
Analysis Results Model Approved Data

Storyboards Externally Audit the 00 Analysis Elements
00 Analysis Model Model Software Development
Corporate Object Update 00 Analysis Corporate Files

Model Object Model Final I RAs
Approved Build External Interface Cross SCG-ed Screens and

Documents from Reference Package Report Layouts
SDR Submit Data Elements Metrics

Draft IRAs Develop Window and Report Field Validation Edits
Potential Hardware Layouts External Interface Cross

Targets Build Window Cross Reference Reference Package
Package Window Cross

Review the Cross Reference Reference Package
Package Report Cross Reference

Incorporate Approved Data Package
Elements into the SRS

Update/Create Documentation
Conduct Phase Readiness

Review
Conduct the SSR
Set up SDFs
Establish Allocated Baseline

TOOLS TRAINING DELIVERABLES

Smalltalk & Visual Works 00 Design + Final SRS
OOATool - System Architect Oracle and Target RDBMS + Updated SDP
Interleaf/Microsoft Word (DBAs Only) Minutes of SSR
Time Line - Microsoft BLSM Architecture + Updated STP

Project Screen Machine
Microsoft Office Hyperhelp
Checkpoint
Screen Machine Audits/Internal Reviews: + Red Teamed Deliverables

Hyperhelp 00 Analysis Model 0
CMS Review(s): SSR (at end of phase)

CMS Code Management System SDF Software Development File

DBA Database Administrator SDP Software Development Plan
DSRS Defense Software Repository System SDR Software Design Review

IRA Interface Requirements Agreement SRS Software Requirements Specification

00 Object-Oriented SSR Software Specification Review
RDBMS Relational Database Management System STP Software Test Plan

SCG Software Control Group

Figure 26. Software Analysis

52

Windows and report layouts are developed by the SSR and baselined with the SCG.

Preliminary design begins on risk areas of the Problem Domain Component (PDC) of the 00

analysis model. During the time allotted for each BLSM task to review and approve the SRS,

the preliminary design of the PDC can continue. In addition, the 00 analysis increments must

be defined and reported to the task leader for planning purposes.

Software Analysis concludes with the SSR and the establishment of the Allocated

Baseline and the creation of the Software Development Files (SDFs). The function point count,

which was first reported at SDR, is updated and reported at SSR.

3.10.1 00 Analysis Model and Information Management Model

* At the completion of Software Analysis phase, the entire system and software require-

ments are depicted on the 00 analysis model. A small portion of the Coad-Yourdon graphical

format [CDYD91] of this model is illustrated in Figure 27. Object icons are double boxes with

object and/or class name at the top, followed by the attributes of the object and the services (or

0 methods) provided by that object. The full model graphically depicts all problem domain

objects, their relationships (structure) to other objects, the services (processes) each object is

responsible for performing, the messages necessary to communicate between objects, and the

attributes (data elements) which describe each object. Any approved data elements (attributes)

* for the system will reside in the DDRS and will be delineated as an attachment to the SRS.

At the same time, and from the same analysis as the 00 analysis model, the Data

Administration member of the Software Analysis Team develops the Information Model (see

Figure 28). Transition from the 00 analysis model to the Information Model requires distin-
guishing between data objects and user objects in the 00 analysis model. Data objects are the

objects stored in the database. User objects are the objects derived by the application that do

not require persistence. The Information Model consists only of data objects. The Information

Model, that is, data objects, also differ in their exclusion of the services and/or methods that are

essential parts of some 00 analysis model objects. Some objects in the 00 analysis model can

be consolidated into a single data object. Objects can be combined if and only if the single data

object can portray all of the functionality of each of the separate objects.

After the Information Model is created, determine what attribute or attributes make

each of the data objects unique. This is a candidate logical identifier for the data object. In some

cases, a data object will have multiple candidate logical identifiers. In other cases, the data

object will not have any candidate logical identifier. If a candidate logical identifier cannot be

* determined, identify which attributes are used to retrieve the stored object.

53

0

AeronauticalOrderLog

SPrintLogBag
Determi neAeronauticalOrderN umberTil

DeletePriorYearEvents fetvae

1 00 eao

Datet

Text

Rating
Title
EffectiveDate
Reason

Aeronau~tIcalOrderr Remarks
DistributionCode 10,1 Create

AvlatlonService
EffectiveDate
EnrollmentStatus
FlyingStatusDisqualificationReason

- TerminationDate
Jump DutiesRequired

L FlightoutiesRequired
0,1 Reason

Remarks
Create 0
Revoke
Amend
CalculateAviationService

0
Figure 27. 00 Analysis Model

54

0

0

Badge

Title

0,1 EffectiveDate
Reason
Remarks

Rating

AeronauticalOrder Title

DistributionCode 1 EffectiveDate
LogEventNumber 0,1 Reason
LogEventDate Remarks
LogEventText

AviationService

EffectiveDate
EnrollmentStatus
FlyingStatusDisqualificationReason

STerminationDate
0,1 JumpDutiesRequired

FlightDutiesRequired

Reason

Remarks

Figure 28. Information Model

3.10.2 Software Requirements Specification

One of the major outputs of the Software Analysis phase is the formal Software

Requirements Specification (SRS). The bulk of the AFORMS SRS consists of tailored DIDs

for the objects in the AFORMS 00 analysis model. To illustrate their format, members of a

small subset of these DIDs taken from the 00 analysis model segment depicted in Figure 28

are presented in the following subsections. In addition, we include illustrative portions of other

essential aspects of the AFORMS SRS.

Note: The following implicit operations are stated once for the model and apply to all

objects in the model. They will not be repeated under an object in the model unless the opera-

tion is specialized for that object.

55

Implicit Operations

"* Create: This service creates and initializes a new object in a class.

"* Connect: This service associates or disassociates one object to another.

"• Access: This service gets or sets the attribute value of an object.

"* Release: This service disconnects and deletes an object.

Requirements Object Model

AeronauticalOrder (KV-SRS-C-0004)

Description: This object represents an Air Force order that places an individual on flying
status, changes Aviation Service Codes, terminates aviation service, and awards aero-
nautical ratings.

Instances: Flyer.

Attributes:

DistributionCode (KV-SRS-A-0823): This attribute represents the necessary distri- 0
bution as defined by the StandardReport.

Data Dictionary Name: Aeronautical Order Distribution Code.

Authority: AFR 60-13.

Reason (KV-SRS-A-0824): This attribute represents the reason causing the Aero- 0
nauticalOrder action.

Data Dictionary Name: Aeronautical Order Reason Text.

Authority: AFR 60-13.

TextBody (KV-SRS-A-0825): This attribute represents the text information neces- 9
sary for the Aeronautical Order's body.

Authority: AFR 60-13.

Services:

RequestAOPublication (KV-SRS-S-0031): This service requests publication of an @
aeronautical order lAW AFR 10-7, Chapter 4, Figure 4-1. Objects of this class
will be deleted following successful print action and setting of the Fly-
er.CBPOFlag.

Software Requirements:

a. Activate AeronauticalOrderLog.DetermineAONumber passing parameters
for AeronauticalOrderLogEvent.Text.

b. Message StandardReport to print AeronauticalOrder.

c. Following successful print action, set Flyer.CBPOFlag. 0

56

0

d. Message class to delete this object.

SSS Requirements Satisfied: SSS-0114, SSS-0111, SSS-01 57, SSS-0091.

AviationService (KV-SRS-C-0008)

Description: This object provides information regarding pay entitlements and current
flying status.

Instances: AviationServiceHistory.

Attributes:

EffectiveDate (KV-SRS-A-0071): This attribute represents the effective date of the
Aviation Service Code. It can be established by the effective date of duty estab-
lishing the aviation service described by the assigned code.

Data Dictionary Name: Aviation Service Effective Date.

Authority: DoD Directive 8320.1.

EntitlementStatus (KV-SRS-A-0081): This attribute represents the individual's enti-
tlement status for aviation service.

Data Dictionary Name: Aviation Service Aeronautical Order Rated Entitlement
Status Code.

Authority: AFR 60-1, Chapter 2, Figure 2-2.

FlightDutiesRequired (KV-SRS-A-0041): This attribute identifies the flight duties
that are authorized per lAW AFR 10-7, Chapter 4 (Required to Perform Fre-
quent and Regular Flight).

Data Dictionary Name: Aviation Service Aeronautical Order Flight Duties

Required Code.

Authority: AFR 10-7, Figure 4-1, item 4.

FlyingStatusDisqualificationReason (KV-SRS-A-0082): This attribute represents
the flying status of the individual or the reason for inactive status.

Data Dictionary Name: Aviation Service Disqualification Reason Code.

Authority: AFR 60-1, Chapter 2, Figure 2-2.

JumpDutiesRequired (KV-SRS-A-0040): This attribute identifies that jump duties
are authorized (Required to Perform Parachute Jump Duties).

Data Dictionary Name: Aviation Service Aeronautical Order Jump Duties
Required Code.

Authority: AFR 10-7, Figure 4-1, item 5.

TerminationDate (KV-SRS-A-0072): This attribute represents the termination date
of the Aviation Service Code. This is the last day the AO will be effective.

Data Dictionary Name: Aviation Service Termination Date.

Authority: AFR 60-1, Chapter 2, Paragraph 2-4, and Figure 2-2, 2-3.

57

Services:

Amend (KV-SRS-S-0825): This service will amend objects of this class and create
an instance of an Aeronautical Order.

Software Requirements:

a. Amend existing AviationService.

b. Determine distribution for AeronauticalOrder.

c. Activate AeronauticalOrder.Create with parameters for DistributionCode, 0
Reason, and information necessary for the AeronauticalOrder's TextBody.

SSS Requirements Satisfied: SSS-0092.

CalculateAviationService (KV-SRS-S-0081): This service calculates total months
on flying status per lAW AFR 60-1, Paragraphs 2-3, 2-4, Figures 2-2, and 2-3.

Software Requirements:

a. If Entitlementstatus is active, calculate and return the number of months
from Date Effective and DateTermination.

b. If EntitlementStatus is inactive, return zero.

SSS Requirements Satisfied: SSS-0107

Create (KV-SRS-S-0864): This service will, in addition to the implicit create
requirements, create an instance of an AeronauticalOrder after determining its
distribution per AW AFR 10-7, Chapter 4, Table 4-1.

Software Requirements:

a. Create object of this class.

b. Determine distribution for AeronauticalOrder.

c. Active AeronauticalOrder.Create with parameters for DistributionCode,
Reason, and information necessary for the AeronauticalOrder's TextBody.

SSS Requirements Satisfied: SSS-0091, SSS-1001.

Revoke (KV-SRS-S-0826): This service will revoke objects of this class and create
an instance of an AeronauticalOrder.

Software Requirements:

a. Revoke existing AviationService.

b. Determine distribution for AeronauticalOrder.

c. Activate AeronauticalOrder.Create with parameters for DistributionCode,
Reason, and information necessary for the AeronauticalOrder's TextBody.

SSS Requirements Satisfied: SSS-0093.

58

Badge (KV-SRS-C-0009)

Description: This object signifies completion of specialized training and qualification to

perform a specific air crew skill. Advanced badges generally recognize extended peri-
0 ods of aviation service and experience. Aviation badges can be manually awarded,

removed, or modified at the discretion of the user.

Instances: Flyer.

Attributes:

DateBadgeAwarded (KV-SRS-A-0121): This attribute represents the date a badge

is awarded.

Data Dictionary Name: Aviation Badge Awarded Date.

Authority: AFR 10-7, AFR 60-13.

Title (KV-SRS-A-0091): This attribute represents the title of the badge.

Data Dictionary Name: Aviation Badge Code.

Authority: AFR 60-13, Table 7-1; AFR 35-5, Paragraph 4.

Services:

Amend (KV-SRS-S-0829): This service will amend objects of this class and create

an instance of an AeronauticalOrder.

Software Requirements:

a. Amend existing AviationService.

b. Determine distribution for AeronauticalOrder.

c. Activate AeronauticalOrder.Create with parameters for DistributionCode,

Reason, and information necessary for the AeronauticalOrder's TextBody

SSS Requirements Satisfied: SSS-0092.

Create. (KV-SRS-S-0831): This service will, in addition to the implicit create
requirements, create an instance of an AeronauticalOrder after determining its
distribution per lAW AFR 10-7, Chapter 4, Table 4-1.

Software Requirements:

a. Create object of this class.

b. Determine distribution for AeronauticalOrder.

c. Active AeronauticalOrder.Create with parameters for DistributionCode,
Reason, and information necessary for the AeronauticalOrder's TextBody.

0 ~SSS Requirements Satisfied: SSS-0091, SSS-1 001.

Revoke (KV-SRS-S-0827): This service will revoke objects of this class and create

an instance of an AeronauticalOrder.

Software Requirements:

59

a. Revoke existing AviationService.

b. Determine distribution for AeronauticalOrder.

c. Activate AeronauticalOrder.Create with parameters for DistributionCode,

Reason, and information necessary for the AeronauticalOrder's TextBody.

SSS Requirements Satisfied: SSS-0093.

Instance Connections

This section describes the instance connections in AFORMS. An instance connection

identifies an association between two objects. The range entry identifies how many instances

of an object may be associated with another object. For example, in Figure 29, ObjectOne can

be associated with zero to many ObjectTwos; however, ObjectTwo can be associated with only

one ObjectOne.

ObjectOne 0ObjectTwo

Figure 29. Cardinality Example

Selected instance connections from our examples of AFORMS could be documented,

as shown in the following sections.

Additional Requirements

Sizing and Timing Requirements. The database size for the new AFORMS will range

from 30 Mb to 200 Mb, depending on the organization being supported. The resources required

of both memory and the central processing unit (CPU) will be addressed when the target plat-

form is selected.

Security Requirements. The data manipulated by AFORMS is SENSITIVE-

UNCLASSIFIED. The system supports the use of the Privacy Act and For Official Use Only

security caveats. The target system must comply with minimum protection of the C2 level of

trust as defined in DOD 5200.28-STD, Trusted Computer System Evaluation Criteria (TCSEC)

[DOD85]). The classification is UNCLASSIFIED, but AFORMS will support the Privacy Act

of 1974 and for Official Use Only information. The association of the individual's name with

a social security number, home address, home phone number, and other personally sensitive

data must be controlled under the provisions of the Privacy Act. AFORMS is used to track the

60

unit's air crew training program and flying accomplishments of the unit and all assigned air

crew members.

Design Constraints. AFORMS shall accommodate the following design constraints:

a. Target system must support transaction histories for all transactions that cause the

database to be modified.

b. Target system must support Error Management Reports for database discrepancies.

c. Target system must provide multi-tasking function capabilities.

d. Target system must provide the capability to transmit external electronic mail from

the application.

e. Target system must provide the ability for the system administrator to select the

communication method (air gap or electronic), for each external interface when the

software is installed.

f. AFORMS will be developed to conform and support various modes of operation

(regional center, Air Force base, Air National Guard, Reserve Units, and deployable

operation), and to support 1 to 1,000 wings.

g. Target platform must be able to support COTS products.

h. Software products will be designed both to make maximum, feasible use of existing

software products, and to develop software products for subsequent reuse to the

maximum, feasible extent.

AFORMS will be used on open systems specified by the Government and should be

portable to the open systems that have the following features:

a. An Ada compiler compliant with ANSIIMIL-STD-1815A-1983 [ANSI83].

b. A C compiler that produces executable binaries for the target platform. (The C com-

piler must produce object code that can be linked into an Ada executable

c. ANSI SQL that supports dynamic SQL.

d. A version of the Xlib/Xt/Motif libraries must be supplied for the target platform (X

Window system).

e. A version of the Ada X Interface (AXI) must be provided for the platform (X Win-

dow

61

3.11 PRELIMINARY DESIGN

The major activities of this phase are illustrated in Figure 30 on page 63.

Logical Database Design. The logical database design developed during this phase is

represented by a logical database model. A small portion of this model corresponding to the

00 analysis and Information Models, previously depicted in Figure 27 and Figure 28, is illus-

trated in Figure 31 on page 64. The logical database design model establishes the structuring

of data, represented by tables and relationships. The logical database design model is devel-

oped from the Information Model and consists of the following activities.

Evaluate Interdependencies of Data Objects. Evaluate the interdependencies or rela-

tionships between the data objects on the Information Model. Identify the pieces of data that

need to be present in each data object to represent each of the relationships. Identify candidate

logical identifiers for each object.

Determine Logical Identifiers. From the candidate logical identifiers, pick a single log-

ical identifier that best determines uniqueness for the data object. Considerations in choosing

the logical identifier include size, integrity, and need to change. Smaller candidate logical iden-

tifiers with a higher degree of integrity are generally better logical identifiers. Sometimes a can-

didate logical identifier may have the need to change. Changing candidate logical identifiers

should not be used as logical identifiers unless it is absolutely necessary. If changing logical

identifiers are used, they need to be noted so that they can be reevaluated during the physical

design stage.

Validate the Logical Database Design Model. After the logical database design model 0
is stable, validate it against the 00 analysis and Information models to ensure that all of the

functionality is present in the logical database design model. Throughout the logical design of

the database, keep in mind concurrent access requirements and data integrity.

Build a CRUD Matrix. A Create, Read, Update, and Delete (CRUD) matrix is used to -

determine how the database is accessed by the application. It also helps to identify the critical

transactions for the database. Build a CRUD matrix to evaluate how the data objects are used

in the screens, in reports, over the external interfaces, and for ad hoc queries.

Perform Logical Costing Analysis. Logical costing is a predetermined method of iden- 9

tifying potentially costly access requirements prior to physically designing and implementing

the database.

62

INPUTS ACTIVITIES OUTPUTS
00 Analysis Model Conduct Phase "Kick-Off' Meeting Completed 00
Final Screens Train for the Development Environment Design Model
Final IRAs Conduct Initial Concept of Operations Ada Specifications
Approved Conduct Design Package Concept of Logical Database

Documents Operations Model
from SSR Enhance Window Functionality Update SDFs

Hardware Review Enhanced Window Functionality Initial Design
Architecture Build Initial Design Package Package

Software Review Initial Design Package
Architecture Create FQT Test Procedures

Reusable Build/Update the 00 Design Model
Components Apply/Update Software Architecture
(DSRS) Update Corporate Software Architecture

Previous 00 Conduct Database "Kick-Off" Meeting
Design Results Begin Preliminary Database Conversion

Corporate Design Logical Database
Object Model Update/Create Documentation

Update the SDFs
Conduct Phase Readiness Review

TOOLS TRAINING DELIVERABLES
* Smalltalk & Visual Works Rational Updated SDP*

OOATool/System Architect VAX Draft STD
Interleaf/Microsoft Word BLSM Architecture
Time Line/Microsoft Project DSRS
Microsoft Office Development
Checkpoint Environment

* Hyperhelp SQL
Rational SQL Bindings
CMVC HyperHelp
RCI

Audits/Internal Reviews: Review of CONOPS
Review of Screen Functionality

CMVC Configuration Management and Version Control Review of Initial Work Package
DSRS Defense Software Repository System Review of Preliminary Design

FQT Formal Qualification Testing Incrementally baseline application
IRA Interface Requirements Agreement design with SCG
00 Object-Oriented
RCI Remote Compilation Integrator Review(s): None

SCG Software Control Group
SDF Software Development File
SDP Software Development Plan
SSR Software Requirements Review
STD Software Test Description

Figure 30. Preliminary Design

63

*Insllaton 1*DoDPerson

**01 AeronauticalOrderNumber*Ttl

Log~vet~extReason

Distrbutio~odeRemarks

AeronuticAviatiRatngevc
*Instllaton I*DoDPerson

@DoD~ers**EffectiveDate

LogvetEntRolentatso
Flyinguio~oe IRearksisulfcto ean0

0,1 TerminationDate

JumpDutiesRequired
FlightDutiesRequired

@AeronauticalOrderNumber

Reason
Remarks

Model Notation
*-Indicated Logical ID (or part of LID) dependent on the database0

**-Indicated LID (or part of LID) whose primary residence is in this object

@- Indicates a reference to another object

Figure 31. Logical Database Model

64

First, all tables are given a value representing the "average" expected population for the

given database. Next, each requirement identified in the System Requirements Specification,

which uses the database, is "costed" in terms of (1) the adds, changes, deletes across the tables

it must touch to fulfill the requirements; and (2) the processing frequency of the requirement.

A total cost for the requirement is calculated.

After the requirements are costed, the "high cost" ones are evaluated to determine what

steps (such as adding a secondary index or removal of foreign keys) can be taken to reduce the

cost. Each high-cost requirement is re-costed using the readjusted table structures, and the total

logical costing is calculated again. Trade-offs are then evaluated (high cost vs. processing fre-

quency) and documented.

Review the Logical Database Design Model. At the end of the logical design stage, an

Internal Review is held. The task analysts, designers, and functional users review the logical

database design for functionality. Comments are collected and incorporated. At this point the

logical database design is considered informally baselined.
0

Handle the PRs Received During the Logical Design Stage. Problem Reports (PRs)

approved during the logical design stage are directly incorporated into the logical database

design model.

3.12 DETAILED DESIGN

Beginning with the Detailed Design phase, three documents are drafted incrementally

to support the incremental and iterative development methodology: the Software Design Doc-

ument (SDD), which is incrementally baselined; the Requirements Tracking Matrix (RTM);

and the software test cases within the Software Test Description (STD).

Physical Database Design and Implementation. Using the logical database and the 00

design model designed in the previous phase, the database specialist both designs and creates

the physical database for the modernizing system. Figure 32 on page 66 depicts the physical

database design which consists of the following steps.

Develop the Physical Database Model. The physical database design model is devel-

oped from the logical database design model using a CASE tool The CASE tool produces a

physical database design model as shown in the following figure.

Create Tables. The SQL Data Definition Language (DDL) statements used to create the

database are generated from the physical database design model using the SQL type and size

65

NBDG
-Key Data-
PERSONID @1

0,1 BDG_NM @2
-Non-Key Data
BDG_AWD-DT
INSTLNNM
AC_LOG_EV`T_ID
ARNORDRSNTX
ARNORDRMK-TX

ARN 'RTNG

-RNORD -Key Data

- Key Data PERSONID @1
INSTLNNM 01A1 RTNGAODNM @2
AOLOGEVTID @2 -Non-Key Data
-- Non-Key Data 10,1 RTNG_AO_AWD-DT
PERSONID INSTLN-NM

ARNORD0DSTCD AOLOGEVTjD
AO_LOG_EVT_ DT ARNORD_RSN_TX
AOLOGEVTAO ARN_ORD_RMK-TX

_TXLAD_RSND

AVSVC
-Key Data
PERSON-I D @ 1

AV_SV_AO_EF_DT @2
-Non-Key Data

INSTLN-NM
0,1 AOLOG_EVTID

ARNORDRSNTX
ARN_ORDRMK-TX
AVSVAODSRSNCD-_
AV_SV_AOJMP_RQ_CD
AV__SVý_AO_FLTý_RQ_CD
AVSV_AORTDSTCD
AV_-SV_AO_TRM_DT

Figure 32. Physical Database Model

information entered behind the model. NOT NULL and DEFAULT constraints are added for

each column that requires them.

Group Tables. Tables are analyzed and grouped according to their usage and relation-

ships to one another. Ease of recovery also guides the grouping of tables.

6

66

0

Size Tables. Each table's size is calculated based upon system variables (block and word

sizes), expected population, and RDBMS table overhead. Table sizing is calculated using the

* RDBMS specific formulas found in the RDBMS documentation.

Create Referential Integrity Constraints. SQL statements used to impose referential

integrity constraints on each table are created. The PRIMARY and FOREIGN KEYs are iden-

tified and constraints are written for them.

Create Edits and/or Validation Constraints. The SQL statements used to impose edits

and/or validation constraints on the columns in each table are created. Where it is most efficient

for the database to handle the edits, a CHECK constraint is written for the column.

Build Support Command Files. Command files needed to support the database opera-

tion are developed. These files are used to build and delete the database. Preliminary recovery

and/or backup procedures and command files are also developed.

Build Views. Creation of table views that provide limited access to specific data within

a table or tables will be developed based upon security considerations. Views are also built to

represent user and Corporate Object Model (COM) objects.

Generate Database Design Document. The Database Design Document (DBDD) is the
formal documentation of the physical database design. It includes the physical database design

model, all of the table definitions, and all Standard Data Element (SDE) information. The SDE

information includes table name, data dictionary name, database access name, size, type, and

data edits.

Baselining the Physical Database Design. When the physical database design is con-
sidered to be stable (i.e., validated against screens, reports, and external interfaces), a peer

review is held with other data administration staff. After the peer review comments have been

incorporated, an Internal Review (IR) is held to assess the physical database design. After the
physical database design is accepted by the attendees of the IR, the physical design model can

then be baselined by the Software Control Group.

3.13 CODE AND TEST

In the Code and Test Phase, depicted in Figure 33, the Ada bodies are built from the Ada

specifications developed during the Detailed Design phase, and the individual software com-

ponents undergo testing by the developer. Once the software components have been unit tested

by the developers, they undergo further testing by the contractor's Independent Test Group.

67

0

INPUTS ACTIVITIES OUTPUTS
OOD Model Write Ada Bodies Ada Bodies
Ada Specs Unit Test on the Rational Inputs to DSRS
SDFs Port to Target Platform Non-Ada code
COM -11 Unit Test on Target Platform Updated System
DSRS Code Walk Through Documentation
Reusable Components Integration Testing Bindings
Foundation Components Conduct Informal Testing Foundation
Software Components Complete On-Line Help Components
Software Architecture Write Reports Metrics
Approved Documents Write INX Scripts Internal Test

From SSR Create/Update Documentation Discrepancy
Incremental SDD Conduct FPR Reports

Update the SDFs Test Delivery
Form

TOOLS TRINING DELIVERABLES

Rational None Test Reports
Screen Machine Updated SDD (both reviews)
Oracle Draft RTM (FPR I;
AdaMAT Updated FPR II)
CMVC Updated SDP (both reviews)*
HyperHelp Updated STD (both reviews)
DEC Test Manager Final STP (at FPRA I)
SQL Workbench FPR I & II Minutes
Target Ada Compiler

Audits/Intemal Reviews: Inspection/Code Walkthrough of Ada packages
Incrementally baseline STD with SCG

Review(s): FPR I (after first increment ported and Independently tested)
FPR II (after all increments ported and independently tested)

CMVC Configuration Management and Version Control
DSRS Defense Software Repository System

FPR Formal Process Review
RTM Requirements Tracking Matrix
SCG Software Control Group
SDD Software Design Document
SDF Software Development File
SSR Software Requirements Review
STD Software Test Description
STP Software Test Plan

Figure 33. Code and Test

68

One of the tools used during the coding of the Ada bodies is AdaMAT. It is used to

assess the overall quality of the software and helps identify any difficulty in maintaining and

porting the software.

The Task Leader is responsible for ensuring that all Ada bodies and non-Ada code are

inspected. The Task Leader also ensures that any code which falls below the AdaMAT thresh-

olds and any high-risk increments have a code walk-through performed. The unit test cases and

0 AdaMAT results are reviewed during the code walk-through.

Use of the DSRS is made during this phase as software engineers query the system for

foundation components (common utilities), reusable bindings, and other software components.

In the incremental software development process, Formal Progress Review I (FPR I) is

held after detailed design and code and test of the first increment have been completed. FPR II

is held after all increments have completed detailed design and code and test

3.14 FORMAL SOFTWARE TESTING
0

During the Formal Software Testing phase, as illustrated in Figure 34 on page 70, the

Independent Systems Test Group tests the total system against the Software Test Plan (STP).

The DEC Test Manager is a tool used during this phase to organize tests, select tests for execu-

tion, and review and verify testresults. DEC Test Manager also automates the regression test-

ing process. In addition, the system is tested on the target hardware platform.

All remaining system documentation, with the exceptions of the Lessons Learned (LL),

Software Test Report (STR), and the Software Product Specification (SPS), is finalized prior

to the Test Readiness Review (TRR). The most important deliverable of the entire development

process, the Computer Software Product End Item (CSPEI), is delivered at the TRR.

The TRR is held to review test results, system documentation, and the formal proce-

dures used in the test of the system. The successful completion of the TRR indicates that the

software products are ready for Qualification Test and Evaluation (QT&E). The final function

point count is presented at TRR.

3.15 QT&E SUPPORT

The major activities of Qualification Test and Evaluation (QT&E) support are depicted

in Figure 35 on page 71. The final STR, SPS, and the final input to the task-specific Lessons

Learned (LL) are delivered to the customer for approval.

69

0

INPUTS ACTIVITIES OUTPUTS
Test Reports Conduct Phase "Kick-Off" Final Test Results
Approved Documents Meeting Final AdaMAT

From FPR II - Conduct Formal Software Scores
Reusable Components Testing Metrics

(DSRS) Create/Update Documentation
Conduct Phase Readiness

Review
Conduct TRR

TOOLSRAINING DELIVERABLES
DEC Test Manager None Final RTM
AdaMAT Draft & Final IP

Draft & Final CSOM
Draft & Final CRISD
Draft & Final SUM
CSPEI

I_ TRR Minutes
"+ Final SDP
"+ Final SDD
"+ Final STD
"+ Draft SPS
"+ Draft STR
"+ Updated LL

CSPEI Computer Software Product End Item
FPR Formal Process Review

DSRS Defense Software Repository System
LL Lessons Learned Audits/Internal Reviews: + Red Teamed Deliverables

RTM Requirements Tracking Matrix Review(s): TRR

SDD Software Design Document
SDP Software Development Plan
SPS Software Product Specification
STR Software Test Report
TRR Test Readiness Review

Figure 34. Formal Software Testing

70

INPUTS ACTIVITIES OUTPUTS

Approved Correct Software/Documenta- Updated Source
Documents tion Code
From TRR - as needed Updated

Conduct Testing of Corrections documentation
Establish and Deliver Product Metrics

Baseline
Conduct FCA and RCA.

*TOOLS TRAINING DELIVERABLES
None Final SPS

Independent Final STR
Testers Final LL
Orientation CSPEI: Case Tools and

Repository
CSPEI: Software

Audits/Internal Reviews: Red Teamed Deliverables

Review(s): Functional Configuration Audit/
Physical Configuration Audit

CSPEI Computer Software Product End Item
FCA Functional Configuration Audit
SPS Software Product Specification
STR Software Test Report
TRR Test Readiness Review

Figure 35. QT&E Support

71

CHAPTER 4. SUMMARY OF GUIDELINES AND ISSUES

4.1 OOT REENGINEERING GUIDELINES

In the course of investigating strategies and tactics for reengineering, we have collected

a number of guidelines for choosing a particular strategy and tactics and applying them in a

variety of contexts. Reengineering with OOT ordinarily requires considerable effort for trans-

forming any legacy models for analysis and design since they are unlikely to be object oriented

nor will they map directly into object-oriented models. Thus, the demands of these efforts must

be accommodated in any plan to reengineer using OOT and may limit the scope of the reengi-

neering effort that is feasible at any particular stage of migration.

DoD policy requirements [DOD92] that functional (business) process improvement

activities precede any systems reengineering activity further increase the demands of perform-

ing reengineering with OOT. This is a special problem for OOT use because the DoD-directed

analysis techniques for these activities, using IDEFO and IDEFIX, create functional models

that do not have a direct mapping into 00 models. Chapter 2 identifies guidelines on how to

use IDEFO models to generate scenarios, or use cases, that could provide a basis for subsequent

00 development. IDEXIX models are also identified as potential sources of entities and other

static aspects of object models.

The other principal guidelines offered on reengineering describe how to identify poten-

tial features for 00 modeling from the structured analysis models of legacy systems when such

models exist. General rules for extracting object models from data flow models include the fol-

lowing:

"* Terminators will generally map to class or object in the problem domain.

"* Data stores will map to class or objects.

0 Data flows can correspond to classes, objects, or attributes.

"• Control flows often correspond to specific events.

"* Processes may correspond to services or operations within a class.

73

In addition, a more involved procedure (Bailin's Object-Oriented Specification) is described

that uses both entity-relationship models and data flow models to help build object models

[BA1891.

4.2 OOT REENGINEERING ISSUES

To summarize, this investigation of strategies for reengineering DoD software systems

using OOT has uncovered two major issues regarding systems reengineering.

" Non-OO specifications in legacy systems. It is very likely that the artifacts

(requirements, design, and database specifications) obtained from a legacy system

will not be in an 00 form. Most older systems were built before 00 or even struc-

tured techniques were in common use. As a result, it may not be a simple issue to

forward engineer a new system using these non-O0 specifications.

" Non-OO functional process improvement policy. Current DoD policy requires

that a functional process improvement activity be carried out before reengineering

an information system, but the techniques and models to support functional process

improvement are not object oriented. These functional process improvement mod-

els are supposed to be used as input to the information system reengineering or

development.

In both cases there is a paradigm shift required from either the system artifacts or func-

tional process improvement models. Chapter 2 offers strategies to use these extant models;

however, the paradigm shift will not be automatic and the building of an 00 system will still

require substantial effort by system developers to construct 00 specifications and models. -

0

74

0

LIST OF REFERENCES

[AIK94] P. Aiken et al., "DoD Legacy Systems-Reverse Engineering Data Require-

ments," Communications of the ACM, Vol. 37, No. 5, May 1994.

[ANSI83] American National Standards Institute, ANSIJIvL-STD-1815A-1983, Ada

Programming Language, New York, NY, 1983.

[ARN93] Arnold, R., ed., Software Reengineering, IEEE Computer Society Press, 1993.

[BA189] Bailin, S.C. "An Object-Oriented Requirements Specification Method," Com-

munications of the ACM, Vol. 32, No. 5, May 1989, pp. 608-623.

[BLSM93] Base-Level System Modernization (BLSM), A Strategy for the Future, prepared

by Standard Systems Center/XON, Maxwell AFB, Gunter Annex, AL, Novem-

ber 1, 1993.

[B0094] G. Booch, Object-Oriented Analysis and Design with Applications, The Ben-

jamin/Cumniings Publishing Company, Inc., Redwood City, CA, 1994.

[BRU92] T. A. Bruce, Designing Quality Databases with IDEFIX Information Models,

Dorset House Publishers, New York, NY, 1992.

[CDYD91] P. Coad and E. Yourdon, Object-Oriented Analysis, 2nd edition, Yourdon
Press, Englewood Cliffs, NJ, 1991.

[CIM93a] Center for Information Management, Automated Information Systems Software

Reengineering Risks Taxonomy Report, Defense Information Systems Agency,

Joint Interoperability Engineering Organization, September 1993.

[CIM93b] Center for Information Management, Information System Criteria for Applying

Software Reengineering: Guidelines for Identifying Candidate Information Sys-

tems for Software Reengineering, Defense Information Systems Agency, May

1993.

[CIM94] Center for Information Management, Center for Information Management Soft-

ware Systems Reengineering Process Model, Version 2.0, draft, Defense Infor-
mation Systems Agency, Joint Interoperability Engineering Organization,

September 1994.

References- 1

[DEM79] T. DeMarco, Structured Analysis and System Specification, Prentice-Hall,

Englewood Cliffs, NJ, 1979.

[DOD92] Department of Defense, DOD 8020. 1-M (Draft), Functional Management Pro-

cess for Implementing the Information Management Program of the Depart-

ment of Defense, August 1992.

[DOD93a] Department of Defense, DOD Directive 8120.1, Life-Cycle Management

(LCM) of Automated Information Systems (AISs), January 14, 1993.

[DOD93b] Department of Defense, DOD Instruction 8120.2, Automated Information Sys-

tem Life-Cycle Management Process, Review, and Milestone Approval Proce-

dures, January 14, 1993.

[DOD94] Department of Defense, MIL-STD-498, Software Development and Documen-

tation, December 5, 1994.

[DOD851 DOD 5200.28-STD, Trusted Computer System Evaluation Criteria (TCSEC),

Washington, DC, December 1985.

[HARR93] Harris Data Services Corporation, Software Development Plan (SDP) for the

Base Level System Modernization, Contract No. F01620-88-D-0086, CDRL

Sequence No. A056. Prepared for Standard Systems Center (AFCC), Director

of Contracting, Maxwell AFB, Gunter Annex, AL. Prepared by Harris Data Ser-

vices Corporation, Montgomery AL, October 1993.

[HAT87] D. Hatley and I. Pirbhai, Strategies for Real-Time System Specification, Dorset

House, New York, 1987.

[HUTT94] A. T. F. Hutt, ed., Object Analysis and Design: Description of Methods, John

Wiley & Sons, Inc., New York, NY, 1994.

[IDA86] Institute for Defense Analyses, A Descriptive Evaluation of Automated Soft-

ware Cost-Estimation Models, Alexandria, VA, October 1986.

[IDA93] Institute for Defense Analyses, User's Manual for the Functional Economic

Analysis Model (Version.3.0), IDA Paper P-2904, Alexandria, VA, December

1993.

[IDA95a] Institute for Defense Analyses, System Reengineering Assessment Method, IDA

Paper P-2904, Alexandria, VA, January 1995.

References-2

[IDA95b] B. Haugh, A. Noor, D. Smith, K. Jordan, Legacy System Wrapping for Depart-

ment of Defense Information System Modernization, IDA Paper P-3144, draft,

* Institute for Defense Analyses, Alexandria, VA, July 1995.

[JACO93] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented

Software Engineering: A Use Case Driven Approach, Addison-Wesley Pub-

lishing Company, Inc., Reading, MA, 1993.

[JLC93] Joint Logistics Commanders Joint Policy Coordinating Group on Computer

Resources Management, "Reengineering Economics Handbook," Proceedings

of First Software Reengineering Workshop-Santa Barbara I, March 1993.

[NEL91] M. Nelson, "An Object-Oriented Tower of Babel," OOPS Messenger, Vol. 2,

No. 3, July 1991.

[NIE88] K. Nielsen and K. Shumate, Designing Large Real-Time Systems with Ada,

New York, McGraw-Hill, 1988

S[NN94] J. Ning, A. Engberts, and W. Kozaczynski, "Automated Support for Legacy

Code Understanding," Communications of the ACM, Vol. 37, No. 5, May 1994.

pp. 50-57.

[PRE94] W. Premerlani and M. Blaha, "An Approach for Reverse Engineering of Rela-
0 tional Databases," Communications of the ACM, Vol. 37, No. 5, May 1994.

[RUE93] T. B. Ruegsegger, "IDEFO: Function Modeling for the Object-Oriented," brief-

ing presented at Eleventh Annual National Conference on Ada Technology,

Williamburg, VA, March 15, 1993. GTE Federal Systems, Chantilly, VA.

[RUG90] S. Rugaber, "Recognizing Design Decisions in Programs," IEEE Software, Jan-

uary 1990.

[RUMB91] J. Rumbaugh, M. Blaha, W. Premerlani, E. Frederick, and W. Lorensen,

* Object-Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ,

1991.

[STS93a] Software Technology Support Center, Reengineering Technology Report, Hill

Air Force Base, UT, August 1993.

[STS93b] Software Technology Support Center, Software Estimation Technology Report,

Hill Air Force Base, UT, March 1993.

[USAF89] U. S. Air Force, Statement of Operational Need (SON), HQ USAF/SC 006-89,

December 1989.

References-3

[USAF92] U. S. Air Force, HQ USAF/SC Program Management Directive (PMD),

0923(3)/PE 386110, July 1992.

[WEG90] P. Wegner, "Concepts and Paradigms of Object-Oriented Programming,"

OOPS Messenger, Vol. 1, No. 1, August 1990.

[WIRF90] R. Wirfs-Brock, B. Wilkerson, and L. Weiner, Designing Object-Oriented Soft-

ware, Englewood Cliffs, NJ, Prentice-Hall, 1990.

[YOUR89] E. Yourdon, Modem Structured Analysis, Prentice-Hall, Englewood Cliffs,

NY, 1989.

R0

Refernces-

GLOSSARY

* Words used in the definition of a glossary term and that are defined elsewhere are

in bold.

Abstraction Abstraction consists of focusing on the essential, inherent

aspects of an entity and ignoring its accidental properties

[RUMB91].

AIS Program A directed and funded AIS effort, to include all migration sys-

tems, that is designed to provide a new or improved capability

* in response to a validated need [DOD93a].

Architecture The organizational structure of a system or CSCI, identifying

its components, their interfaces, and a concept of execution

among them [DOD94].

Automated A combination of computer hardware and computer software,

Information System data, and/or telecommunications that performs functions such

(AIS) as collecting, processing, transmitting, and displaying informa-

tion. Excluded are computer resources, both hardware and soft-

ware, that are either physically part of, dedicated to, or essential

in real time to the mission performance of weapon systems;

used for weapon system specialized training, simulation, diag-

nostic test and maintenance, or calibration; or used for research

and development of weapon systems [DOD93a]. However, as

used here, AISs include systems for C21, C3M, and C4I, even

though they may be essential in real time to mission perfor-

mance.

Class A class can be defined as a description of similar objects, like a

template or cookie cutter [NEL91]. The class of an object is the

definition or description of those attributes and behaviors of

interest.

Glossary- 1

Collaboration A request from a client to a server in fulfillment of a client's

responsibilities [HUTT94, p. 192].

Commercial-off-the- Commercial items that require no unique government modifica-

Shelf (COTS) tions or maintenance over the life cycle of the product to meet

the needs of the procuring agency [DOD93a].

Computer Hardware Devices capable of accepting and storing computer data, exe-

cuting a systematic sequence of operations and computer data,

or producing control outputs. Such devices can perform sub-

stantial interpretation, computation, communication, control, or

other logical functions [DOD94]. 0

Computer Program A combination of computer instructions and data definitions

that enables computer hardware to perform computational or

control functions [DOD94].

Computer Software An aggregation of software that satisfies an end use function -

Configuration Item and is designated for separate configuration management by the

(CSCI) acquirer. CSCIs are selected based on tradeoffs among software

function, size, host or target computers, developer, support con-

cept, plans for reuse, criticality, interface considerations, [the] 0

need to be separately documented and controlled, and other fac-

tors [DOD94].

Contract The list of requests that a client class can make of a server class. 0
Both must fulfill the contract: the client by making only those

requests the contract specifies, and the server by responding

appropriately to those requests [HUTT94, p. 192].

CRC Cards Class-Responsibility-Collaborator Cards. CRC cards are 0

pieces of paper divided into three areas: the class name and the

purpose of the class, the responsibilities of the class, and the

collaborators of the class. CRC cards are intended to be used to

iteratively simulate different scenarios of using the system to -

get a better understanding of its nature [HUTT94, p. 192].

Database A collection of related data stored in one or more computerized

files in a manner that can be accessed by users or computer pro-

grams via a database management system [DOD94]. 0

Glossary-2

0

Database An integrated set of computer programs that provide the capa-

Management System bilities needed to establish, modify, make available, and main-

tain the integrity of a database [DOD94].

Encapsulation ... (also information hiding) consists of separating the exter-

nal aspects of an object, which are accessible to other objects,

from the internal implementation details of the object, which

* are hidden from other objects [RUMB91]. The act of grouping

into a single object both data and the operation that affects that

data [WIRF90].

Framework A collection of class libraries, generics, design, scenario mod-

els, documentation, etc., that serves as a platform to build appli-

cations.

Government-off-the- Products for which the Government owns the data rights, that
Shelf (GOTS) are authorized to be transferred to other DoD or Government

customers, and that require no unique modifications or mainte-

nance over the life cycle of the product [DOD93b].

Inheritance Inheritance is the sharing of attributes and operations among

40 classes based on a hierarchical relationship [RUMB91]. Sub-

classes of a class inherit the operations of the parent class and

may add new operations and new instance variables. Inheritance
allows us to reuse the behavior of a class in the definition of

9 new classes [WEG90].

Information Hiding Making the internal data and methods inaccessible by separat-

ing the external aspects of an object from the internal (hidden)

implementation details of the object.

Information System See Automated Information System (AIS).

Legacy System Any currently operating automated system that incorporates

obsolete computer technology, such as proprietary hardware,

*0 closed systems, "stovepipe" design, or obsolete programming

languages or database systems.

Life-Cycle A management process, applied throughout the life of an AIS,

Management (LCM) that bases all programmatic decisions on the anticipated mis-

Glossary-3

sion-related and economic benefits derived over the life of the

AIS [DOD93a].

Message Mechanism by which objects in an 00 system request services

of each other. Sometimes this is used as a synonym for opera-

tion.

Method An operation upon an object, defined as part of the declaration

of a class; all methods are operations, but not all operations are

methods [BO094a].

Migration The transition of support and operations of software functional-

ity from a legacy system to a migration system.

Migration System An existing AIS, or a planned and approved AIS, that has been

officially designated to support standard processes for a func-

tional activity applicable DoD-wide or DoD Component-wide

[DOD93a]. Ordinarily, an AIS that has been designated to

assume the functionality of a legacy AIS.

Monomorphism A concept in type theory, according to which a name (such as a

variable declaration) may only denote objects of the same class

[BOO94a].

Object A combination of state and a set of methods that explicitly

embodies an abstraction characterized by the behavior of rele-

vant requests. An object is an instance of an implementation

and an interface. An object models a real-world entity (such as a

person, place, thing, or concept), and it is implemented as a

computational entity that encapsulates state and operations

(internally implemented as data and methods) and responds to

requestor services.

Object-Based A method of programming in which programs are organized as

Programming cooperative collections of objects, each of which represents an

instance of some type, and whose types are all members of a @

hierarchy of types ... somewhat constrained by the existence of

static binding and monomorphism [BOO94a].

S

Glossary-4

Object-Oriented A method of analysis in which requirements are examined from

Analysis the perspective of the classes and objects found in the vocabu-

lary of the problem domain [B0094a].

Object-Oriented The process of breaking a system into parts, each of which rep-

Decomposition resents some class or object from the problem domain

[B0094a].

Object-Oriented A method of design encompassing the process of 00 decompo-

Design sition and a notation for depicting both logical and physical as

well as static and dynamic models of the system under design

[B0094a].

Object-Oriented A method of implementation in which programs are organized

Programming as cooperative collections of objects, each of which represents

an instance of some class, and whose classes are members of a

hierarchy of classes united via inheritance relationships. In

such programs, classes are generally viewed as static, whereas

objects typically have a much more dynamic nature, which is

encouraged by the existence of dynamic binding and polymor-

phism [B0094a].

Object-Oriented OOT consists of a set of methodologies and tools for develop-

Technology (OOT) ing and maintaining software systems using software objects

composed of encapsulated data and operations as the central

paradigm.

Object Request Program that provides a location and implementation-

Broker (ORB) independent mechanism for passing a message from one object

to another.

Operation Some action that one object performs upon another in order to

elicit a reaction [B0091]. A Service is a specific behavior that

an Object is responsible for exhibiting [CDYD91].

Polymorphism The same operation may behave differently on different classes

[RUMB91].

Reengineering The process of examining and altering an existing system to

reconstitute it in a new form. May include reverse engineering

Glossary-5

(analyzing a system and producing a representation at a higher

level of abstraction, such as design from code), restructuring

(transforming a system from one representation to another at

the same level of abstraction), redocumentation (analyzing a

system and producing user or support documentation), forward

engineering (using software products derived from an existing

system, together with new requirements, to produce a new sys-

tem), retargeting (transforming a system to install it on a differ-

ent target system), and translation (transforming source code

from one language to another or from one version of a language

to another) [DOD94].

Requirement (1) Characteristic that a system or CSCI must possess in order

to be acceptable to the acquirer. (2) A mandatory statement in

this standard or another portion of the contract [DOD94].

Responsibility A contract that a class must support, intended to convey a

sense of the purpose of the class and its place in the system

[HUTT94, p. 192].

Service A service is a specific behavior that an Object is responsible for

exhibiting [CDYD91].

Software Computer programs and computer databases. Note: Although

some definitions of software includes documentation, MIL-

STD-498 limits the scope of this term to computer programs

and computer databases in accordance with Defense Federal

Acquisition Regulation Supplement 227.401 [DOD94].

Software A set of activities that results in software products. Software

Development development may include new development, modification,

reuse, reengineering, or any other activities that result in soft-

ware products [DOD94].

Software In general usage, a synonym for software development. As

Engineering used in this standard [MIL-STD-498 (DOD94)], a subset of

software development consisting of all activities except qualifi-

cation testing. The standard makes this distinction for the sole

purpose of giving separate names to the software engineering

Glossary-6

and software test environments [DOD94].

Software The facilities, hardware, software, firmware, procedures, and

Engineering documentation needed to perform software engineering. Ele-

Environment ments may include but are not limited to computer-aided soft-

ware engineering (CASE) tools, compilers, assemblers, linkers,

loaders, operating systems, debuggers, simulators, emulators,

documentation tools, and database management systems

[DOD94].

Software System A system consisting solely of software and possibly the com-

puter equipment on which the software operates [DOD94].

Weapon System Items that can be used directly by the Armed Forces to carry out

combat missions and that cost more than 100,000 dollars or for

which the eventual total procurement cost is more than 10 mil-

lion dollars. That term does not include commercial items sold

in substantial quantities to the general public (Section 2403 of

10 U.S.C., reference (bb) [DOD93a].

0

Glossary-7

LIST OF ACRONYMS

ACIA Aviation Career Incentive Act

ACIP Aviation Career Incentive Pay

AFORMS Air Force Operations Resource Management System

AFR Air Force Regulation

AIS Automated Information Systems

AL Alabama

AMF Aircraft Maintenance Facility

AMS Aircraft Maintenance System

ANSI American National Standards Institute

AXI Ada X Interface

BCA Business Case Analysis

BLSM Base-Level System Modernization

BPI Business Process Improvement

CASE Computer-Aided Software Engineering

CDRL Contract Data Requirements List

CIM Center for Information Management; Corporate Information Management

CM Configuration Management

CMS Code Management System
CMVC Configuration Management and Version Control

COM Corporate Object Model

CONOPS Concept of Operations

COTS Commercial off the Shelf

CPU Central Processing Unit

CRC Class-Responsibility-Collaborators

CRUD Create, Read, Update, and Delete

CSPEI Computer Software Product End Item

DBA Database Administrator

DBDD Database Design Document

DBMS Database Management Systems

Acronyms- 1

DCPS Defense Civilian Pay System

DDL Data Definition Language

DDRS Defense Data Repository System

DEC Digital Equipment Corporation

DFD Data Flow Diagram

DID Data Item Description

DISA Defense Information Systems Agency

DoD Department of Defense

DODD Department of Defense Directive

DODI Department of Defense Instruction

DOS Distributed Operating System

DSRS Defense Software Repository System

DTM Digital Equipment Corporation Test Manager

E-R Entity -Relationship

FCA Functional Configuration Audit

FPR Formal Process Review

FQT Formal Qualification Testing

GUI Graphical User Interface

LAW In Accordance With

ICOM Inputs, Controls, Outputs, and Mechanisms

HDIP Hazardous Duty Incentive Pay

LAW In Accordance With

IDA Institute for Defense Analyses

ID Identification

IDEFO Integrated Computer-Aided Manufacturing (ICAM) Definition Language 0

IDEF1X Integrated Computer-Aided Manufacturing (ICAM) Definition Language
Ix

IR Internal Review

IRA Interface Requirements Agreements

IRR Initial Requirements Review

LAN Local Area Network

LID Logical Identification (ID)

LL Lessons Learned

LOGMOD-B Logistics Module - Base level

LVM/OOD Layered Virtual Machine/Object-Oriented Design

Acronyms-2

MAJCOM Major Command (Air Force)

MDS Manpower Data System

MPO Military Pay Order

MSA Modem Structured Analysis

NIST National Institute of Standards and Technology

OMT Object Modeling Technique

00 Object-Oriented

OOS Object-Oriented Specification

OOT Object-Oriented Technology

ORD Operational Requirements Document

OSE/IA Open Systems Environment for Imminent Acquisitions

PC Personal Computer

PDC Public Domain Component

PMD Program Management Directive

POSIX Portable Operating System Interface for Computer Environments

PR Problem Report

QT&E Qualification Test and Evaluation

RA Requirements Analysis

RCI Remote Compilation Integrator

RDA Remote Data Access

RDBMS Relational Database Management System

RDF Relational Design Facility

RPC Remote Procedure Call

RTM Requirements Tracking Matrix

SA Structured Analysis

SCG Software Control Group

SDD Software Design Document

SDE Standard Data Element

SDF Software Development File

SDP Software Development Plan

SDR Software Design Review

SEER System Evaluation and Estimation of Resources

SON Statement of Operational Need

SOW Statement of Work

SPS Software Product Specification

Acronyms-3

SRR Software Requirements Review

SRS Software Requirements Specification

SSC Standards System Center

SSDD System/Segment Design Document

SSS System/Segment Specification

STD Software Test Description

STP Software Test Plan

STR Software Test Report

TAFIM Technical Architecture Framework for Information Management

TBM Theater Battle Management Group

TCP/IP Transmission Control Protocol/Internet Protocol

TQM Total Quality Management

TRM Technical Reference Model

TRR Test Readiness Review

USTRANSCOM United States Transportation Command

VT Virtual Terminal

0

0

0

0

0

Acronyms-4

0

REPORT DOCUMENTATION PAGET o0MrB AN~o.0704e-01 88

Public rotI ng burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources,
gatheringad maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports , 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Managerment and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1July 1995 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Software Reengineering of Department of Defense Information DASW01-94-C-0054
Systems Using Object-Oriented Technology

Task Order T-S5-1266
6. AUTHOR(S)

Kathleen A. Jordan, Brian A. Haugh, Larry H. Reeker

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

Institute for Defense Analyses (IDA) NUMBER

1801 N. Beauregard St. IDA Paper P-3145

Alexandria, VA 22311-1772

9.SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONTrORING AGENCY

Defense Information Systems Agency REPORT NUMB3ER

Center for Computer Systems Engineering
5600 Columbia Pike
Falls Church, VA 22041-2717

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, unlimited distribution: 31 December 2A
1996.

13. ABSTRACT (Maximum 200 words)

This report describes a set of strategies for performing software reengineering using object-oriented
technology (OOT) for information systems in the DOD. The risks, problems, and issues associated
with using OOT are identified. A reengineering example using OOT is given, the U.S. Air Force
Base-Level System Modernization (BLSM) program, which has been designed to modernize base-
level automated information systems at Air Force bases. One of BLSM's applications, the Air Force
Operations Resource Management System, serves as an example of the program's approach to full-
scale software reengineering using OOT. OOT reengineering guidelines are provided, covering the
use of DoD-directed analysis techniques (IDEF0 and IDEF1X) and how to identify potential features
for object-oriented modeling from the structured analysis models of legacy systems (when such
models exist). The audience of this report includes DOD software development managers, technical
leaders, and software engineers.

1'4. SUBJECT TERMS 15. NUMBER OF PAGES

Object-oriented technology (OOT), reengineering, automated information 108
systems (AISs), IDEF0, IDEF1X, object models, legacy systems. 76. PRICE CODE

17.SECURITYCLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sid. Z_39-18

298-102

