R-9D

AFOSR-T

S

Evolution and Stability of a Crack with a Process Zone.
Experimental and Theoretical Studies

Final Report
(August, 1996)

Two Parameter Crack Layer Model:
Equilibrium, Evolution, Stability

*
Aging Phenomena and the Intrinsic Material Geometry

by

A. Chudnovsky and Y. Shulkin
Department of Civil and Materials Engineering
2095 ERF, 842 W. Taylor Str.

University of lllinois at Chicago
Chicago, IL 60607

and

S. Preston
Department of Mathematical Sciences
Portland State University
Portland, OR 97207

Prepared for

Air Force Office for Scientific Research
Aerospace and Engineering Sciences
Building 410, Boiling AB
Washington DC. 20332
(Grant No. 92-J-0201)

o 10




“orm Aoproveq
M8 No. 07040188

-
REPORT DOCUMENTATION PAGE
PUONC *RDTTUNT SULZEN 1OF CNUACHECHOR 3T “CTTTILON | ALLIMITEd 10 3sar
JAINENITT 1NT MINTIINING TNE T3T2 NEGALT. ANT (M OIBUNAG ANG reviewn
COIECUON O AITTMINON. INCISAING SUAQSSTIONS
Qavisrer wav sude 1204 arumaton. va (ii32

10 U CCLL S8C CSBOrIR noULTING tRE UTE TOT CRYimwIng ingt?

LCUCNS. 52arCNING ex1ItING OALS SOUMCES,
T ITE TSUECNON O INIRFMATION a3 COMMENTS FAQArAING TN1S DUIIEN SSUMATE OF 3ny other as0eCt OF TN1S
LIreCIOCAE 1P INTOrMATION LUDerationy ana Heoorms, 1415 Jettenon

neguction Pro1ect 107G4-0 188). /asninaton. 0C 20503,

TT7 TRTUCING NS DUFGRN "D A/33MINATON meaaauarter yarvices.
302 ana to the )ttice At Managemenr yog sugger. PIDerworK

1. AGENCY USE ONLY (Leave otank lz. REPORT QATE 3. REPQRT TYPE AND DAT®ES COVERED

09-30-96 —( N/ [-L_—07/30/95 - 07/30/96
4. TITLE AND SUBTITLE ! M 5. FL

T3 itw.alds
Evolution and Stabilities of a Crack and a Process Zone.
Experimental and Theoretical Studies

6. AUTHOR(S) 92-J-0201
A. Chudnovsky, Y. Shulkin and S. Preston

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Civil and Materjals Engineering
2095°ERF, 842 W. Taylor Street
The University of llinois at Chicago
Chicago, IL 60607

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESSIES)

Air Force Office for Scientific Research /}// ﬂ/

8. PERFORMING CRGANIZATION
REPORT NUMBER

10. SPONSQORING/ MONITORING
AGENCY REPORT NUMBER

Aerospace and Engineering Sciences Sk 7 ,
Building 410, Boiling AFB 9 T-03C /
Washington D.C. 20332 Q;z :Y é)c
11. SUPPLEMENTARY NQTES

N/A

123. OISTRIBUTION/ AVAILABILITY STATEMENT 12b. OISTRIBUTION CODE
Approved for public release;

Distribution unliimited N/A

13, ABSTRALT /Maxumum <00 woras

The report contains two parts: (1) "Two parameter crack layer model" and (2)
"Aging phenomena and the intrinsic material geometry". In the first part, the crack
layer model is substantiated from the thermodynamic standpoint, the kinetic
equations governing crack layer evolution are derived, and stability of the crack
layer stationary state and propagation is analyzed. The proposed model is
examined for the engineering thermoplastics studied in detail experimentally. In the
second part, a variational approach to the derivation of constitutive equations of
material aging is proposed. Elastic properties and irreversible deformations are
represented by a 4D material metric tensor. Equations governing evolution of the
tensor are obtained and studied. The theory is illustrated by examples.

14. SUBJECT TERMS

15. NUMé R QF PAGES
7" &

crack, process zone, crack layer, 2 parameter model, equilibrium,

evolution, stability, lifetime, aging, metric tensor, intrinsic geometry

16. PRICE COOE i

17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION | 13. SECURITY CLASSIFICATION 120, LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE QOF ABSTRACT ?
UNCLASSIFIED UNCLASSIFIED

UNCLASSIFIED '

NSN 7520-01-.80-5500




Abstract

The present report summarizes the 4 year experimental and theoretical research program
conducted by the Fracture Research Laboratory under AFOSR support and devoted to various
aspects of materials brittle fracture and aging®. The report includes two parts - Part 1. "Two
Parameter Crack Layer Model: Equilibrium, Evolution, Stability" and Part 2. "Aging Phenomena
and the Intrinsic Material Geometry".

In the first part, a thermodynamic foundation of the crack layer (CL) kinetic model is given
and various applications are discussed. Motion of the CL causes elastic energy release from the
matrix and remote load as well as energy consumption due to formation of the process zone (PZ)
and new crack surfaces. The thermodynamic force for crack or PZ advance is defined as the
difference between the rate of the potential energy release and the rate of the energy dissipation;
crack or PZ advance being possible only if the thermodynamic force is positive. The material
degradation process taking place within the PZ is accounted for by a reduction of the specific
fracture (Griffith) energy in time. The kinetic equations governing the process of CL growth are
formulated in the form of relations between the rates of crack and PZ extensions and conjugated
thermodynamic forces. Numerical solution of the non-linear equations reveals two modes of CL
growth - continuous (the CL grows monotonously) and discontinuous (the process is a sequence
of CL stationary states and transitions from one state to another). Stability analysis shows that
processes of CL advance including crack growth (particularly, the transitions mentioned) are
unstable. According to observations, in a realistic range of load and temperature, subcritical CL
growth progresses in a discontinuous fashion. The modeling of this process leads to the lifetime-
load-temperature relation which agrees well with that obtained experimentally.

In the second part, a new variational approach to the derivation of constitutive equations for
material aging is presented. A 4D material metric tensor is introduced as an age parameter. This
tensor represents an evolution of elastic properties as well as the irreversible deformations of the
material. The equations governing evolution of the material metric tensor with the respective
balance equations are derived and analyzed. The proposed equations are illustrated by examples.

*) These works have been reported previously:
1. A new method of lifetime prediction for brittle fracture of engineering thermoplastics, 1994.

2. A new experimental technique for modeling of crack and process zone propagation in engineering
thermoplastics, 1995.

3. Crack and process zone behavior in a vicinity of inclusions, 1995.
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1. Introduction

The crack layer concept [1, 2] to model subcritical crack growth is based on the assertion
that the crack as a fracture object has to be considered jointly with a zone of damaged material that
surrounds the crack and grows with it. The presence of such a zone is treated as a natural
characteristic of any cracked body since the zone is observed in all engineering materials - metal,
polymer, ceramic, composite. The crack and the zone further referred to as the process zone (PZ)
form an entire system - the crack layer (CL). Propagation of the CL is a result of interaction
between the crack and PZ within the CL and between the CL and the surrounding body called for
brevity the matrix. Therefore the fracture process is affected by behavior of both the matrix and
PZ materials. The given CL definition calls for a detailed information regarding properties of the
matrix and PZ materials to model fracture evolution under particular loading and temperature
conditions. The present report is concerned with development and application of the CL concept
for the case when CL behavior is characterized by two parameters - crack and PZ lengths.

Subcritical crack growth leading to long-term brittle fracture is of considerable practical
importance. The crack which causes the fracture is usually generated by a preexisting defect. At
room temperature crack initiation and propagation occur at relatively low stresses and prove to be
the major reason for failures of structural components under normal service conditions. The
period of time required for the crack to be initiated and to propagate slowly up to a sudden onset of
crack instability is called the lifetime, or the time to failure and denoted by ;. Fundamental

understanding and respective modeling of the mechanism governing crack initiation and growth
creates a theoretical basis for reasonable prediction of the material lifetime.

The validity of CL model is examined in application to engineering thermoplastics because
all the data required are readily available for both constant and cyclic loads [3-24]. The
observations of slow crack growth reported allow a complete characterization of the CL model
and comparison of its predictions with the results obtained experimentally.

According to [15], the PZ is formed ahead of the crack tip almost immediately upon loading
and then extends together with the growing crack preceding its tip. Formation of the PZ can be
treated as a material response to the state of high level stresses occurring in front of the crack tip
and having the shape of nearly hydrostatic tension. The stress field produces microvoiding of the
original material and subsequent stretching of the voided material. As a result, the PZ appears
either as a region of craze fibrils, i.e. of the material strongly oriented towards the direction
perpendicular to the crack plane and disconnected within the plane of crack extension, or in the
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shape of a region subjected to large shear yielding. As stated above, the PZ material is
conventionally considered similar to those of the drawn (necked) one. There are convincing
evidences of a crucial influence of time-dependent properties of the PZ material, such as
disentanglement and creep of the craze fibrils, on the rate of subcritical crack growth and the
lifetime of polymers {10, 23, 24]. Modeling of the PZ from the continuum mechanics standpoint,
particularly evaluation of the PZ length, is usually based on the Dugdale-Barenblatt (DB) model
[25, 26]. However, as follows from more accurate analysis [22, 27], the length of the PZ
observed turns out to be significantly smaller than that predicted by the DB model.

As experiments show, subcritical crack growth may evolve as a continuous (smooth)
process or discontinuous (step-wise) one. Discontinuous crack growth in polymers under fatigue
conditions has been reported rather long ago [4], but only recently [19] this process has been
observed under constant load. In accordance with the latter, this manner of crack growth is
explained by interaction of the two processes: degradation of the PZ material and crack extension
into the PZ. The crack remains arrested while the PZ material is strong enough, and starts
growing as soon as this material sufficiently weakens. Crack advance continuous up to the instant
when it reaches the material that are too firm to be broken. Discontinuous crack growth is
considered a general phenomenon which tends to become unobservable if the level of stresses
decreases and/or the rate of degradation increases.

Description of the crack kinetics is usually based on the assumption that the stress-strains
field in a small vicinity of the crack tip completely defines the conditions of crack initiation and
growth. This means, in particular, that the rate of crack growth (in experiments [15] the rate of
crack tip opening displacement is usually measured) only depends on such fracture parameters as
stress intensity factor K or J-integral or others like that. Observations [6, 8, 13, 17-19] result in
an approximate determination of the crack growth rate under constant load as a power function of
the stress intensity factor K, i.e. the rate of the crack length or the notch tip opening displacement,
i or &, is defined to be proportional to K" where n is a material constant. According to [28], n
varies from 3 to 5 depending on the particular chemical structure of the polymer. The empirical
relations mentioned has been established for the simplest conditions of crack propagation: the
specimen material is homogeneous and the crack trajectory is straight line. Study of the case when
the specimen contained an asymmetric inclusion and so, the crack trajectory was curved [29], has
led to the conclusion that the crack kinetics could not be fully determined by the only parameters of
the crack tip mentioned above and so, some additional characteristics of the process should be
involved to reflect presence of the PZ and its effect on the direction and rate of crack growth.
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From the viewpoint of lifetime prediction, the most important experimental result is the
establishment of relations between the lifetime, applied load and temperature. Data about the
lifetime of polymer structures at various levels of load and temperature have been reported for
internally pressurized pipes [6] and for tensile single-edge notched (SEN) specimens [17, 18]. For
definite sizes of specimen from a given material and for the particular load type (tension, three-
point bending and so on), the lifetime under constant load and fixed temperature depends only on
stress level o, namely 1, o< o™*. Incase [6] o signifies the hoop stress in a pipe, and in case
[17, 18] the applied stress; ¢ is a material constant that slightly depends or none at all on
temperature and varies approximately from 2.5 to 5.0 for different materials. It has been
demonstrated that a certain treatment of the lifetime-stress relation obtained in short-term fracture
tests at high temperatures allows a reasonable estimation of the lifetime-stress relation for long-
term processes at room temperature [16-18, 21].

The three approaches to modeling of subcritical crack growth in polymers under constant
load can be pointed out. The first assumes that kinetics of the process is uniquely defined by time-
dependent properties of the matrix material. According to the most detailed theory of the kind
[30], the crack propagates due to viscoelastic deformation of the matrix material. The second
approach links crack growth with the time-dependent processes developing within the PZ material
[9, 10, 19]. And, finally, the third approach is based on the CL concept [1, 2]. Based on the
analysis of CL motion from the standpoint of irreversible thermodyriamics, a complete
specification for a solution of the general problem on the CL kinetics has been obtained. This
approach applied for the case when the CL can be defined as a two-parameter system [22, 27, 31-
34] leads to a modeling of various phenomena observed in thermoplastics, particularly
discontinuous crack growth. In the framework of the third approach, it also should be mentioned
the kinetic model [35] with a quasi-empirical condition of discontinuous crack propagation.

The present report is devoted to a thermodynamically consistent characterization of the
simplified (two-parameter) CL kinetic model. The simplification of the model results from the
observations that the PZ in thermoplastics occurs as a thin strip extending the crack, so that the CL
can be geometrically determined by the crack and CL lengths only. Motion of the CL causes
elastic energy release from the matrix and energy expenses due to formation of the PZ and new
crack surfaces. Thermodynamic force for crack or PZ advance is defined as the difference
between the rate of respective potential energy release and the rate of energy expenditure; crack or
PZ advance being possible if the thermodynamic force is positive. Focusing only on modeling of
CL growth and on lifetime assessment and taking account of the fact that the matrix releases only

elastic energy, viscoelasticity of the matrix is admissible to be ignored. The degradation of the PZ



material is described as a reduction of the specific energy of crack extension in time. The kinetic
equations governing the process of CL growth are formulated as relations linking the rates of crack
and PZ extensions with conjugated thermodynamic forces. Numerical solution of the equations,
non-linear because of the above constraints on crack and PZ advances, reveals two modes of CL
growth under constant load: continuous (the CL grows all the time of the process) and
discontinuous (the CL growth is a sequence of its stationary states and transitions from one state to
another). Stability analysis shows that any process of CL advance including crack growth is
unstable. Particularly, this means instability of the transitions from one CL stationary state to
another in a discontinuous process. As examples of CL kinetic behavior, the two additional
loading conditions are analyzed: first, the edges of a finite SEN plate are displaced with a
prescribed rate (the ramp test if the rate is constant), and second, a dipole with a given rate of
growth is applied to the crack boundaries in an infinite plate.




2. Process zone formation. Energy balance

Let a two-dimensional cracked body (Fig. 1a) be subjected to a remote load p={p,, py}
on bounding contour S, inducing a stress-strain state of the opening mode (mode I) in a vicinity

of the crack. The deformation caused by the remote load is assumed small and the material
linearly elastic, so that the problem on the body in question is completely linear. As a response to
the stress singularity at the crack tip predicted by the solution of the above linear problem, a region
of the material ahead of the crack tip is transformed so that the stresses within it diminish. In case
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Figure 1. PZ formation: (a) before and (b) after the PZ occurs

of thermoplastics, this region called in previous section the process zone (PZ) usually appears in
the shape of a thin strip as shown in Fig. 1a by contour S,. Mechanism of PZ formation contains
at least two stages: first cavitation within the original material, and second stretching or shearing of
the cavitated material. As a result, the continuum under consideration is divided into two parts of
different materials: the PZ (inside contour S,) and the rest of the body (outside the contour)
consisting of the original material and called previously the matrix (Fig. 1b). The additional matrix

deformation produced by the PZ appearance is supposed small as before and so, the problem on
the matrix stays linear.

Formation of the PZ can be described in terms of forces and displacements as follows.
Because the region enveloped by contour S, is narrow in the direction of y-axis, the values of
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traction and displacement on the contour can be understood as stress component ¢ =0, and
contour opening & =2u,. The state of the part inside §, is treated as homogeneous in the y-axis
direction and contour S, is substituted with its projection L, on x-axis. Let at the beginning of the

process, i.e. at the instant of cavities nucleation, the traction on L, and contour opening have values
0',?, and §° respectively. At this point, the equality between the tractions acting on the external and

internal parts of the body along L, is violated: the traction applied to the external part (to the
matrix) do not change and keeps value 0'2, , but that for the internal part drops down to a certain
value 0'? (<6?). Nucleation of cavities leaves displacement compatibility between the two parts
of the body valid, so that equalities 50 = 53 = 5° take place for any point of L,. The opening § of
S, due to development of the cavities and subsequent stretching of the cavitated material with

preservation of the mentioned compatibility gives rise to changes in the contour tractions. The
value of the traction acting on the matrix, ©,,, decreases obeying the elasticity law of the matrix,

whereas that for the traction exerted on the cavitated region, o,, varies in accordance with the

stress-strain relation of the material subjected to cavitation and stretching. This non-balanced
process comes to an equilibrium when the tractions on the both sides of S, get equal to each other,
ie. 0,=0,= o" at all points within L. The respective equilibrium value of opening

displacement § is denoted by 6 5

o
Oy

Odr

(b)

Figure 2. Diagram o - ¢ of cold drawing: (a) observed, (b) simplified
For complete specification of the problem on PZ formation, a stress-strain relation

governing PZ behavior during this process has to be known. For polymers, it is widely accepted
that the PZ material is identical with that obtained as a result of cold drawing of the original
2
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material. This allows the characterization of the PZ at any point in terms of the diagram
connecting engineering stress O and strain € (Fig. 2a). By oy and O, one implies the yield and

drawing stresses, and by €, and ¢, the strains before and after drawing respectively. Segment

OA describes elastic deformation and AB drawing, the transition from undrawn state to drawn

one, since it results in a fall of stress 0, being unstable. Further, for simplicity, the elastic part of
diagram o vs. € is neglected, €, = O (Fig. 2b), and the strain after drawing can be determined as

€, = A, —1 where A, is the natural draw ratio. Moreover, it is assumed that during PZ
formation each point of the region within L, goes through the complete transformation from the

undrawn state to the drawn one, i.e. any PZ fibril is subjected to the drawing stress and
experiences deformation with the natural draw ratio, i.e. =0, and e=4, -1.

AN

Cm INej
— —_—
Lz Lz
(a) — |

(b)

Figure 3. Matrix unloading: (a) initial and (b) additional tractions on L,

According to the above, the opening of L, at the instant of cavities nucleation has to be
taken to equal zero, i.e. §° =0. Let, for definiteness, opening § due to PZ formation and matrix
unloading change as § = 8" where o grows from O to 1. This process, because of matrix linear
elasticity, can be decomposed into the two stages: first removal of the part of the body within (Fig.
3a) and second application of traction Ao = o (- 0',(,), + 04, to the cut boundaries (Fig. 3b), so
that the total traction changes as 0,, = (1- @)0, + a0,,. The matrix behavior can be displayed
by straight line 0,(J) in Fig. 4a. The figure also illustrates the PZ behavior during its formation
by curve &,(8) which is analogous to curve o(€) in Fig. 2b. As a result of PZ formation, the

stresses in a vicinity of the crack tip are released as shown in Fig. 4b.
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Consider the energy balance of PZ formation, admitting the process to be isothermal and
the remote load prescribed. Under conditions indicated, the relevant thermodynamic potential is

the Gibbs energy G.
Since the elastic deformation of the material within L, is disregarded, all energy changes

associated with cavitation fall out from consideration. Stretching or shearing of the cavitated

material results in the following change of G:

AG = AF, + F,~- W, : (1)
Ca

Ox

oz

Cdr
G IRy
~—
0 L.

(a) (b)
Figure 4. Stress evolution ahead of crack tip: (a) diagrams o, and o, vs. &,

(b) stress release

where AF,, and F, are change in strain energy of the matrix and the "deformation potential” of the
cavitated region, and W, is the work done by the remote load on the displacement of contour S p
due to the processes considered. The deformation potential is equal to the work of traction &, on

opening  and is written in the form

F,= W= k(" odeydsx. e

Here by I, one implies the length of L, and by A the width of the original material region
transformed into the PZ; the opening displacement within L, and PZ strain are linked by § = he.

=3
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In the right side of (1), the first and third terms taken together signify the change in the total
potential energy of the matrix and the apparatus maintaining the remote load,

All, = AF, - W, 3

m P’

and - AT, (>0) is the energy release from the matrix and remote load. Now, equation (1) can

be rewritten as

AG=AIl +F,. 4 4)

One more expression for (1) results from the fact that the process in question is in equilibrium and

so, the change of the strain energy of the matrix equals the work done by all external forces. This
means that

AF, =W - W, (5)
where — W, is the work done by traction o, on opening ¢ of L,:
8
W, = —Lz(_[oamd&dx; (6)

minus indicates the fact that traction o, and opening displacement § have the opposite directions.
Equations (3) and (5) yield AIT,, = — W,, and with the first of (2) leads to a new representation

of equation (1):

AG = -W,+W,. @

This allows a graphical interpretation of energy balance as shown in Fig. 4a. Namely, the areas of
the rectilinear and curvilinear trapezoids under lines ¢,,(6) and o,(&) represent the energy release
from the matrix and remote load, —AIT,,, and the change in the PZ deformation potential, A F,,

respectively, so that the shaded area in Fig. 4a corresponds to the negative of (1). If a PZ size is
fixed, then AG as a functional of § gains a minimum value for the equilibrium opening &8, i.e.

AG = AG[8°] < AGI6]. (8)
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Further, the value AG" of AG only is used and superscript * therefore omitted.

According to the second law of
thermodynamics, the PZ may occur only if
P —-AG > 0, i.e. the energy release from the

matrix and remote load due to PZ formation

is greater than the respective energy
Odr expenditure within the PZ (the area hatched
in Fig. 4a is "positive"). It should be

{ ; ; + ; emphasized that the energy balance is
i

indifferent to "contents" of change (2) in the

L1

L no matter whether the PZ completely

deformation potential of the PZ during its

formation, i.e. the balance would be the same

accumulates the energy received from the

matrix, or it dissipates this energy as heat in
the surroundings, or both processes take

Figure 5. Approximation of matrix state place. For its meaning, AG is a functional
of the domain of the original material
transformed into the PZ.

Since the PZ has the shape of a thin strip, its opening displacement as well as the opening
displacement of the crack can be approximated by the opening displacement of the slit extending
the crack over the PZ length /.. This allows the geometrical characterization of the CL by the two
parameters - the crack and CL lengths, [ and L = [ + [, (Fig. 5).

The change in the total energy of the matrix and remote load, AII,,, does not depend on

the path of matrix unloading and under the way chosen above is evaluated as
MT=<ﬁfm~w&+mrwwmw=—lﬁwya-lﬁaxa )
m I * /0 m dr 2 ly~m 2 Iy dr ’

where I is the crack length at the instant under consideration. Quantity —AIT,, corresponds to the
trapezoid area under line ,,(&) in Fig. 4a. It can be shown that (Appendix A)

Jeon8'dx = [[0,8 dx+21T, (10)
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where o, stands for the negative of stress component o, produced by the remote load in the
uncracked body along x-axis, 6~ within [0, l,] is understood the crack opening displacement after
PZ formation, and by I], one implies the change in the total energy of the matrix and remote load

due to transition from the uncracked body to the cracked one. Substituting (10) into (9), the
change in the total energy as a result of PZ formation gains the resultant expression: )

A= -My- 5 [0, 8'dx -~ [lo §"dx, | (11)

dr

the energy release from the matrix and remote load due to PZ formation being equal to the

negative of (11). It makes sense to notice that the presence of the PZ reduces the energy release. It
is seen from the comparison of AIT,, and AT, for the cases with and without a PZ, respectively.

The latter is determined by the expression
, Lo o
AH,,,:—I'IO—EJ}OGPde (12)

in which & is the opening displacement due to crack extension from x = to x = L. Quantity
—AIT;, is illustrated by the area of the triangle under line o,,(8) in Fig. 4a.

If behavior of the PZ material had been "perfectly plastic" with stress 7, (see Fig. 4a,
dashed line 0;(6) =0y, ), then the deformation potential would have been determined by

F,= | 0,8 dx. (13)

Hence with (4) and (11) there follows for the respective change in the Gibbs potential:
AG = -y~ e, 8'dx + L to, 6"dx 14
= 0 2 Io o, + E I’o Oy . (14)

Quantities 13'2 and —-AG are presented by the areas respectively of the rectangle under line o7(8)
and the triangle between lines &,,(6) and o7(6) in Fig. 4a. Since the real PZ material is formed
as a result of drawing, according to Fig. 2b

15




Joode = (1+M)04 €4 (15)
where by definition

El’
_ferode - oy

n (16)

Odr€dr

and 11 > 0. As accepted above, coefficient n characterizing the "shape" of the stress-strain

relation for the PZ material, has the same value for all points of the PZ, so that
E =(1+n) j,’; ho,, €,dx. (17

Curve 0'2(5) in Fig. 4a depicts PZ behavior, and the area of the trapezoid under this curve gives
quantity F,. According to the assumption accepted above, the width increment of the original

material strip due to PZ formation is equal to the opening displacement of contour S, i.e.
he,, =&, and equation (17) becomes

F, = (1+m) [ 0,68 dx. (18)

Equations (4), (11) and (18) lead to the following expression for the change in the Gibbs potential
due to PZ formation:

_ 1 .. * 1 L * L *
AG——HO—EIOGP‘de_EIIoGd,adx+(1+n)I!oGd,5 dx. (19)
Equation (19) can be rewritten as
AG = AG+ Z (20)

where AG is the change of the Gibbs potential in case of the perfectly plastic PZ material
previously determined by (14), and

Z=1 Iff"d, &8 dx @1

16




is the energy consumed within the PZ due to its overloading during formation (see Figs. 2b and
4a).

There exists a simple link between the bodies with the PZ and with the Dugdale-Barenblatt
cohesive zone (CZ). The CZ is a crack extension, boundaries of which interact between each other
with the traction uniformly distributed and equal, say, to o, (the real and extended cracks
sometimes are called the physical and effective cracks respectively). In case of the CZ, the
negative of energy release from the matrix is given by (11) like that for the PZ, and the traction
potential is determined by (13) like that for the perfectly plastic PZ material. Thus, the change in
the Gibbs potential due to CZ formation is written as (14). However, the meaning of quantity ﬁz
involved in the energy balance for the CZ essentially differs from that for the perfectly plastic PZ.
Namely, quantity (13) for the PZ is the deformation potential of the material filled the space
between the matrix boundary within L., whereas for the CZ it means the potential of external
forces acting on the matrix boundaries along L, . It is also obvious that energy balance (20) for the
PZ can formally be reduced to that for the CZ by setting 17 = 0.

17




3. Degradation of PZ material

Experimental studies on the materials obtained by cold drawing of polymers show that
such materials under the loading equivalent to that in a tensile specimen at drawing experience
creep and/or long-term rupture. For example, there are data regarding drawn material degradation
for some engineering thermoplastics [9-11, 23, 24]. Similar processes can be reasonably assumed
to occur within the PZ material. The present paper is only dealing with long-term rupture of the
PZ material that is most likely a thermally activated process and can be described by the fluctuation
theory of fracture [36]. The approach employed further is based on an analogy between the
processes of phase transition [37, 38] and fracture and can be described as follows.

Fracture of the PZ material is associated with the entropy production within the process
zone under tensile stress A, 0. Let s' be the specific (per unit area of the crack surface) entropy
production in the act of rupture at a given PZ point x and time ¢, and s, be a critical value of
specific entropy, i.e. the value at which material failure takes place, all indicated values being
counted from a certain reference level. The critical increment of entropy density then can be
written in the form

As(x,1) = so—5'(x,¢8) (22)

where As signifies the entropy barrier for the material failure at point x and time ¢. In (22), st
increases from zero to sy and As diminishes from sy to zero with time. In parallel, introduce the
specific (per uni: area of the crack surface) fracture energy ¥ absorbed on new crack surfaces due

to PZ rupture. The irreversible-entropy and fracture energy are postulated to be connected by
i 2
s(x,t)= —f}'(x,t). : 23

where T is temperature in degrees Kelvin. From (22) and (23), the balance for the fracture energy
follows:

Ay(x,t) =79 — v(x,1). (24)
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During the process of long-term rupture, ¥ increases from zero to ¥, and Ay decreases from
Yo to zero. Now, 7, can be treated as the energy needed for the process zone to rupture at the
initial moment, and Ay as the energy required for that at a current moment. Thus, the long-term

rupture is characterized by descent of the material fracture energy and is, in essence, a process of
material degradation.

Decrease of the energy reserve Ay with time is described by the simplest linear equation

d
—Ay =-rA 25
a Y ray (25)

where r is a phenomenological coefficient equal to the reverse value of the relaxation time ¢, for
the rupture process, r = 1/t,. Integrating (25) with the initial condition Ay =7y, at r=1t,
where ¢, is the time of the process zone formation at point ., the quantity Ay is obtained as the

function of time

Ay(x,t) = ypexp[—r(t—1t.)] (26)
Correspondingly, the energy absorbed due to fracture of the process zone material is

Y(x, t)y=yo{l —exp[-r(t-t,)1}. 27N

The above coefficient r, or relaxation time £, is nothing but a time scale for the process of

material degradation and is a certain function of temperature. For example, the time scale can be
defined in the form [36]

(28)

where t;, @y and Y signify parameters of a given material: a characteristic time, an activation

energy for time-temperature dependent processes and the coefficient that reflects the material
microstructure respectively, R stands for the universal gas constant and T the temperature in
degrees Kelvin. The quantity 7y, is also temperature dependent and, for general reasons, should be

considered as a decreasing function of temperature.
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4. Energy balance for CL propagation

Propagation of the CL implies two events occurring in parallel - PZ advancement and crack
lengthening. The first means that the PZ captures a new region of the matrix located ahead of its
tip, and the second, the crack cuts off the PZ from its root. So, energy balance of CL growth
should include the energy expenses not only due to PZ formation, but also due to formation of
new boundaries of the crack. Let at a current instant the lengths of the crack and CL be equal to !
and L respectively. For its meaning the total potential energy of the matrix and remote load is
determined as a function of current values of these lengths. This energy, when counted from that
for the uncracked body, is evaluated according to (11) by

M=I,+Al, = - %—J'(fcpédx - -;-jfcdradx. 29)

Here IT, and AII,, stand for the changes in the total potential energy due to formation of the

current crack and PZ respectively, and § the CL opening in the state considered. The PZ
deformation potential is determined in the form following from (17):

F =(+n)[‘c, ddr. (30)

Energy balance expressed by (4), (13), (14), (20) and (29) should be added by the term reflecting
the change in energy due to formation of new crack surfaces:

G=NO+F,+I'=P+Z+1T. (€2))

Here the Gibbs potential is counted from that for the uncracked body, and P = IT + I:"z and Z are
the Gibbs potential due to formation of a current CL with perfectly plastic PZ and the energy of PZ

overloading respectively . The new quantity I is the energy accumulated on the boundaries of the
crack due to its advance and determined as follows. Let 7, be the time of PZ formation at a point

x (I< x< L), ie. the instant when the CL tip goes through this point, L(z,)= x. At a current
time 7(>t,), the energy ¥ accumulated within the PZ due to its rupture is postulated to be

distributed along x axis such that

&?.
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Yo, Iy < x<I(1);

Yy = v(x,1), l(t)<x<L(t) (32)
0, L(t) < x

where 7(x, t) is given by (27). Proceeding from (32), the energy I" accumulated on the crack
boundaries is determined as

[ =2[y(=lp)+ ] yxndxl. 33)
By virtue of (32)
', L+AL t)-T(l, L t) = 0, (34)

that is, the partial derivative of function (32) with respect to L is identically equal to zero.
The balance of the entropy production due to CL growth is given by the expression

ds' dG; 9G; 9G
T = - [ - L- 35
dt al dL dt 33)
in which the dote signifies a derivative with respect to time. The couples I, L and
G aG
X=—-——, X, =-— 36

play respectively the roles of the thermodynamic fluxes and forces [39] for crack lengthening and

CL advancement. The last term in the right side of (35) which is, according to (27) and (33),
determined as

- %‘t—; = 2 [ 7(x1)dr 37)

signifies the contribution in the entropy production of PZ material degradation.
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5. CL as a two parameter system with unilateral constraints

According to the assumption of section 2, the region of the original material that is
transformed into the PZ (enclosed by contour SZ in Fig. 1a) has the shape of a thin strip, and the
matrix state is approximated by the state of the cracked body with appropriate sizes of the slit and
traction distribution along the slit boundary (see Fig. 5). This approximation, if no special
limitations are introduced, leads to a CL tip singularity, that, however, is not treated as a real
characteristic of the stress-strain field and only used for evaluation of the energy sinks at crack and
PZ extensions.

It is convenient to divide the thermodynamic forces defined by (36) into the parts
corresponding to the second of (31):

X, =P +2Z-T, X,=P,+2, (38)
where
JoP 0Z or
P P _._’ Z P— -, r = — 39
! arr TR Y] (39)
and
0P 2z
P, = - _—, 2, = — _— 40
L IL L 9L (40)

for the second of (38) the identity d I'/d L = 0 resulting from (34) is used. The first parts of
(39) and (40) are evaluated as (Appendix B)

1
P =0, (5,+6,), P = = (Kp+ K,)* (41)
where 6, and 6, are the crack tip opening displacements (CTODs) and K , and K, the stress
intensity factors (SIFs) due to, respectively, the remote load p and traction ¢4, on the boundary
of the matrix with the PZ (see Fig. 5 from which it is seen that §, and K, are negative). All these
characteristics of the stress-strain field are functions of both lengths, / and L. Proceeding from

(21), the second parts of (39) and (40) can be shown to take in the form (see Appendix B)

2
Z, =045, Z= ?’7 K, (K,+ K). (42)
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And finally, as it follows from (26), (27) and (33),
I =24y 43)

where A7y stands for the energy reserve to PZ fracture ahead of the crack tip. It should be noted

that quantity (43) and the first of (38) depends not only on the crack and CL lengths, but alse
explicitly on time because, as follows from (26), Ay is a function of time,

Ay(lt)=ygexp[-r(t-1)]. 44)

The second law of thermodynamics, T (dS “/dt) 20, written separately for advance of the

CL and degradation of the PZ material yields the inequalities

&i+mjzo,-3720 (45)

the second of which, in view of (27) and (37), is apparently satisfied. In the first of (43) the
equality takes place only for a stationary state of the CL, i.e. only if [=0and L =0.
The crack and PZ are not healed so that

20, L20. ~ (46)

These inequalities, in turn, impose certain limitations on relations between the thermodynamic
fluxes and forces. Let, for simplicity, these relations be formulated by

i=9lX,U, L], L=y[X, (L) 47)

that is, each of the fluxes is connected only with its conjugated force. As seen from (47), the
indicated separation of the fluxes and forces does not lead to a separation of the constitutive
variables / and L. By virtue of (45) and for the physical meaning of the fluxes and forces the
functions ¢ and ¥ in (47) should possess the following properties: if X; < 0 and X; < 0, then
¢ = 0 and y = 0 so that [=0 and L=0 (the CL is arrested); for X;>0and X; >0, ¢ and
y are increasing functions of X; and X, respectively (the CL grows).
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The next condition to be satisfied,

I<L, (48)

is obvious because the difference L— 1 is the PZ length. One more limitation imposed on the CL
length is given in the next section. ,

Thus, the process in question is characterized by kinetic equations with respect to two
constitutive variables which, at the beginning of the process, are satisfied certain initial conditions
and, during the entire process, obey limitations in the shape of inequalities. Thus, the CL growing
through the matrix is a system with two degrees of freedom with unilateral constraints.

24




6. Uniform tension. CL equilibrium and stability

The remote load to be mainly regarded in this paper (exept section 14) is such that the

stress-strain state of the uncracked body is a uniform uniaxial tension towards y-axis, so that the
stress 0, is constant along x-axis.

If material characteristics of the matrix and PZ and sizes of the matrix and crack are
prescribed, then themodynamic force X; is a function of CL length L only. This length is called
equilibrium if it satisfies the equation

X, (,L)=0 49

in which [ is considered fixed. From (49) with the second of (41) and (42) it follows

K,+(1+2mK, =0, K,+ K, =0. (50)

For the uniformly tensile remote load, the left sides of the first and second of (50), K, and K,,
vary with L at constant / as shown in Fig. 6a. Equation (49) then has two roots L; and L,, and
the second, greater of them coincides with the length of the effective crack in the DB model [25,

26]. K

K G (n=0)

\

\~~
0 co

)

G (10)

1 Ll LZ L
(a) (b)

Figure 6. Stability of CL equilibrium: (a) SIFs vs. CL length,
(b) profile of Gibbs' potential
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It is easy to prove that the first equilibrium state, at L = Ly, is stable, whereas the second
one, at L= L,, unstable. Indeed, the second equations of (36), (41) and (42) yield

2
o G=—-1—(‘9K1 K, + K,

9K,
oI E oL °

JdL

). (5D

If L=1L, then K;=0, dK;/JdL<0, and K,>0 (see Fig. 6a), and the stability condition
9*G/dI*> 0 is met. In the case of L= L,, analogous consideration results in the inequality
92 G/3dI* < 0 which signifies instability. -

The profile of the Gibbs potential as a function of the CL length is depicted by the solid
curve in Fig. 6b. When 7 becomes zero, the Gibbs potential G(L) for the general case of PZ
material turns into the Gibbs potential G(L) for the perfectly plastic PZ, root L; merges with root
L,, and the shape of the energy profile is transformed into that indicated by the dashed curve. In
view of the second parts of (36), (41) and (50), function G(L) at L =1, =L, has a stationary
(inflection) point, not a minimum one. On the other hand, as Fig. 6a shows, at L > L, the total
SIF K, becomes negative. From the physical standpoint, the inequality K, <0 is unacceptable
because it means an overlapping of the PZ boundaries. With limitation L < L, (see the shaded
line in Fig. 6b) function G(Ly at L= Ly = L, has a unilateral degenerate minimum. Hence there
follows that the DB model possesses a (weak) stability with respect to advance of the effective
crack tip.

Thus, for each given crack length [/, two equilibrium states of the CL with sizes L; and L,
(L, < L,) can be pointed out, but only the first of them is stable. Further only L; will be called the

CL equilibrium length for the given crack length /. The CL equilibrium length will be denoted by
L, (1), or briefly L, if this cannot cause a misunderstanding. A growth of the PZ beyond the

range / < L < L,, is impossible because it would produce an increase in the Gibbs potential (see

Fig. 6b). So, at every moment of CL. growth

L<L, (D), (52)

that is, the CL length cannot exeed the equilibrium value for the current crack length.
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7. Crack initiation. Stability of crack advance

Let the remote load be uniform tensile and prescribed and CL have sizes [, and
L= L, (lp). If at a given instant £, the thermodynamic force for crack advance is negative,

X;(ly, L, 1y) <0, the crack does not grow, [ = 0. No limitations regarding behavior of the CL
length L are imposed so that this length might either stay constant or increase. i.e. X; (I;, L) <0,
L=0or X, (ly,L)>0, L > 0. If the CL is arrested, then the function formed by omitting —I;

in the first of (38),

h=R+2, (53)

does not change, and if the CL grows. the function increases (Fig. 7a where Y} as a function of L
varies like graph p, (L) in Fig. Cb, Appendix C).

Yl \ \

/ZAy

i
Y., !
10 Leq ( 10 ) to ti t

(a) (b)
Figure 7. Crack advance at fixed CL tip: (a) ¥} as a function of L,

(b) determinaion of initiation time
At the same time, as a result of PZ material degradation the energy Ay required for the
crack to advance and defined by (26) diminishes, and in both cases, [ = 0 and L > 0, the

thermodynamic force for crack advance,

X;=Y-24y(<0), (54
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approaches zero (Fig. 7b which assumes that L >0 and Y) grows with time).
The time of crack initiation, ¢ = ¢;, is determined by

X[ [IO'L(ti)' ti] = YZ [IO’ L(ti)]“ 2AY(IO’tl) =0 ) (55)

where in view of (52) L(¢;) < Leq(lo). From this instant, the force X; becomes positive and the
crack grows. At the "frozen" time, t =¢;, or which is the same at the fixed CL length, L =L(¢;),

the onset of crack growth is stable or unstable depending on whether the value of derivative

G 9X, _ dY, oAy
YCE YR VR Y (56)

taken at [ =1ly and L = L(¢;) is positive or negative respectively. Behavior of ¥} as a function of /
is shown in Fig. 8a (see graph B (l) in Fig. Ca, Appendix C). For its meaning derivative

d Ay /d! might be different from zero (but cannot be negative), however, further it is disregarded
for simplicity.

Yl XL XL
n=0 !

n>0

10 Leq(lo) 10 Leq(lo) 10 Leq(lo)
(a) (b) (c)

Figure 8. Thermodynamic forces: (a) ¥] as a function of /,
(b) X, as afunction of L, (¢) X, as a function of /

At first, let the CL length at the initiation time be equilibrium, i.e. L(f;) = Leq(lo).
Stability analysis then is reduced to examination of function ¥} in a vicinity of point [=1[,. If

e
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Nn=0. dY;/d >0 and crack tip advance is unstable. Particularly, it means the DB model is

unstable with respect to advance of the physical crack even under the condition that the effective
crack is arrested. If i > 0, the sign of dY;/d ! is not defined, the probability of that Y /d [ is

negative and crack advance is stable growing with 77.

In case when the length of the CL at the initiation time is smaller than the equilibrium one,
L(#;) < Lgg(lp), all reasoning can also be based on Fig. 8a with the only difference that the point

of function Y, examination should be shifted to the right. As seen, the less the PZ is developed by

the initiation time, the higher the probability of stable onset of crack-growth.
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8. CL stability relative to crack and PZ advances

In the two previous sectionsis, the stability analysis concerned with the cases when either
the crack is arrested and the PZ freely grows (section 6), or conversely, when the PZ is in a
stationary position and the crack is released (section 7). In the present considerations, the CL is
assumed unrestricted with respect to both crack and PZ extensions. "

The remote load is supposed to be uniformly tensile and prescribed, and the CL attained
sizes I and L by a given instant f;. At first, let X, (ly, Ly, 2,)>0 and X; (ly, Ly) >0, and there
are no constraints regarding changes in both sizes of the crack and PZ, except the requirement for
these changes to be positive. If §/ 2 0 and § L 2 0 are various admissible deviations from the
CL sizes, the second differential of the Gibbs potential is presented by

G G G

526 =22 8% + 2 2L 816L + =617 57
ol* HRFTEYS Y7 >7)

where all derivatives are calculated at ! = [ and L = Ly under time fixed. The CL state in

question is regarded to be stable if 82 G > 0 at any admissible deviation 6/ and & L, and unstable
if there exists at least one deviation for which §2G < 0.
Let the PZ length L, be as far from the equilibrium size L, () that inequality

PG dX, Y,
———— T a—— e — O
FYE Y, FT (58)

is met (see Fig. 8a). It means that lengths /; and L are such that the portion of Fig. 8a bounded
by points [, and L, contains only a descending segment of curve ¥ (/). Everywhere within

[10’ LO]

?G _ IX;
a2 - oL (59)

(Fig. 8b where graph has the same shape like that for graph P,(L) in Fig. Cb, see Appendix C).
The mixed derivatives of the Gibbs potential G satisfy the conditions
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3G _ 9X, _ 9y _ &G

= = 0
ol oL BT, 9L oLal (69)

(Figs. 7a and 8c: behavior of X, as a function of [ is the same like that for E(l) in Fig. Ca, see

Appendix C). Proceeding from (56)-(58), stability analysis is reduced to a searching of real
(positive) roots of the quadratic equation

*G 2,

26 ,9°G &G
orI? “olaL

U+ 912 =0 - 61)

where (L = O L/§1. Inthe case when

3*G 3*°G *G ,
- <0
32 o Giar 62)

8L A O cone of
.instability

equation (59) does have two real roots that
merge to one if relation (60) is an equality.
Let inequality (60) be satisfied, and u, and
Hy (U< [,) be the roots of (59). Then,
there has to exist a region in the positive
quadrant of {§!,6L} plane, namely cone
Wy < u<u, (Fig. 9), such that for any its
-— internal point 8% G < 0. Existence of such

0 ol a cone signifies that the CL state is unstable.
If
Figure 9. Positive quadrant of s s )
{81,6L}-plane and cone 9°G G - I°G *>0, (63)
of instability IL* I IloL

then equation (59) does not have real roots, § 2G>0 everywhere within the positive quadrant of
{61, 6 L}-plane, and the CL state is stable.

The condition X; =0 accepted above means that the CL length is smaller than the
equilibrium one, Ly < L,,(ly). In the case when Ly = L, (ly), variations 6/ and §L are

bounded by the additional condition resulting from (50):
.
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dL
6L——ﬁ51 <0 (64)

where the derivative is taken at [ = [,. This means the region of admissible deviations is

contracted from the positive quadrant to the cone defined by inequalities 6/ = O and (62). Now

either inequality (56) remains valid, or it is substituted by

3*G
2

7 <0 (65)

(see the left portion of Fig. 8a where graph Y} (/) might have ascending segment). If (56) takes
place, then the CL state is stable or unstable depending on whether the intersection of the cone of
instability and the cone of admissible deviations is zero or not, respectively. If (65) is true, then the
CL state is unstable because 62G <0 at 8> 0 and & L =0 (see the previous section).

As an example of stability analysis, an infinite matrix under uniform tensile remote load is

considered. The PZ length is supposed to be essentially smaller than that for the equilibrium CL,
or more precisely,

L-1<< L (-1, (66)

This case is chosen to be examined proceeding from the two following reasons: first, if the CL
with certain sizes is unstable in an infinite plate, it definitely will be unstable also in a finite plate,
and second, if the CL with sizes / and L; is unstable in some matrix, then in the same matrix the
CL with sizes [ and L,, where L, > L;, certainly will be unstable; in the compared cases,
otherwise (material characteristics, load, etc.) is understood to be identical.

For simplicity, it is accepted that 7 = 0. With notations

—2— = cosfB, 0<<1, (67)

the derivatives of the Gibbs potential can be shown to equal (Appendix D)

3G _9°G __ G _4040,
YY) 2 dloL E®

(66)
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This means that equation (59) has the two coinciding solution p; = g, = 1, that is, the cone of
instability degenerates to a single ray dividing the positive quadrant 6/ > 0, 6L 2> 0 in halves. The
CL state is neutral with respect to deviation 8/ = 6L, i.e. 62G =0 at y = 1, and stable with
respect to all other deviations, i.e. §2G > 0 at U #1 (u>0). Presence of one deviation at
which the CL state is neutral is the indication that in any different case (a finite matrix and/or a
bigger PZ) the cone of instability will be non-degenerate and a CL state unstable.

The above example leads to the conclusion valid for the case of 7 = 0: if the crack is not
arrested, the CL state is unstable, whatever it is. Thus, the CL can be in one of the two states:
either the crack is arrested and the CL on the whole is stable, or the crack is released and the CL is
unstable. This situation is similar to that taking place for the Griffith model in which the crack

either does not grow at all, or grows in an unstable mode, i.e. dynamically.
The case of 77 > 0 can also be analyzed based on behavior of quantities ¥, and X, as

functions of / and L (see Figs. 7a and 8). A state of the CL with 11 > 0 may be stable while it is
unstable for 7 = 0 and the same otherwise. Moreover, even if a state of the CL is unstable, CL
propagation is thinkable to develop in a quasi-static mode. This stems from the fact that PZ
extension controlled by the respective kinetic equation (see the next section) goes on with a finite
speed and in virtue of that, the mentioned instability cannot appear in the shape of catastrophe.
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9. Kinetic equations, their numerical solution and dimensionless form

The process of CL propagation like any non-equilibrium process allows the interpretation
as a transition of the system from a non-equilibrium state into its equilibrium. Assuming that the

deviation of each CL current state from the corresponding equilibrium one is not too large,
relations (45) for CL growth can be taken in the form of linear approximation of the functions ¢

and Y connecting the thermodynamic fluxes and forces. As a result, the kinetic equations

governing CL growth are written as follows

I=kX(, L), if X,>0,

. , (69)
L=k X, (L), if X,>0.

and

=0, if X, <0,

. . (70)
L=0, if X, <0.

In (69) the phenomenological coefficients k; and k; that, from their physical meaning, have to be

positive are functions of temperature and material characteristics, but in the framework of linear
approach are considered independent of the thermodynamic fluxes and forces. Equations (69) and
(70) should be supplemented by the initial conditions

[(0)=1y,, L(0)=L,. @t
Evolution of the CL includes also the PZ material degradation that is described by (26):

Ay(x,t) = yg exp[—r(t—1t.)]. (72)
Thg thermodynamic fluxes obeys limitations (46),

[20, L=20, (73)

and the thermodynamic forces X; and X; are determine by (38), (41) and (42). Besides, two

more limitations have to be satisfied, namely (48) and (52):
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1< Lg L. (74)

Equations (69)-(72) and inequalities (73) and (74) give complete specification for a description of
the CL kinetics.

The formulated problem is non-linear and can be solved only numerically. The procedure
of its numerical solution is implemented in the form of the following step-by-step process.

The matrix with CL is considered under a prescribed remote load, and all necessary

material and geometrical characteristics of the system is assumed to be known. Let after n-th step
of the process, at time ¢ = t,, the CL have sizes [, and L, satisfying (74).

27 At first, a linear singular boundary
0

/ value problem on the matrix is solved and as
. : gl a result, the values of the SIFs, X, , and

pn
2 A ‘ 2Ay K, ,, and CTODs, §,, and §,, for the
/ ' present CL state are found (see Fig. 5). In

addition, for the current time and crack tip

position, the value of the energy reserve
| Ay, = Ay(l,,t,) is computed employing
| ! (70). Then, the thermodynamic forces, X; ,
ty t t" ot and X; , are determined by means of (38),

(41) and (42), and the rates of crack and CL
extensions, /, and L,, are obtained by (69)

Figure 10. Force Xl = Yl - 2aY or (70) depending on whether the forces are

positive or not.
The transition from time ¢, to time ¢,,, is based on the second order Runge-Kutta

method. The (n+1)-th time step At,,, = t,,; —1, is selected so that conditions (74) are met for
the new CL sizes [, ., and L, as well, and the error for the step does not exceed a prescribed
allowable value.

Since the quantity Ay might behave like a jump function, the same manner of behavior
might be exhibited by the force X;. This is schematically illustrated by Fig. 10 according to which
the crack starts grow at instant ; (time of crack initiation) when X; becomes positive and comes
to a halt at instant ¢, (time of crack arrest) when X, jumps down from a positive value to a
negative one (in Fig. 10, ¢y is the time of the previous crack stop). To "catch” the instant of
discontinuity appearance, a special numerical procedure is used the description of which exceeds
the limits of the paper. The process of calculations stops when the rates of crack and CL advances

&
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turn into infinite, or somewhat more specifically, a small time step causes big increments of the
crack and CL lengths (another approach to halting of the numerical process will be given in section
11). This signals the end of slow CL growth due to either global fracture of the body (division of
the body into two parts), or change in the process mode (switching from subcritical mode to
supercritical one, see the next section). The elapsed time including the time of crack initiation and
the time of CL propagation previously was called the lifetime, or the time to failure and denoted by
ty (see section 1).

Analysis of crack layer behavior could be simplified by transferring to dimensionless
variables. For that, it is convenient to introduce a new quantity,

_ 2Ey,
L7

L,

(75)

(E is the matrix Young modulus), which has dimension of length and is called the characteristic
length of the matrix-CL system. The CL and matrix dimensionless sizes, dimensionless remote
load and dimensionless time are given by

- H O.. t
H=—; o= ; T=r=—
L O4r -

I = (76)

=L w-¥
L L

L
L
where W and H are the matrix sizes respectively along the CL direction and perpendicular to it.
The thermodinamic forces (38)-(40) with (53) can be presented as

x, = by (1L, W, B.n,0) - exp(r, - )],
aEzl o amn
X, = %xL(l,L,W,H,n,o).
Here according to (38), (41) and (42)
y =8,+(1+m85,, x, =[K,+(1+2mMK]I(K,+K,) (78)

and the dimensionless SIFs and CTODs, &,, &, and K,,, K, are calculated under E=1,0,, =1

and dimensionless sizes of the CL and matrix. Introducing the dimensionless phenomenological

coefficients
=4
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the equations (67)-(70) and limitations (71) and (72) now can be rewritten in the completely

dimensionless form. Two processes of CL growth are similar if and only if all dimensionless
parameters [y, Ly, W, H, n and o in these processes are identical. For similar processes,
particularly, dimensionless lifetimes 7 s coincide.
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10. Two types of CL growth

The above numerical solution displays two types of CL behavior depending on particular
values of process characteristics (characteristic length, dimensionless sizes, shape and level of
remote load). The first type, a smooth (continuous) CL propagation (Fig. 11a), occurs when the
thermodynamic force X, is positive during all the process. The second type is a step-wise
(discontinuous) propagation (Fig. 11b) which consists of a succession of alternating initiations and
arrests of the crack and PZ. In such a process, the crack stays immovable for a part of the lifetime
(see Fig. 10), and this delays advancement of the PZ. Therefore, of two "comparable” processes,
smooth and step-wise, the former proves to be faster. Processes are defined to be comparable if
all parameters are identical except for remote load or temperature. For example, crack layer
growth can be switched from the step-wise mode to the smooth one and significantly accelerated
by raising load level or temperature. This follows from that, according to (41) and (42), the
thermodynamic force (53) grows with load and the fracture energy ¥, for the PZ material
diminishes with temperature (see section 3). An increase of the CL length also can be the reason
for the transformation of the step-wise growth into smooth one, so that a process might be step-
wise from the beginning and smooth in the end.

0 —t—
(a) (b)

Figure 11. CL growth: (a) smooth, (b) step-wise
During the entire lifetime of the CL propagation shown in Fig. 11a, the CL length lags

behind the equilibrium one, whereas almost all the time of the growth depicted in Fig. 11b, the CL
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maintains the equilibrium size. The relationship between a current CL length and the equilibrium
one depends on the ratio of the rates of crack and CL advances. Proceeding from (41) and (42),
the forces for these advances are roughly estimated as quantities of the same order of magnitude,

and then, in accordance with (69), the completeness of PZ development is mainly determined by
the relation between values of the phenomenological coefficients k4, and k;. The numerical

simulation presented in Fig. 11a is performed at k; and k; of the same order of magnitude and in
Fig. 11b for k; ten times greater than k;. So in case of the smooth mode, the CL can be in
equilibrium only when k; has a greater order of magnitude compared with the one for k;. On the
other hand, it is natural to presuppose that the PZ develops slower than the crack. From this, it can
be concluded that the "underdevelopment" of the PZ is a typical feature of the smooth mode. On
the contrary, for the step-wise mode, because of delay in crack growth, the CL has time to reach
the equilibrium even if k; is significantly smaliler than ;.

Analysis of the numerical solution shows that in case of the smooth mode, the lifetime
strongly depends on the phenomenological coefficients, namely, at the coefficients of the same
order of magnitude, the lifetime is approximately inversely proportional to them. On the contrary,
in the step-wise mode the lifetime depends only weakly on these coefficients. Increase of the
coefficients leads to reduction of the time required for the CL to change the state. If this time is
already noticeably smaller than the duration of CL stay in a stationary state (like in the process
shown in Fig. 11b), then further increase of the coefficients practically does not affect the lifetime
at all. For such processes, the rate of CL growth is mostly determined by how much time
precedes an initiation of CL advance which, in turn, depends on the two characteristics of the PZ -
on initial value ¥, of the energy reserve to material fracture and on relaxation time ¢, of material
degradation (see sections 3). So, properties of the PZ material strongly influence the lifetime of a
step-wise CL propagation. In case of the smooth mode, under the natural assumption that
degradation goes not faster than CL extention, the lifetime is almost independent of ¥, and ¢,, or
more precisely, increase in the former causes a slight deceleration of the process (see section 14),
and the latter does not play any role because all the time the energy reserve Ay practically keeps a
constant value which is close to the initial one, .

From the standpoint of the analysis given in section 8, a smooth process is unstable since it
is accompanied by crack growth. The instability, in particular, manifests itself in that the rates [
and L of crack and CL advancements monotonically increase with time (see Fig. 11a). Indeed, if
the process is accelerated, then, according to (67), the thermodynamic forces X; and X,

monotonically increase, too, and this and relations (36) yield
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dX, _ 9%, 9% ; 9X _ G . J*G . 9°G

= + =- {- - >0,
dt dl  dL ot 1% JdLal otal 80)
dX, _9X, ; 9X, ;_ _9°G ; 3G,
dt ol oL dloL oL

Hence, because [ > 0 and L > 0,
*G - 3*G .. G , G .
2l l i+ 22X+ 21 <o0 81
d1? dLal oL? tdl 1)

that is the indication of CL growth instability. However, development of this process is controlled
by kinetic equations (69) and by virtue of this, the CL growth retains a quasi-static character. As to

a step-wise process, alternation of CL rest and motion corresponds to alternation of stability and
instability respectively, but globally, the process remains stable until the current value of force ¥,

determined by (53) reaches value 2 Ay, (this matter will be more extensively discussed in the next

section). At this point the process of slow CL growth is switched from the step-wise mode to the
smooth one, or in other words, from the stable (subcritical) stage to the unstable (supercritical)
one.

As numerous observations on thermoplastics, first of all on polyethylene, show, the step-
wise (discontinuous) manner of growth is usual for the quasi-brittle crack under both constant and
cyclic loadings (such a phenomenon for polyethylene is described, for example, in [4, 19]). For
this reason, further slow crack growth is largely associated with the CL behavior in the step-wise
mode. There is one more reason for this preference. One of the practical purposes of this
modeling is a prediction of the relationship between the lifetime and applied load for the long-term
brittle fracture. The model simulating a step-wise CL growth predicts a relationship of this kind
which is in reasonable agreement with that obtained experimentally (see section 14). At the same

time, no plausible lifetime-load dependence can be inferred by employing the model of smooth CL
growth.
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11. Step-wise growth. Simplified model

A step-wise CL propagation can be treated as a sequence of transitions from one CL
equilibrium to another like that shown in Fig. 11b. Such kind of CL growth occurs as a result of

that the thermodynamic forces governing crack and PZ advances act discontinuously over short

intervals of time.

Let the remote load be prescribed uniformly tensile. It is supposed that at present instant ¢

the CL is in equilibrium, X, (I, L)=0 and L= L,,(!), and the energy reserve 2Ay for the PZ

material to rupture is as small as the value of force (53) for the given CL sizes,

Y,(I,L) - 24y(L,t) = 0.

-___0_ ......

NN

Y. Y.
e )
L "VJ L = Leq
/\l \l
—t— 1, 0 —t—

(a)

(b) low

(b)

Figure 12. Step-wise CL growth: (a) high o and small I?,_,

o and big &,

41




It means that at the instant in question the crack starts growing. Increase of / violates the CL
equilibrium, and force X; becomes positive (see Fig. 8c). So, the crack initiation causes a PZ
advance. In turn, this advance generates increase in ¥, and decrease in X; (see Fig. 7 and 8b
respectively). In parallel, the energy reserve ahead of the crack tip, 24y(/, ¢), changes in
accordance with degradation law (72). This "competition” of the thermodynamic forces goes on
until the crack tip reaches the original undegraded material or the material transformed into the PZ
not long ago and therefore having yet a relatively high level of the energy reserve 24y. At this
point, the energy reserve jumps up and correspondingly thermodynamic force X, drops down to a
negative value, so that the crack proves to be arrested (see Fig. 10). Meanwhile, the PZ continues
to grow approaching the new equilibrium length. This relatively short process is followed by a
waiting for a next crack initiation after which a new step of CL propagation begins. The above
description is illustrated by Fig. 12 for two step-wise processes the first of which refers to a high
remote load o and slow PZ advance, i.e. a small coefficient %, , and the second one, conversly, to
a low remote load and fast PZ advance. As seen, the higher level of the remote load, the smaller
number of steps during the lifetime and the bigger each step of the process. Increase in the rate of
PZ advance leads to a decrease of the time necessary for a CL stationary state to be changed and,
as a result, of the time to failure. Dependence of the lifetime on kinetic coefficient %, is illusrated
by the curve in Fig. 13. If the value of 27, increases, then the "waiting" time (from establishing
a stationary state to a next crack initiation) becomes longer, but otherwise (the shape of transition
from one stationary state to another and number of steps within the process) remains the same.
The above allows a simplification of
T the model for CL step-wise growth based on
the two following assumptions. The first of
them says that the CL is always in
equilibrium, L= L,,(l). According to the

second assumption, the time required for the

e > e e Em e mm = " . e - - - - -

CL to change the state is small in comparison
with the waiting time for crack initiation. It
C L means that the intervals of transitions from
1'_ 2 3 4‘ S _ - one equilibrium to another contribute only
small portion of the lifetime, that therefore
can be determined as a sum of all waiting

Figure 13. Dependence of lifetime on kinetic intervals. The above assumptions result in
coefficients the conclusion that the crack lengths in two
P o
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sequential equilibrium states of the CL are linked by
lm+l = Leq (lm )s (83)

i.e. the crack grows making jumps through the PZ up to its tip (Fig. 14). It is obvious that this
way of process modeling leads to that the phenomenological cefficients k; and k; entirely fall

down from considerations. Numerical analysis shows that this approach is justified if k; and k&

are large enough, or more specific, if the dimensionless coefficients (79) are met conditions
ky=k; 25 (see Fig. 13). For such values of k; and k_, the lifetime becomes insensitive to them

and in practice coincides with the lifetime of the simplified process. The lifetime for the simplified
process is given by the horizontal line in Fig. 13; if k, =k, 5, the mistake in lifetime computation
resulted from the above simplification does not exceed 5%.

To simplify writings, the PZ material

is considered perfectly plastic, i.e.n=0. For I
the simplified model, the second of (69) is l,,,ﬂ . . = .
. . i
substituted by the condition / - // } A lmﬂ
" e - ‘ .
X (1, L) = 0(84) l
L by 1 — — At
which governs CL growth due to crack l
growth. Since L=L,(l) for any [, ' ' '
potential P =11 + 17" (see section 4) becomes
a function of the crack length only and, based bt I Ees
on (36), (38), (39) and (53), is presented by
expression Figure 14. Simplified model of step-wise growth
B(l) = Pl L, ()] = Plly, L, (] 9P 85
( ) - ’ eq( - (4 3] eq(o)]—J‘loW . ( )
In turn, (85) can be reduced to
Py = - a(D)P (86)
v?f
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where a(!/)(>0) is a known increasing function or constant for a finite or infinite matrix

respectively. In the simplified model, the PZ is formed simultaneously at all its points, and
according to (33) while the crack keeps a constant length, say, [ =1, the energy accumulated

within the PZ due to material degradation changes as
I-—(lm ,I) = 2}IO(lm - lO ) + 2},O[Leq(lm) - lm ]{1 - exp[—-r(t— tm-l)]} (87)

where 1, <t <1t, (see Fig. 14). Using (53), thermodynamic force X; during the waiting
interval from ¢, to ¢, becomes

X,.t) = B(l,,) -24y(,,t) <0 (88)
where with (26)
Ay (L, 1) = yoexpl—r(t—t,)]. (89)

G

b

Figure 15. Gibbs' potential as a function of crack length

The next crack advance and change in CL state occur when the right side of (88) reaches zero, and
SO on.

Equations (86)-(89) allow the representation of the Gibbs potential G()=Gll, Leq(l)] in
the shape of the saw-tooth curve shown in Fig. 15 where the smooth curve depicts function

e




G, = - a(DI* +2y,(1=1)). (90)

One segment of the saw-tooth curve corresponds to one step of the process, for example segment
ABC to the m-th step. The step begins from formation of the CL with crack length [ = [, (point

A). Then the CL stays stationary during the interval from ¢,_, to ¢,, (see Fig. 14). Over this

interval, as seen from (85) and (87), P remains constant and I increases so that the Gibbs
potential G = P+ I increases, too (the vertical line AB). Crack jump Iy = L,y and the

respective change in the CL length appear instantaneously (segment BC). The tangent to this
segment at point B is horizontal which signifies condition X; = 0. Since n=0, P =Y and
according to Fig. 7a,

2G dy,
46 __dh o1

where the equality is exact because now dAy/dl=0. Inequality (91) indicates that point B is a
maximum of G, and so transition B— C from the m-th state to the (m+1)-th one is unstable.
Such kind of instability should be called local because the CL state B is followed by a crack arrest
atstate C. By contrast, the instability of the CL equilibrium at point D is global because the next
equilibrium at point F "lies" outside the domain of CL subcritical growth, i.e. ahead of point E
which corresponds to a maximum of function G (J) and signifies the transition to CL supercritical
(smooth) growth.

The above remains valid for the general case of the PZ, 17 > 0, if function f’,(l ) satisfies
inequality (91).
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12. Critical crack length. Lifetime-load relation

In this section, as in the previous one, the CL simplified step-wise growth is considered

under uniform tensile remote load constant in time. A crack length is called critical and denoted by
I if the CL state with sizes I, and L,,(l.) corresponds to the transformation from a step-wise

(stable) mode of the process into a smooth (unstable) one. The critical crack length is determined
by condition ‘

¥(L) -2y, =0 (92)

so that /. supplies a maximum of function éo(l ) determined by (90) (see Fig. 15, point E).

Using the dimensionless representation for ¥, given by the first of (77), equation (92) is written as

y%3(d,W,H,n,0)-1=0. . (93)
4

The solution of (93) with respect to [ yields

S 3 g =03

I.=L(W Hno) (94) —

— 04
follows £ L 2 =p5=

Here, as follows from (75) and (76), th : :
ere, a3 Tollows from (75) and (76), the AN
dimensionless sizes W and H are not only a ] A =4
geometrical characteristics, but also material g
ones. Critical length I increases with W, I
-— . 0
H and 7n and decreases with . For the 1 0 . 2 3

case when H does not affect the stress-strain —
field in a vicinity of the CL tip and 71 = 0, log W
expression (94) becomes

, Figure 16. Critical crack length vs. specimen width

L. =1.(W o). (95)

For a finite matrix with a single edged CL, critical length [. depends on matrix width W at fixed
o as shown in Fig. 16 where the horizontal lines indicate the values of l-c for an infinite matrix.
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As defined in section 1, the lifetime is the time period during which the CL is initiated and
propagates from initial sizes [y and L to the critical ones I, and L, (I;). In the general case, the

lifetime can be presented as

tp=ts(ly,W,H,1n,0) (96)
or in the dimensionless variables

T =14k, W, H,n,0) .' 97)

Let the matrix be infinite and PZ material perfectly plastic, 7= 0. In this case the "shape"

of the CL stays constant over all process:

= cos0 (98)
eq

where 6 = 7o /2. Because of (83) and (98) an increment of the crack length at the m-th step of

the process is determined by

_ l=cosf

Alm+l = lm+l - lm - lm (99
cos@
From (82) with ¥, = B,
B(l,) - 2y,e =0, (100)

waiting time At,, at the m-th step is found as

At = L 2o (101)
r 1 (lm )
Smoothing of the process, [ = Al .,/ At,, (see Fig. 14), and use (99) and (101) yield
dl _ rl—cose l (102)

dt cos® ln[2y,/B(D)]
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As seen, when P, (1) approaches 27, or which is the same, crack length [ approaches critical
value /_, the rate of crack growth indefinitely increases, [ — oo,

Equation (102) in the dimensionless variables can be presented as (Appendix E)

d_l-__l—cose ]

= — (103)
dt cos@ In(l. /1)
where
7 n
= —— 104
©  8l|lncos8| (104)
Integration of (103) with the conditions for the beginning and termination of the process
I=hh(t=0), [ =1 (t=1/) (105)
results in
=90 (pky (106)
F " 2(1=cos8) I
In the dimensional variables
cos6 l. 5
tg =t, ————(In % 107
f r2(1—cos9)(nlo) (107
where
L = ZE%0 gy, g =29 (108)
40 204
Relation (106) between lifetime 7, and load parameter 6 in logarithmic axes for a fixed
value of I,
logt, = f(log8), (109)
‘35
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has the shape indicated in Fig. 17 (the solid curve). The smaller /,, the closer the curve given by

(109) to the straight line

logt; = B - Blogf (110)

obtained by the least squares method (the
dashed line).

Let parameter 6 not exceed /4, i.e.
dimensionless load o be not greater than 0.5.
This upper limit of load corresponds to the
transition from brittle failure to ductile
[17,18]. For a reasonable range of 6, say,
for £/16 < 6 < /4, at small values of [,
coefficient f3 in (110) approximately equals
2.2. In the opposite case when l-o is large,

logt,

logb

Figure 17. Lifetime vs. load

for example l_o is the critical length 7. = 1.133 for 6 = 7/4, coefficient B becomes about 6. The
second coefficient in (110), B, also changes with I_O, namely an increase of l-0 causes a decrease of

B.

What has been said regarding perfectly plastic PZ, =0, holds for n > 0, the only
difference is in that parameter 8 here is determined as (see Appendix E)

500 I
400 . [q/W = 10_:
o0 LNy |A10"
) 10~
Tf 200 \\ K&T-{
I N
100 F\ - />/< \\\\
‘105 0 05 1 15 2 25 3
log W
Figure 18. Lifetime vs. specimen width
(n=0,0=0.3)

o=—"9 (111)
2(1+2n)
This also can be extended to the case when
the matrix is finite and 17 > 0 since matrix
width W and coefficient n only slightly
affect the "shape" of lifetime-load relation
(110), although their influence on the lifetime
itself might by very significant. In other
words, variations in W and 17 may lead to a
noticeable change of B in (110), but leave

almost invariable. Particularly, dependence
of lifetime 7 on matrix width



W at varies constant ratios [,/ W is illusrated by the curves in Fig. 18 constructed for 7=0 and
o =0.3. This plot can be treated, for example, as follows. Let the matrix-CL system with given
sizes W and [, be considered for various materials and let a change of material characteristics E,
o, and ¥, cause a change of critical length L. Then, an increase of L results in a decrease of W
and [, so that ratio [,/W remains invariable and dimentionless lifetime 7, increases. Such

behavior of 7, depending on W at fixed [,/ W also holds for the smooth mode of CL growth.

The above lifetime-load relation at fixed temperature is examined by comparison with that
obtained experimentally for thermoplastics. Particularly, equation (110) with the indicated range of
B is in a good agreement with numerous experimental data about brittle fracture of polyethylenes

according to which

logt; = A — alogo,, (112)

where o varies from 3 to 5 [28]. Thus, the present model correctly describes the process of
subcritical crack growth in terms of lifetime-load relation at a given temperature. To establish

connection between these relations for different temperatures, equation (28) expressing dependence
of time scale f, on temperature is employed. Based on the model and on experimental data [17,

18], a time-load-temperature relation for one type of thermoplastics has been constructed in [40].
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13. Tension under prescribed displacement

Here, the simplified step-wise process is employed to describe CL propagation through a
finite matrix edges of which are displaced with a prescribed rate (Fig. 19). Load O, is assumed

uniformly distributed along the transverse edges of the matrix, and the edge displacement v, is

understood as the generalized displacement conjugated to the edge load:

v, = ;IV-L;’Vv(x,H)dx. (113)

Figure 19. lllustration of boundary conditions
Displacement v, can be shown to be connected with the edge load o » by (Appendix F)

o H o, ,_ (o -
v, = 2+Wpfov(x,0)ﬂ+7iijl v(x,0)dx. (114)

In the right side of (114) the first term signifies the displacement of the body without the CL and
the sum of two other terms is the additional displacement arising from CL presence; V(x,0)
stands for the CL opening due to unit edge load, 0,=1. Let, for definiteness, the edge

displacement change with time as v, = v, ¢ where rate v, is given. Quantities ¢ ,, [ and L being

51



unknown functions of time are subject to determination. For the simplified model, the crack and
CL lengths, [ and L, are linked by equation X; = 0, or

K,(L,c,)+(1+mK,(I,L)=0 (115)

which means that the CL always has the equilibrium length for a current crack length and edge

load,
L= Leq(l,O'p)_ (116)

The criterion of crack initiation is formulated as

Y(,L,o,)-24y(l,t)=0. (117)

The system of equations (114)-(117) establishes a complete specification of a solution.

The CL growth is divided into separate stages. During each of them a crack length [ stays
invariable. Increase of edge displacement v, leads to increase of edge load o, and of the CL
length L. These changes are described by non-linear equations (114) and (115) which are solved
numerically by means of an iterative procedure. An increase of o, and L causes a respective
increase of Y;. On the other hand, as a result of PZ material degradation, the energy reserve 4y

decreases. A current stage of the process comes to an end at that instant when condition (117) of
CL local instability is reached (see section 11), and the CL jumps to the new state in which,
according to (83), the crack length equals to the previous CL length.

A character of relation between the edge load and displacement depends on relation
between the rate of edge displacement growth which is controlled and the rate of PZ material
degradation which is a material property. The latter mostly determines the rate of CL advance: the
faster degradation, the faster CL growth. So, the process under consideration can be treated as a
result of two processes evolving simultaneously: displacement increase and CL propagation.
These processes are competitive because growth of the edge displacement leads to increase of the
edge load, whereas extension of the CL results in load decrease.

For a given material, i.e. for a given rate of degradation, relation between the edge load and
displacement at two rates of displacement are shown in Fig. 20. If the rate of displacement is low

(Fig. 20a), then the CL grows until its tip reaches the opposite edge of the matrix. During this
process, force ¥, always remains smaller then 27y, i.e. the condition of global instability,
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Y,(LL,o,) - 27,= 0, (118)

never takes place. In the case when the displacement (cross head) rate is high (Fig. 20b)

o) , 0'p

0 v 0 v,
2 =
24y /0
Y.

0 Vv 0 v
[ )
(a) (b)

Figure 20. Load and thermodynamic forces vs. displacement at:
(a) low and (b) high cross head rates

the duration of a process stage proves to be so short that degradation of the PZ material has little
time to occur. Then condition (117) can be written in the form

Y,(LL,G,) ~2y,(1=rt;) =0 (119)

where time #; of crack initiation is such that rf; << 1. As seen from comparison of (118) with

(117), the condition of local instability actually does not differ from that for global instability. As a
result, the crack initiation time is inversely proportional to the displacement rate #; o 1/v, and the
curves O, vs. v, for various v coincide, or in other words, if v —> oo, relation o, — v, approaches

a certain limiting one.
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14. Dipole on crack boundaries

Let an infinite matrix be loaded by the two forces (dipole) applied on the crack boundaries
as shown in Fig. 21. Step-wise propagation of the CL induced by the dipole is studied on the basis

of the simplified model of the process. In this case, the SIF and CTOD due to the dipole are
expressed in the form (see [41, 42] and Appendix F)

P _ap 1
PoyrLl 7 mE L+ * - 2)/1)

(120)

and those for traction o,, K. and §,,

remain the same (see Appendix D).

Proceeding from the simplified model of CL
growth, equation X; = 0O is written as

K, (L P)+ (1+2mK, (L L)=0. (121)

Hence (see Appendix F)
Figure 21. Infinite mamix. Dipole on crack
. pe L = cos@, 0 = P , (122)
boundaries L, 2(1+2n)o, L
and the thermodynamic force (53) is determined by
_8c%1, 0 1 ,
Y1,0)= oy {cose [lnl g (1 + n)sinf@] - (1+n)Incosb}. (123)
cos6

The dipole is assumed to increase as P = Pt where rate P is a given constant. Like in

the previous section, the CL growth is a sequence of crack stationary positions. As it follows from
(122) and (123), increase of P at fixed [ leads to growth of L and Y], whereas Ay diminishes

due to PZ material degradation. The crack stays arrested until condition

y(,0)-24y(L,1) =0 (124)
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Figure 22. Crack and CL lengths and thermodynamic forces vs. dipole at:
(a) low and (b) high rates of dipole increase

is satisfied, and upon achievement of (124) the crack instantly sprouts through the PZ. This
causes a drop down of ¥ and jump up of Ay, and as a result the crack is found to be arrested

again. The typical behavior of the CL is shown in Fig. 22a. As the process is evolving, the value
of ¥ at the instant of crack initiation approaches 2y,. However, even attainment of condition
Y;=27, may not terminate the process. An example of such CL behavior is given by Fig. 22b in
which the process is related to a high rate P. Here the condition of local instability in fact does not

differ from that for global instability (see the previous section). In case of a finite matrix, the
process comes to an end when the CL tip reaches the matrix edge.
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15. Concluding remarks

The crack layer model - if material parameters are determined appropriately - allows a
prediction of the lifetime for brittle fracture that is in a good agreement with that obtained from
observations. This is the most important result from the standpoint of applications.

The experimental procedure to determine material parameters has to include studies of a
particular thermoplastic itself, as well as of the material occurring as a result of cold drawing of the
original polymer. This procedure requires development in conformity with nature of the material.

Fracture behavior of a polymer material is connected with its chemical properties and also
essentially depends on the process of structural element manufacturing that produces anisotropy,
residual stresses, etc. The combination of these two factors - what a material is in terms of
chemistry and how a structure from this material is manufactured - creates an initial condition of
the material within the structure.

The material condition changes with time, i.e. the material ages. An approach to describe
the phenomenon of material aging is proposed in Part 2.
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Appendix A. On evaluation of energy release due to PZ formation

The purpose of this section is to check equality (10),

Joon8'dx = [Jo,8 dx +211,, (A1)

where notations are given in section 2. The two states of the cracked body shown in Fig. Aa and b

are considered.

a
| or Odr
5 ~%’>’L i s~ Ty
l

(c) (d)

Figure A. On energy balance of PZ formation
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In terms of the CL opening displacement, states in Fig. Aa and b are equivalent to those
depicted in Fig. Ac and d. The work-reciprocal theorem applied to the two last states yields

oo, 5*dx—j1§(0',?,—0'p) 8'dx = [ 0,8,dx, (A2)

or
foon8dx=[0,8'dx - 0,8,dx. (A3)

Here the last term in the right side is the double work done by the traction acting on the crack
boundary on the crack opening displacement J; due to the transition of the body from the

uncracked state to the cracked one. The change in the elastic strain energy, F,, and the work done

by all external forces due to this transition are linked as

Fo= 5100, 8ydx + W, (A4)

where W), is the work of the remote load. Hence, with notation II;, for the change in the total

energy due to cracking, there follows
- [0 8o dx =2(F, =W, 0)=211,. (AS5)

Upon substituting (AS5) into (A3) the latter becomes identical to (A1).
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Appendix B. Thermodynamic forces as functions of SIFs and CODs

According to (29),
a1 J L L 1 . _do L_ d6
_7 = _2_9_1.([0 o’pédx-{-‘[l o'drﬁdx) =§[J‘0 O'pﬁdx—()'d,a(l)'f']; O-dr_jdx] (B1)

where 6(I)=6, + 6. (see notations in section 5) and d&/d! is the CL opening caused by the

forces shown in Fig. Bla. Application of of the work-reciprocal theorem to the two states depicted
in Fig. Bla and b results in

(b)

(c)

Figure B1. On evaluation of thermodynamic force for crack advance
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dé

L

Io O'pgl—dx=0'd,5p. (B2)
Similarly for the two states shown in Fig. Bla and ¢

- IIL O4r Qé dx = o-draz : (B3)

adl :

Substitution of (B2) and (B3) into (B1) yields

oI |

_97 =0 4,52. (B4)
The derivative of (30) with respect to [ is postulated to equal

aa ’;z = -0, 8D+ (1+m [0, aa—‘lsdx. (B5)

Here in the right side the first term describes PZ unloading as a result of crack advance, and the
second term expresses PZ widening due to an additional transformation of the matrix material to
the PZ one (Fig. B1d). Division of the PZ deformation potential as indicated by (13), (18) and
(21) with (BS) leads to

—%L=Gdr(6p+25z)’ Zl = —iz-=no.dr6

> . (B6)

Using (B3) and combining (B4) and the first of (B6), the part of the thermodynamic force
determined by the first of (39) becomes identical to the first of (41):

oI1 IF
) 31 31 ad,(6p+ 62). 37

Equation (29) with 6 (L) =0 gives
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aI1 dJ 1
3. zaL(I(fGP5dx+.[1Lo'dr5dx)=5(j(fo-

25 35
Rl R Tl (BS)

The first integral here can be evaluated based on an analysis of the two states shown in Fig. B2a
and b where s=s5, + s, and s, and s, stand for stress component o, ahead of the CL tip induced

by tractions g, and o, respectively (see Fig. Ad).

(c)

. Figure B2. On evaluation of thermodynamic forces for CL advance

Use of the known formulas,

K dé 8(K,+K,)

- 14 il = -
= Tomr oLt J— —P2—[dL -7 (0<r<dl), (BY)
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and the work-reciprocal theorem,

L_ d0 a 2K, (K, +K.) [dL-r
% P Bp % dr =0,
hopge=b — (B10)
give
L a5 2K,(K,+K.)
o, 5 dr = —I—L——=". (B11)

The work-reciprocal theorem for the two states shown in Fig. B2a and c allows an evaluation of
the second integral in (B8) as

3 2K(K,+K)

b ou s dx = L (B12)

As follows from (B10) and (B12),

o _ (K, +K)(K,-K)
dL E ’

(B13)

and according to (B12),

dF _ 2K.(K,+K) 7 - 9Z _ 2K (K, +K)
‘9L E

(B14)

b

JdL E
Combination of (B13) and the first of (B14) yields

ol JF, _ (K, +K,)

P =- = .
L oL L E

(B15)
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Appendix C. Thermodynamic forces as functions of crack and CL lengths

The remote load is considered uniformly (relative to x-axis) tensile, so the uncracked body
is subject to an uniaxial tension (towards y-axis). For the case 7=0 and for given matrix sizes,

forces (41) are functions of two variables - the crack and CL lengths, / and L. Let the crack length
be fixed, [ = l,, and the CL length, L = L, be determined as the solution of the equation

P, (l,L) = 0. E (CDH
As seen from the second of (41), the total SIF for this CL length is equal to zero,

K,(Ly) + K.y, Ly) = 0, (C2)

and so the above-determined CL length coincides with one of the effective crack in the DB model.

It is convenient to introduce the following dimensionless functions

- P(l,L) = P (. L)
B()=—-1=2"-, B(L)=L2— C3
ae P (k. Ly) o Fi(k, Ly) ©

of the crack length [ with the range of the variable from /, to L,. The graphs of functions (C3)
are shown in Fig. Ca, where the tangent to the curve p; (/) at point [ = [; is horizontal, i.e.

*P
= 0. (C4)
AL 1oy 1o,

Another pair of dimensionless functions

F(l)._:PL(—l’I‘“)_ I_)L(L)= P (L, L) »

, C5
P, (Ugr Ly) P, (o> L) ©)

of the CL length L with the same range of the variable have the graphs depicted in Fig. Cb; the
dashed line displays the second function for the case when the crack layer length is large enough in
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comparison with the matrix width. Here the tangent to the curve p,(L) at point L = L, is

horizontal, and so

P
=0 (C6)
ILIL |1y 1ot
By | DL
Lo N 12
\\\ \\__x‘ .
\\ \\
P.(D) /N D.(L)
\ \
0 0 N
I—1— L, |, —L— L,
(a) (b)

Figure C. Thermodynamic forces as functions of crack and CL lengths

which accords with (C4). Besides, the tangent to the curve p, (L) at point L = L, is horizontal,

too,

2
3 F =0, (C7)
L' ey, 11,

as it immediately follows from definition (C1) of L.

The graphs in Fig. C and equations (C4), (C6) and (C7) give an idea about shapes not only
of the first partial derivatives of P, but also of the second ones, and will be essentially employed at

the further analysis of CL stability and kinetics.
For the case 17> 0, length L, of the CL is determined as the solution of the equation

K,(L)+ (1 +2mMK (,,L)=0 (C8)




with [, fixed. By analogy with (C3) and (C5) the dimensionless functions

_ Y(,L) o Y, (I,, L)
iy = L) gy s e D)
1 Y, (L, Ly) L) Y, (I, Ly)
(C9)
_ X, (., L) < X, (l,. L)
X (l =_L__, X, ()= =L~0
O Yty P T XG0

are introduced. Their graphs have the shapes mostly similar to ones shown in Fig. C, but there are
two differences: first, function 7, () might (but not necessarily) behave in a rather different way

(see the dashed curve in Fig. Ca), and second, instead of equalities (C4), (C6) and (C7) the
inequalities

*(P+2Z) _ A (P+Z)

_ *(P+2)
OIOL |y 1o, OLAI

<0,
I’

1=ty L= Lo

<0 (Cl10)
=l L= L,

take place.
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Appendix D. Infinite matrix. Second derivatives of Gibbs' potential

Let an infinite matrix with a crack of length 2L be subject to an uniform tensile remote
load so that o, is constant. Then,

K, = O'p«/n"L, K, = —ZGd,,f %cos"%,

. (D1)
4c . 8¢ ! !
§,=—L -1 8=-—L[[-*cos™—+1In—]
P E 2 nE [ L L]
¢
i
If a PZ length is essentially smaller than a crack layer length,
Lo coso, 9<<1, (D2)
L ;
the derivatives of (D1) relative jto [ and L are determined as
K, _ 3Kp _%, | K, _ 3 dK, 20,
al 9L 2NL al dL \mL6’
(D3)
dé, _ 95,, _ 40, 96, _ _ a6, _ _ 8o,
dl oL EO° Jl L TE
For the case 171 = 0, expressions (D3) with (41) yield
2 2 2 4

9F ~9Z QldL  E6
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Appendix E. Infinite matrix. Kinetic equation and critical crack length

For the case in question, SIFs and CODs are determined by (D1). The equation of CL
equilibrium, i.e. the first of (50), yields

l no

—cosh, B=—2%0 (1. El
L, = 2a+ma, P (ED)

Then, thermodynmic force ¥, determined as
YD) = 0418, Lg) + (1+ M8, (L L,)] (E2)
is written in the form

8a3 1
nE

Y= [n6tanf - (1+n)Ino]. (E3)

At =0, (E3) gives B, and with (75) it results in

2 ____®h (E4)
B() 8/Incosf

The critical crack length is found as a solution of (92), or in the considered case, from equation
B(l)=27,. With notations [ =1I/l, and I, =1 /I, (E4) allows the representation of kinetic

equation (102) in the form of (103) and the dimensionless critical crack length in the form of
(104).
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Appendix F. Edge displacement of a cracked body

The edge displacement of the matrix with the CL (Fig. 19) comes out as a sum of two
terms. The first is the displacement produced by the edge load &, in the solid body, i.e. without

the CL, v\’ = ¢, H/E. The second is the displacement due to presence of the CL. To evaluate

it, the two states shown in Fig. F are considered. On the basis of the work-reciprocal theorem

2
v(p) 1
— — ¢ b Y
T——— 111
hr‘rv Gdr v [1‘{
7 +3
c s . —_—]
y - ¥ ° :lé- *
‘ H
T 4 1 *
ot ———
l | ' J 1 l 1L Jr

Figure F. On evaluation of edge displacement

jowvﬁ,z)dx = O'pfoLV(x)dx ~ Oy, LLV(x)dx. (F1)
Hence
GPH O-P L— O4r (L
v, = E + —w-;-jo 7(x)dx — —‘;‘-,-Il v(x)dx. (F2)
'..1?3
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Appendix G. Infinite matrix. COD and thermodynamic force due to dipole

The state shown in Fig. G is considered. The displacement conjugated to dipole Q is the

crack opening &. According to the Castigliano theorem,

F
0= oF (GD)
a0
p t Q
t : where F is the elastic energy that can be
@ oo :% evaluated by
1 F= jé?—dg. (G2)
pLL1|Q ¢
g By d F/d¢ one implies the rate of change in
L the elastic energy due to symmetrical (in both

directions) crack growth. Then,

Figure G. On evolution of COD due to dipole IF 1
a_g"'E(K*z +K7) (G3)

where ¢ stands for the crack current length, and K, and K, are SIFs for the left and right crack

tips respectively. Substituting first (G3) and into (G2) and then the result obtained into (G1), the
expression for § becomes

2 1, 0K K
== 2Lk 2 yac.
6 nEI’ & o0 " adQ ) G4

In the case in question

el pe [y kel (py [EHD |
K, «/E(P+ g+lQ) K, JE(P+ g—lQ) (g>1); (GS)

if ¢</, the second terms in the right sides of (G4) have to be dropped. Now, (G5) is put into
(G4) which with Q =0 gives the value of crack opening & due to dipole P alone:
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2P 11 [o=1  [g+1 4P L L,
§,= ==['=(|>—+ [2—)dg = —In{=[1+ [1-()1}. G6
»= g g(\/g+l+\/g—l) ¢ = {7+ 1= (G6)

The equation of CL equilibrium defined by the first of (50) is written as

P

’L a1
—-2(1+n)o, .[—cosT — =0 G7
m ( Tl) dr T L . ( )

where the seconds of (D1) and (GS5) are used. Equation (G7) results in

=cosf, 6 = P . (G8)
L, 20, (1+2n)L

And finally, by means of the firsts of (41) and (42) as well as the fourth of (D1), (G6) and (G8)
the expression for thermodynamic force Y, defined by (53) is evaluated in the form (123).
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I. Introduction.

Material aging is understood as changes of material properties with time. The aging
is usually observed as an improvement of some properties and a deterioration of others.
For example an increase of rigidity and strength and reduction in toughness with time are
commonly observed in engineering materials. In an attempt to model aging phenomena
on a continuum (macroscopical) level one faces three major tasks. The first is to iden-
tify an adequate age parameter that represents, on a macroscopic scale, the micro and
submicroscopical features, underlying the aging phenomena such as nucleation, growth
and coalescence of microdefects, physico-chemical transformations etc. The age parameter
should be considered as a parameter of state, in addition to the conventional parameters
such as stress tensor and temperature.

The second task consists of formulation of a constitutive equation of aging, i.e., equa-
tions of age parameter evolution expressed in terms of controlling factors, e.g., load and
temperature. It is expected that at common circumstenses a small variation of controlling
factors results in a small variation of age parameter. However, at certain conditions, a sud-
den large variation of age parameter may result from a small perturbation of controlling
factors. Experimental examination, classification and analysis of the condition that lead
to such a catastrophic behavior, constitute the third task of the modeling. Formulation of

local failure criteria within the scope of continuum mechanics is an example of this task.

In many engeneering materials the aging is manifested in variations of mass density
as well as in the spectrum of relaxation time. Thus in a macroscopic test the aging can
be detected in variations of intrinsic (material) length and time scales. Following
this notion, in the present paper we employ the material metric tensor G as an age
parameter. An evolution of G in 4D -material space-time determines in our approach

an inelastic behaviour and time dependent material properties recorded by an external
observer. ‘

The objective of the present work is to derive the constitutive equations of aging based
on Extremal Action Principle. The variational approach seems to be most promissing in
view of complexity of the problem and lack of experimental data. It provides with a
guide line for the experimental examination of the basic assumptions and modifications, if
necessery.

The major task in implementation of extremal action principle is the construction of

an appropriate Lagrangian. In variational formulations of Elasticity theory the Lagrangian
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is usually constructed in terms of invariants of the gradient of deformation. In Classical
Field Theories invariants of metric, connection and the corresponding curvatures together
with the gradients of "material fields” are emploied in the Lagrangian ([2],{16],(18]). In
the present paper we combine the above approaches and revisit the classical continuum
mechanics from the point of view of an intrinsic (material) geometry that includes an inner
time. _

A brief exposition of various works in Gravity, Elasticity and Geometrical Field The-
ories most pertenent to the present studies is given in Appendix A.

In Section 2 we discuss the kinematics of an aging media emploing a 4-dimentional
material space-time P = R x B endowed with the 4D-metric G of Lorentz type (intrinsic
metric) embedded into 4-dimentional Absolute (Newton'’s) space-time M*. We define the
mass form and formulate the mass conservation law that, in the context, gives a non-trivial
relation between the "reference density” po and the time evolution of the material metric
G. A strain tensor E and a "ground state” are introduced as a measure of deformation
and a natural analog of the "unstrained state” respectively. The central part of the work is
the Section 3 where we propose a variational formulation of aging theory. The equation of
Elasticity together with the generalized Hooke’s equation are conventionaly derived con-
sidering the variation of the action integral with respect to the deformations ¢*. Similarly,
new equations of evolution of the age parameter (and, therefore, of elastic moduli, mass
density and inelastic deformation) result from the variation of the action integral with
respect to the material metric tensor. The balance equations (conservation laws) result-
ing from the symmetries of the Absolute (Newton’s) space-time and material (intrinsic)
space-time respectively and the relations between them are discussed in the Section 4.
Considerations of the paper are illustrated in section 5 by the example - linearized model
of aging of a rod whose time dependent elastic properties and irreversible deformation are
associated with an evolving metric in 2D material space-time. In Section 6 we discuss the
nonlinear aging of a rod under the constant load (creep).
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2. Kinematics of aging media.

Material body is considered here, in a conventional way, as a 3D manifold B, i.e. a set
of ”idealized” material points (with the coordinates X!,I =1,2,3). Cylinder P=R x B
(with the coordinates (X° = T, XT,I = 1,2,3)) equiped with the Lorentz type ”intrinsic”
("material”) metric tensor G with components Gy is refered to a material "space-time”
(P,G). We require that all the sections By = {T = const} are space-like, while the
material "world lines” {R x (X!,I =1,2,3)} are time-like with respect to the metric G.
Metric G defines the 4D volume elment

dv = /=|Gld*X,

here |G| is the determinant of the matrix (Gry).

History of deformation of the body B is represented by a diffeomorphic embedding
¢ : P — M of the material space-time P into the Minkowski space M = R* (with the
coordinates (t = z°,2%,i = 1,2,3)), equiped with the 3D Eucledian space metric h with
components §;;. In examples below we restrict ¢ by requiring ¢t = ¢°(X) = T. Such
deformations are called ”sinchronized”.

Using the deformation ¢, we define the slicing of P by the level surfaces of the zeroth
component of ¢

By = 4° ~'(t) = {(T, X) € Pl¢"(T, X) = t}. 1)

For the sinchron;zed deformation By ¢ = Br=:, therefore these surfaces are spacelike
(see above). We assume the same to be true in the general case.

There is a "flow vector field” u4 in P associated with the slicing By, ; of the space-time
P. 1t is the only time directed vector field orthogonal to the slices By, for all values of ¢
and < ug,uys >= —1 (see [2],[16]). For sinchronized deformation ¢ and the block-diagonal
metric G in coordinates T, X ,I =1, 2,3 we have

9
T

In addition to the volume element, the mass form

ug = [~Goo) ™

dM = podV
is defined in P. The reference mass density pg, defined by this representation satisfies the
mass conservation law e

Ly, dM =0,
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where L, , is the substantial (Lie) derivative in the direction of the field u. In the sinchro-

nized case the mass conservation law is equivalent to the following representation of the

po(T, XT) = po<o,x>,/%, (@)

where po(0,X) is the initial value of po (we assume that G(0, X) is the Minkowski
metric). Space density p is defined, as usual, by the condition

reference density:

¢* (pdv) = podV,

that gives

o zpov—G
pod OB

where J(¢) is the Jacobian of the deformation ¢.

Slicing By ¢ defines the covariant tensor

v=GC+up @ ug,

(see [24],[2]). Denote by II the orthonormal projector II = G~'v to the planes tangent to
the slices By¢. Tensor + induces the time dependent 3D-metrié g, on the slices By ¢+ (see
[10]). In the sinchronized case and the block-diagonal metric G, g; is just the restriction
of 4D-metric G to the slices Br. We do not put any futher condition on the metric g;. In
particular, it may have non-zero curvature (i.e incompatibility of deformation). Apparently
there are residue stresses associated with this curvature.

We also introduce the 4D tensor

Ks=G7'Cu(¢) —uyp Qu. 4,

where C4(¢) = ¢*h, and define 3D-elastic covariant strain tensor Ee¢! as follows

E($)* = %Hln(K)H - —;-Hln(G‘qu*h —uy ®u, )L (3)

S
Then, 3D elastic strain tensor E(¢)¢ results from the restrictions of tensors G~! and

¢*h to the slices By, (see Appendix B). It is a natural measure of a deviation of the actual
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state from the "ground state”. For the sinchronized deformation ¢ and the block-diagonal
metric G,

B = Sin(g7'C(4))

i.e conventional logarithmic measure of deformation.

The total deformation E*° of the body at each given moment T that measures the
deviation of the deformed Eucledian metric ¢*h|g, , from the initial (Eucledian) 3D-metric
h on Br translated there from B,

1
E" = Eln(h_lcw)),
in important practical cases can be represented as the sum of the elastic deformation

E* = =In(g;'C(9)),

Do

and an irreversible deformation
tr 1 -1
E'" = -2-ln(h gt)
(the logarithm of (1,1)-tensors is taken on the slices By :):
Etot — Eei + Eir. (4)

The diagram below presents the above decomposition.

The actual state under the load at any given moment T results from both elastic (with
the variable elastic moduli) and inelastic (irreversible) deformations. The "ground state”
of the body is characterized by the 3D-metric g;. This state is the background to which
the elastic deformation is added to reach the actual state (compare {29]).

Transition from the reference state to the ”ground state” that manifests in the evolu-
tion of the (initial) Eucledian metric h to the metric g; can not be described, in general,
by any point transformation. Transition from the "ground state” to the actual state at
the moment ¢ also is not compatible in this sense. Yet the transition from the reference

state to the actual state is represented by the diffeomorphism ¢;.
s
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Here we consider the material 4D-metric G and the deformation ¢ (or elastic
strain tensor £°(¢) plus the zeroth component ¢° of the deformation) to be the dynamical
variables of the theory. Reference density pg is found by the formula given above if its
initial value po(T = 0) is known. In this study we restrict ourselves to the (quasi)-static

version of the theory. Dynamical case is discussed elsewhere.

B In(g,'0h)

Ground State: metric g, Actual State: metric ¢ 'h

Aging: L g=K(g,,0) ¢, - observable deformation

Reference State: metric h (eﬁcledian)

Figure 1. Decomposition of kinematics of aging media
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3. Variational formulation of equations of aging.

Variational principle

Following the framework of the classical field theory we take Lagrangian density
L(G,E, ¢°) refered to the volume form dV = \/:Tc_}_ld“X as a density that depends
on the dynamic variables of our model i.e. 4D-material metric G and the deformation
history ¢: L£(G, E¢*, ¢°) = L(G, E¢, ¢°)dV, with L(G, E%,¢°) being the Lagrangian.

Deformation ¢ is essentially 3-dimensional in the sense that it deformes only the
spacial Eucledian metric h in M and, the 4D-tensor

Ca(¢) = ¢°h

is the degenerate metric in P. We compare it with the tensor v = G + uy ® uys. Elastic
deformation E® measures the deviation of C(¢) from + on the slices By ;.

Coincidence of v|p, and C(¢) is possible if there is no elastic deformation and if
deformation ¢ describes just an evolution of the metric g;.

Zeroth component ¢° of the deformation plays the special role in our considerations.
Relation between the laboratoy time ¢ and the proper intrinsic time 7 in P is given (in a
homogeneous case where t = ¢°(T')) by the relation

dr = \/=GoodT = —-—V;O C"Odt,
,0

and, therefore, ¢° (or rather, its derivatives) characterise the rate of proper intrinsic time
flow - "rate of aging” of the material.

Based on these arguments we present the Lagrangian L(G, E) as the sum of the
"ground state” Lagrangian L,,(G) that depends on the metric G only, of the elastic part
L¢(G,E) that is a perturbation of the metric part due to the elastic deformation and of
the intrinsic time evolution part L(¢°, G):

L= Ln(G)+ L(E®) + Li(¢°, G). (5)

In a quasistatic theory we ignore the kinetic energy and the second term is simply
related to the elastic strain energy f that is assumed to be a function of two first {nvariants
of the (1,1)-strain tensor E¢ : Tr(E®) and Tr((E)?).
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L(E*) = po(f(E®) + po(0) F), (6)

where

_ G
Po = po/po(0) = I_Cg_(l)-

is the reference density normalized to its initial value and the strain energy has the form
ely __ © el 2 A el\\2
F(E) = ETr(E ?) + S (Tr(E),

p and A are initial values of elastic constants. F' is the potential of the body forces.

In more general consideration, one can take the strain energy L. as a function of joint
invariants of tensor E° with the tensor K and the Ricci tensor Ric(g;) of the metric g.

Notice that when the intrinsic metric G coincides with the Minkowski metric (with
c=1), tensor E* is the usual strain tensor of the classical elasticity theory ([19],[21]) and
the expression (6) is the conventional quadratic form of the strain energy of linear elsticity.

The term L.,,(G) in (5) can be interpreted as the ”cohesive energy” of the solid. We
assume that the ground state Lagrangian L,,(G) depends on G, on the invariants of the
tensor of extrinistic curvature

K=Lu,v

of slices By ¢ in the material space-time P (see {10],{24],{30]) and on the Ricci tensor
Ric(g:) of the metric g;. In the case of a block-diagonal metric G,

_ (0 O
and, therefore, K is, essentially, the time derivative of the 3D projection g of material

metric G:
1

v—=Goo

Tensor K is interpreted as the rate of change of effective intrinsic spacial scales in the

Kl = GG ayp0.

media due to different inelastic processes together with the influence of elastic deformatin
on these processes. .

The ground state Lagrangian L,, is constructed as a linear combination of quadratic
invariants of tensors Ric(g:) and K:
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Ln(G) = F(G) + Q(G)Tr(K) + oTr(K?) + BTr(K)? + TR(gs). (7N

Here F(G) is the initial energy density (per unit mass) that is considered (as well as
the coefficient Q(G)) as a function of the 3D volume |g; = IIGII| and Goo+ (1 -1I)G(1-1I),
R(g,) is the scalar curvature of the 3D metric g. Coeflicients a7 are numerical parameters
to be choosen later. '

In simpliest cases (homogeneous case, 1D case) scalar curvature R of the metric g; is
zero and the last term in (7) vanishes. More general case where g has nonzero curvature
localized on some surfaces or lines (situation studied in gravity by A.Taub [31]) will be
considered elsewhere.

Notice that the 4D-scalar curvature R(G) of the metric G can be expressed as —(tr(K?)—
(trK)?) + R(g:), up to a divergence term (see [24], Sec.21.6 or [10]). As a result, Hilbert-
Einstein action R(G)\/——IGT] is the special case of (7).

Role of the third term as the "intrinsic time evolution part” was mentioned above.

Following the standard procedure for the Lagrangian formulations of the Elasticity
(see, for example, [21]) we add the surface term [ W (¢, G)d*T with W representing the
power of surface truction; to formulate the action integral on a tube domain U = [0,t] x V/,
with (V,8V) being an arbitrary subdomain of B with the boundary 9V

Au(G,¢) = /V (Lm(K) + Le(E))dV + /6 . W (¢, G)d>L. (8)

Euler-Lagrange Equations.

Variation principle of extremal action §A = 0 taken with respect to the dynamic

variables ¢ and G gives a system of Euler-Lagrange equations that can be interpreted as
the coupled elasticity and aging equations

oL, 0 [ oL, - =
5o = X7 (6%‘) + poV/=IG|(VF)m =0, [=0,1,2,3. (9)
-
6L, =rel
ET‘T == — 2 TIJ, I = 0, ]., 2, 3. (10)
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Elasticity Equations (9) are obtained by taking the variation 6 A with respect to the
components ¢* inside the domain U. These equations (excepr of one with I=0) coincide
with the conventional equations of equilibrium of the Nonlinear Elasticity. However their
special features are associated with the different definition of the elastic strain tensor E¢
and with the dependence of the elastic Lagrangian £, on time through the metric G and
in general through the Ricci tensor and the extrinsic curvature tensor. As a result, tensor
of elastic constants is a function of these parameters and, therefore, of time. Evolution of
these parameters is defined by the equations (10) (refered as Aging Equations).

Zeroth equation describes the evolution of the intrinsic time parameter 7 and reflects
the change in the rate of the processes going in the media (in terms of relaxation times) -
aging of the material. Its more detailed study and the relation with the thermodynamical

propweries of the media will be subject of the other paper. This equation is trivially fulfiled
for sinchronized deformations (¢°(T, X) = T).

The Hooke’s law (obtained by the equating zero of surface variation of deformation
history ¢*) takes the form

oLc
— =Pl I m=0,12,3. 11)
5977 (
Here
Pl = __B__Ii’_

is the first Piola-Kirchoff tensor, with P being the components of the traction surface
density (Wd®Z = PIdS;). Using Hooke’s law and assuming the absence of body forces
(VF = 0) one can rewrite the elasticity Equations in the well known form

. o _,
- —pf = = . 12
ggm axiim=0m=123 (12)

If L. is traslationally invariant in space, the first term in the left side vanishes.

Aging Equations
Variation of the action with respect to the metric G give us the equations of the

material metric G evolution i.e. the aging equations (10) where
-3

1 (L)
sV-IGI T = <515
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defines the " canonical” Energy-Momentum tensor. This tensor is symmetric and has a close
relation with the Eshelby Energy-Momentum tensor brs ([8],(9],(7]). Indeed (see Appendix
D) components of these tensors in a case of a block-diagonal metric G are related as follows

V=Gl Try= by + LG ru(l - 6763). (13)

Notice also that the spacial part of the tensor T coincide with the symmetrized second
Piola-Kirchoff tensor S:

\/—|GIT[J = S([J), I1.J=1,23.

Equations (9-10) together with the expression (2) for the reference density form the
closed system of equations for dynamical variables (G, E°Y). They complemented with
the initial and boundary conditions, provides one with a closed non-linear boundary value
problem for deformation and material properties evolution.

In general system (9-10) seems rather complex especially if the L. dependence Ric(g:)
or K is included. Yet some problems can be readily analysed.

Block-diagonal metric G, sinchronized ¢

In this case

0 0
(KIJ) = (0 ﬁkmcl‘]’()) .
From this it follows that only derivatives in X!, I =1,2,3 that appears in
Ly = F(G) + Q(G)Tr(K) + p2(K) + TR(g)

(p; is a homogeneous function of invariants of tensor K of degree 2) are those in R(g:)
and that g is equal to the restriction of G to B for each t. No derivatives in Goo appears
anywhere in £. In particular, (00)-equation is not a dynamical equation but rather the
condition, similar to the ”energy condition” in the gravity, see [10].

This equation has the form

Goo(VGe (v + TR(g0)) + F(E™)) + Vaipa(9'*gas) =0, (14)

where ,/g; is the volume element of the 3D metric g, p; is the quadratic plg.'rt of L,
and f is the strain energy.
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This equation can be used to exclude Goo from the other six equations (10). Alterna-

tively, it can be used as the additional equation to select convinient variables (see Sec.VI
below).

Spacial part of equation (3.6) takes the form

Y .AB _ .
W (agrigas + Bgragss) i*F + a11(9, 3, Goo, Goo) + E€1u(ge) = Sryy-  (15)

Here £;15(g) is the analog of the Einstein tensor of the 3D-metric g;. The difference
with the usual Einstein tensor is due to the presence of the factor v/=Goo in the term
v/—|G|R3(g) of the Lagrangian density ( /—|G| = v—Goo\/3t)-

Term ¢ on the left side depends on the metric coefficients and their first derivatives
in time.

Right side of this equation contains no derivatives of metric coefficients. Third term
in the right side contains only derivatives of Gy, I,J =1,2,3 by XTI, I=1,2,3but does
not contain time derivatives. The first two terms in the left side on the contrary, contain
only derivatives in time but no space derivatives. This equation is of the second order in
time. In the case where the term with the constant a dominate one with the constant 3

(for example, if 8 = 0) this equation can be easily transformed to the normal form

3?2Gry G 0G 9*G

— F(G’E’ éy,g‘frj,vﬁb):o-

ot?

Notice 3 special cases.

1) Homogeneous media

In a case of a homogeneous media tensor £;;(g) is identically zero. As a result, (15)
becomes a system of quasilinear ordinary differential equations of the second order for
Gy. Cauchy problem for this system is correct if a >> £.

In a case, where Ric(g:) =~ 0, a good approximation of the general system (9-10) can
be proposed. If the total deformation ¢ is approximated by the ground deformation ¢ in
evaluation of EMT Ty in the right side of (10), the latter becomes decoupled from equi-
librium equation (9). This allows to study aging equations separately and, after obtaining
solution G of these equations, substitute them into elastic equilibrium equation (9) and
solve it as the usual elasticity equation with variable elastic moduli. 7

2) Static case
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If G does not depend on time. K = 0, p(K) = 0 and (14) reduces to the "energy
balance equation” (with scalar curvature R3(g) plaing the role of metric energy) while (15)
becomes the second equilibrium equation describing the stress produced by the curvature
of the metric g and "frozen” into the media.

3) homogeneous rod (1-D case).

In a case of a 1D media (rod) the curvature of g is identically zero. Then the equations
(3.6) reduces to a nonlinear dynamical system for Ggg and G;;. In Sec.6 (and in Appendix
C) an evolution of a homogeneous rod is further discussed.
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4. Balance equations.

As it is usual for a Lagrangian field theory, action of any one-parameter group of

transformations of the space P x M commuting with the projector to the first factor leads

to the corresponding balance law (see [21]). In particularly, translations in the ”laboratory

space-time” M lead to the equations of motion (9) (including zeroth one that is trivially

valid here), rotations in the ”laboratory space” lead to the angular momentum balance

law (conservation law in isotropic case). Respectivelly, translations in the ” material space-

time” P lead to the energy balance law (translations along T axis) and to the material

momentum balance law (called also " pseudomomentum” [12},[26],[23]), rotations in the

material space B lead to the "material angular momentum” balance law.

In the table below we present basic balance laws together with the transformations

generating them. It is instructive to compare the space and material balance laws.

Symmetry

Laboratory space-time
(Material independent)

Material space-time
(Space independent)

Homogeneity of

3D-space

Linear momentum balance
law
(equilibrium equations)

div(o)=f.

Material momentum
(pseudomomentum)
balance law

div(b)

=f
mat

Time homogeneity

Intrinsic time evolution equation:

3L/ 8¢°=0

Energy balance law:

ot (g®ot =& el & m_,_ggdis):
div(Ptot =Pel+P™+P dis)

Isotropy of 3D-space

Angular momentum balance
law = h-symmetry of Cauchy
stress-tensor ¢

Lo=ol

Material angular momentum
balance law = C-symmetry of
Eshelby stress tensor b

b:c=C:b_
I
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Relations between the space and material balance (conservation) laws are given by
the deformation gradient:

1 R
o 0 3’10 iio Yo
)= Lo V3 (16)
™ 0 ... ... ¢3) \"

Similar to the relativistic elasticity ([15,],[16]) system of material momentum balance
laws n; = 0,1 = 1,2,3 is equivalent to the elasticity equations v, = 0 while energy
balance law ng = 0 (which is the material law) follows from any of these two systems:
No = Z::? V'y;. This reflects the fact that the deformations we consider are not really
4-dimensional, and that we restrict the class of deformations to sinchronized ones.

In terms of the 4D Es}{elby tensor b = —[Zeég + %ﬁ-d)i 7, material energy-momentum
NAS

conservation law has the form (see Appendix D)

e oL oL
. I I m e B
divab = i1 = gxT (C"’&J 9G4 ¢y - 0G1” i ) ' i

Energy balance law plays special role in our considerations. In the table above £
is the total inner energy density. That equation has the standard form "rate of change of

inner energy equals to the 3D flow of energy”. The total inner energy £** is composed of
the usual elastic strain energy

aoc
el e AB
E = —L. + —_OG'O ,
the " metric energy” term
6[.m
EMm =_r | G%B
b a( !’AOB ’

is a "cohesive” energy i.e. a part of the total energy density associated with the
integrity of the media. Reduction of the cohesive energy due to the aging can be related
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to an increase of brittleness. This relation is a subject of different article. Third part is

the " dissipation term”

0L,

5t=—[¢+aGAB

G

related to the slowing or enfastering of the processes due to the aging phenomena.

Correspondingly we have, in the right side of this balance law the flows, where
i I i
Pe =P ¢
is the usual traction force power, second term

m_ OLm . aB

P = WG

is a " material forces power” (comp. [8],[12],[13]), and the third term wil be interpreted as
the dissipation flow (due to the heat transfer and other thermodynamical processes). More
detailed analysis of this balance law and its relation to the entropy production balance as
well as with the dissipation inequality will be published elsewhere.

For the external "observer” all three terms represent the total energy while from
the point of view of ”"internal observer” this total interior energy comprises three terms
corresponding to the different processes going in the media.

If the elastic Lagrangian L. = L.(E®) depends only on the strain tensor E°¢ and if
L. is function of |G| and K only while L, = 0 (for example, in a sinchronized case), energy
balance law takes the following form (see Apendix D)

8 {( .o L L = .
oT (gu ~Le—Lm aGAB ) Zax! (P! %) (18)

In the section 5 this balance will be presented in the more specific terms in the case
of an aging rod.

In the case of the conventional elasticity intrinsic metric G does not depend on time
and the energy balance takes its classical form. P
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5. Examples: Aging Rod.

In that section we consider two examples of an elasticity deformation in a homogeneous
rod ( with the coordinate X, 0 < X < L and the time variable T') with the intrinsic metric
G evolving in time. Since we assume the homogeneity of deformation, metric G and the
elastic strain tensor E¢ are functions of time only.

The rod is subjected to the load F applied to its right end X = L while its left end
X =0 is fixed. For F = 0 rod undergone the natural free aging that is described by the
metric G. If F' # 0, then elastic deformation is also present. Total deformation ¢ that
is seen in experiment consists in two parts. Below we specify both of them. Inelastic,
irreversible part of deformation is described by the metric G whose evolution depends on
the load F. Elastic part that manifests itself in the difference between the total and pure
inelastic ("ground”) deformation, goes with the variable Young module E(¢) that is also
specified by the metric G. In an experiment it is the Young module E(t) (or density p(T))
and the total deformation €!** (or, more exactly, deformation rate é*°*) that is seen and
measured. Aging equations define evolution of the metric G and, therefore, evolution of
the Young module and the rate of deformation.

Equilibrium equations are trivially satisfied and stress tensor o or deformation ¢
can be defined from the boundary conditions (see below). Aging equations (10) are now
ordinary differential equations for the metric G(T') and the energy-momentum tensor
T is calculated through G and the boundary conditions for deformation or stress.

We restrict to the case of a block-diagonal metric G = (080 Gou) . Metric Lagrangian

is taken in the form

Lo = /=G| (F(Goo, lg:]) + Q(Goo, |9:)TTK + coTr(K?)), (19)
where functions F, @ of variables Goo, |g:| and the constant ag will be specified later

on.

Elastic Lagrangian has the form

2
£e=\/—Goo-/2£Tr(Ee‘)2= —GOO%Eeli , (20)

since po = ’/:I%Im Elastic deformation E® = %ln(G“qb} 2.

91




Hook’s law has the form

v=CG E¢t
g11 = —'2_00ﬁ ¢11 ) (21)
For the second Piola-Kirchoff tensor S we have
- vV=Goof’
S = Ghphon =Gl (¢Y) o = G 2gl T (22)

In the ground state (GS) approximation where we put ¢! ~ 1/G11 X, that is assume
that the elastic deformation is small in compare to the inelastic one,

3
511 %Gflau. (23)
We also have
o1 = [____V"G(")“]Eel ~ [___v—Goou]eel (24)
2¢,11 11 2m 11

second formula being true in the GS-approximation (see above).
Calculating variations of L. by G, G'! we find (for an arbitrary strain energy f) the
Energy-momentum tensor density

VIGI ( —Lop 0 )
Yy 2 e . . 25
2 0 —3(C"4} )8 = ~%H-Cudl (2)
As a result, aging equations (9-10) has the form
0L G
560 =~ Lo
6L 1 (26)
mo_ 11,12
sorm = 3@ )5
To calculate variations of the metric Lagrangian and to preform the analysis of the
aging equations we employ the following notations: £ = —Ggo, y = G11 and get':_; :
Lo = f(z,y) + alz,y)j + alz, )37, (27
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where

Q(z,y) ~1/2, ~3/2
= JzyF(z,y), ¢ = —=, a = aox )
f=VzyF(z,y), q 7 0 y

As a result, aging equation has the form

. . z
$2(fx + 4y + azyz) = Eﬁe
(28)

v (fy = s + 05 — 2(a§)) = T (ye})

Now we turn to the discussion of the two situations mentioned above.

1. Free aging.

Consider the situation where the rod of a material is not subjected to any load or
volume forces, its left end being fixed. There is no any elastic deformation in this case
(E®* =0, 0 = 0) but there may be an inelastic defomation ¢! (T, X) # X. This deformation
is defined from the equation E¢ = %ln(gs—lc(qb)) = 0, or C(¢) = g; (g; is flat). Then,
clearly, ¢ is defined up to an arbitrary time-dependent rigid rotation. If we fix a point in
the body and a frame in this point and require ¢ to preserve it during the deformation, ¢
is defined uniquelly: ¢1* = Gy,

o (X, T) = /G (D) X.

Aging equations are

fy — ayA? — 2ad),
gz + 20\ + 20’

29
. 2fz @)
Y= /\(:I:, y) = > )
qz == dz — 4azf:z:
where function A is defined by the second equation.
We take
T,y) =ay+clr —1 ’“,a<0
fz,y) =ay+c(z - 1) (30)

g=q(z-1)", m<1.
Graphs of typical solutions of this system with Goo(T" = 0),G11(T = 0) > 1 are
presented in the Appendix C. One sees as the inelastic deformation E'" = /G;, leads to
the shrinking of the rod and as the Young module E(t) = E (0)\/:70“7 diminishes.
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2. Rod with the fixed boundary.
In this case we assume that the rod is fixed on the boundary and (due to a homogeneity
assumption) total deformation is zero: ¢!(T,X) = X,C(¢) = h, E®* = Ln(G'). That
does not mean that there are now stresses in the rod: expansion deformation due to the
fixed boundary is compensated by the shrinking due to the aging process. As a result,
intrinsic stresses are developed in the body.

We have Energy-momentum tensor has, in this case, the form

(%\/Ef(—%ln(y)) 0 )
0 ~$VEF (= Hin(y)).

For f(E®) = %Eel 2 we get aging equations in the form

( L_dim B/ER) A% — 200,
- gz + 20\ + 2a), ’
E (31)
) 2Af. — 5 (In(y))?)
¥y=Az,y) = — :
\ @ £ /a2 — daa(fi — E2E (In(y))?)

Graphs of typical solutions of this system with Goo(T = 0),G11(T = 0) > 1 are
presented in the Appendix C. One sees as the inelastic deformation E*" = /G1; leads to

the shrinking of the rod and as the Young module E(t) = E(0) '—‘égm diminishes.

11

Comparision of these graphs shaws that during the aging of the rod with the fixed
boundary, both inelastic deformation and the decrease of the Young module happens more

slowly and their limit value is closer to the pure elastic case (in the absence of aging).
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6. Conclusion.

A variational approach is proposed to formulate constitutive equations for aging me-
dia. The approach is based on the assumption that the metric tensor of the inner (material)
space-time geometry together with an elastic strain tensor constitute a complete set of pa-
rameters of state. This assumption combined with classical Hamilton’s principle provides
a framework for derivation the constitutive and balance equations modeling material be-
haviour. Selection of a particular form of the Lagrangian, as it is usual in a variational
formulation, leads to a particular constitutive equations. Thus, for one of the simplest
linearized case the approach leads to a model of well studied creep behavior of a material
with fading memory. Analysis of various forms of Lagrangian, the resulting models of
material behavior, comparison with the experimental data as well as with conventional

thermodynamic restrictions is the subject of our next work.
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Appendix A. Historical background.

| Development of Elasticity Theory in the end of the last and in the beginning of
i this century was one of several principal factors that ensured the formation of Differen-
tial Geometry as independent and powerful branch of mathematics. Classical works of
Levi-Chivita, Ricci on Tensor Analysis and Absolute Calculus are examplery works that
support strength of the influence of Elasticity Theory. Yet it seemed that later development
of Continuum Mechanics as well as that of the Material Science influenced predominantly
development of analytical domains of mathematics rather then that of geometrical do-

maines.

During the last twenty years development of the Classical Field Theory that was
triggered by the studies in Gauge Field Theories and Hamiitonian Mechanics resulted in
the development of new powerful mathematical methods of analysis and geometry, and,
simultaniously, revived interest in studying of geometrical-structures that appeares in
continuum mechanics, astrophysics and solid state physics.

At the same time there appeared works in Continuum Mechanics where inner, mate-
rial properties of media are presented by geometrical structures effectivelly reflecting the
specific properties of solids and liquid media.

In a series of works A.G.Hermann ([14],(26]), A. Golebowska-Hermann ({12],(13]) and
their collaborators have studied and clarified the relation between the "laboratory” and
"material” conservation laws (balance equations) of Elasticity and Thermoelasticity.

Developments of the structural theory of continuous media pioneered in the works
by Eshelby ([8,9]), Kondo ([17]) and developed in works by E.Kroner, C.-C.Wang ([32]),
W.Noll ([25]), G.Mougen, M.Epstein, and others ([22],(7],{23],[1]) demonstrated importance
of studying of "material connections” that reflects the inhomogeneity of the properties of
media and the elegance of the "dual” space-material picture in Elasticity Theory.

Works of B.Carter and H.Quintana (see [2],[3]), G.Maugin on the Relativistic Elastic-
ity Theory make a great use of specific geometrical structures and relations between such
structures in 4D-Lorentz space-time of General Relativity and that of 3D-Riemannian space
of the body (of a star). Further works in this direction made by J.Iijowski and G.Magli
([15],[16]) support the opinion that relations between the inner geometry of media and its
dynamics deserves further investigation.

On the other hand in the works by J.Marsden, J.Simo, T.Hughes and P. Krlshnaprasad
([20],(27],[21],[28]) there was introduced and successfully exploated the notion of ”matenal
metric” G inner to the media. These authors reformulated the classical non-linear Elasticity
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Theory as the Lagrangian Theory w}{ere the Lagrangian is the functional of two metrics
on the body - inner metric G and ¢*h induced by a deformation ¢ from the Eucledian
metric of the ”laboratory "space. They have developed the covariant approach to the
balance equations of the Elasticity Theory ([21]) and have studied the relations between
the ”space” and "material” energy-momentum tensors ([27]).

Our approach is a kind of development of this last point of view together with the
scheme of Relativistic Elasticity Theory. We are studying the Elasticity Theory for media
(body B) whose properties are changing with time, but in difference to the usual theories
of media with memory this dependence manifestates through the " material” metric in 4D-
"material space-time” P = {R} x B where the first factor stays for inner time parameter
T. Deformation is presented by an embedding ¢ of P to the 4D-"laboratory space-time”
M of Newton. The last term means that M = R* is endowed by a degenerate (3D) metric
along the space slices ([24]).
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Appendix B. Measure of Strain and Elasticity Modulus.

We fix coordinates ¢,z*,7 = 1,2,3 in the laboratory space-time M = R* and endow it
with the 3D Eucledian metric h = ¥, dz* 2 which is considered as the covariant 2-tensor
in M (degenerate metric).

In the 4D material space-time P = Rx B we consider the coordinates (T' = X%, X!, I =
1,2,3) (that is body B is covered by one coordiante system, for example defined by ini-
tial coordinates of material points in R®). Denote by Br the slicing of P by the surfaces
T = const. P is endowed by the metric G of the signature (—, +,+,+). Denote by u the
vector field in P of the time-directed unit (< u,u >= —1) vectors orthogonal to the slices
Brp. Then, in coordinates (T, X!) we have u; = (a,0,0,0);u! = aG*0, I =0,1,2,3 where
a = (~Go0)-1/2,

Deformation ¢ : P — M defines the slicing By = ¢° ~1(¢) of the cylinder P. We as-
sume that 3D-surfaces of this slicing are space-like. Denote by uy the vector field composed
of future directed unit vectors (< ug,us >= —1) orthogonal to the slices.

In the sinchronized case (¢° = T') slicing By coincide with the slicing Br defined
above and ug = u. |

Orthonormal projector to the slices By ¢ is generated by the covariant 2-tensor ([2],24])

v=G+up @ ug. (B.1)

Tensor 1 =G~y =1 + uy @u. ¢ is the projector to the tangent spaces to the slices
By, Denote by g; the 3D metric on the slice By, induced by the tensor v ([2},{24]).
Deformation history ¢ : P — M defines the 4D Cauchy-Green tensor

o] viel,
Cald)=d'h=| ., (B.2)
v'ely  C(d) = dixd’L

where we assume summation by i = 1,2,3 and use standard notations v* = ¢f0 for
the vector of 4-velocity. Here C(¢) is the conventional 3D Cauchy-Green tensor.
Define the (1,1) tensor K as

K =GT1Cu($) - up ® g, -
see [15],[7], and the elastic strain tensor as follows
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in(K)IL. (B.3)

E® is the tensor in P such that E®luy = 0 = E® *u4. We will denote by the same
letter the restriction of this tensor to the slices Bg,. Notice that for a case of a Minkowski

metric G and of the small sinchronized deformation ¢ this reduces to the usual definition

E = 2(C(é) - ).

For a sinchronized deformations ¢ and a block-diagonal metric G = (GSO ;) ) we
t

have

0 0o 0 0 GulVI*  GuVFi
7=(0 g>’ H=(o 1)* Gl¢h = -
¥ 3 97 'ViFk 9:'Cs,

and, finally,

el - 0 0 :
E,l 2(0 %In(g[%’)) (B4)

ie. E° coincide with the usual classical expression for the (nonlinear) strain tensor
in the case of Eucledian metric g;.

Consider now the sinchronized deformations ¢ (so, T' = t). If the curvature tensor
R(g:) = 0 then the 3D-metric g; = 7|, induced by v on the slices B, is a flat metric and,
therefore, for all T =t there exists (local, or, in the case of a body B of simple structure,
global) embedding (deformation) ¢(T, ) : By — R® such that g(T) = ¢*h|g, = C(¢).
We will call this deformation ground state (GS). This GS-deformation is unique modulo
the time-dependent eucledian motion in R3. If we put an extra codition for a body to
have, at any moment T, zero total linear momentum and total angular momentum then
the ground state is unique up to the constant rigid motion. Notice that for the ground
state (and only for it) E%($) = 0. In components (in sincronized case) we have
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Crs=hijd' ¢, =Gy —
' Goo

, I, J=1,2,3. (B.5)

In the case where G = 7 (Minkowski metric), v = h ground deformation ¢ - is just
the undeformed state of the Classical Elasticity.

Denote by h 3D- Eucledian metric pullbacked to all the slices Bt by the projection
P — B parallel to the T-axes. Then we define at each moment T’
Total deformation E*t(¢) = In(h=1C(¢)),
Elastic deformation E¢ = In(g~1C(¢)),
Inelastic deformation E*" = in(h™lg).
These quantities are related by

E't = ln(eEd eE"),
which in the simpliest cases (diagonal tensors, 1D case) takes the usual form
Etot — Eel + E. (BG)

To get the "space” form of the strain tensors we apply the transformation induced by the
deformation ¢ at any moment of time 7. That is we have ¢.C(¢) = h, ¢ h =1Y*h, ¢ = ¢.g
(= ¥*¢*h for a zero curvature case) for 3D-metric involved and

Total deformation et = n((xy*h)~1h),

Elastic deformation ¢® = In(q~1h),

Inelastic deformation €™ = In((x*h)~1q),

and we have, as for material strain tensors,
et = ln(eéel eéir),
which in the simpliest cases (diagonal tensors, 1D case) takes the usual form
ot = ¢! 4 €T (B.7)

We take the elastic part of Lagrangian density L. to be a scalar expression of the strain
tensor E¢ of order less or equal to two with the coefficients that may depend on the

curvature tensor R(g;) of the 3D metric g; and on the tensor K of the extrinsic curvature
of the slicing B;. As a result
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Le = /=|Glpo(Tr(e1(IG, K, R(9.) E*') + Tr(e2(|G, K, R(g)) E E*), (B.8)

where e;(|G|, K, R(gt)), i = 1,2 are elasticity tensors (moduli), depending on the
intrinsic metric G. Notice also that the volume element and the reference density pg are
also functions of G. As a result, elsticity moduli depend on the metric G even in the
simpliest case of constant isotropic homogeneous coefficients e;: e;’f = %6{6}‘ + -2-6;5{‘. In
the examples presented in this paper we restrict to the case of such elsticity tensor. More
general situation will be discussed elsewhere.
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Appendix C. Aging Rod.

In that section we consider three examples of an elasticity deformation in a homoge-
neous rod ( with the coordinate X, 0 < X < L and the time variable T') with the intrinsic
metric G evolving in time. Since we assume the homogeneity of deformation, metric G
and the elastic strain tensor E® are functions of time only.

The rod is subjected to the load F applied to its right end X = L while its left end
X =0 is fixed. For F = 0 rod undergone the natural free aging that is described by the
metric G. If F # 0, then elastic deformation is also present. Total deformation ¢*** that
is seen in experiment consists in two parts. Below we specify both of them. Inelastic,
irreversible part of deformation is described by the metric G whose evolution depends on
the load F. Elastic part that manifests itself in the difference between the total and pure
inelastic ("ground”) deformation, goes with the variable Young module E(t) that is also
specified by the metric G (see below). In an experiment it is the Young module E(t) (or
density p(T)) and the total deformation €*** (or, more exactly, deformation rate é°*) that
is seen and measured. Aging equations define evolution of the metric G and, therefore,
evolution of the Young module and the rate of deformation.

Equilibrium equations are trivially satisfied and stress tensor ¢ or deformation ¢ can
be defined from the boundary conditions (see below). Aging equations (3.7) are now
ordinary differential equations for the metric G(T) and the energy-momentum tensor

T is calculated through G and the boundary conditions for deformation or stress.

Goo O

We restrict to the case of a block-diagonal metric G = ( o Gy

) . Metric Lagrangian

is taken in the form

Lo = V=G| (F(Goo,1ge]) + Q(Goo, lge)TTK + aoTr(K?)) (C.1)
where functions F, Q of variables Gp, |g:| and the constant ap will be specified later

on.

Elastic Lagrangian has the form

Le = /IGlpof(E®) = V/=Goo f(E), (C.2)

since po = 1/"—%?‘1. Here E°! = 1in(G'¢} ?).
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Elasticity equation (for an arbitrary f(E®')) has the form

6 _ _ el )
i <\/ Coof'(E ¢1>—o (C.3)

and in our (homogeneous) case is trivially satisfied.
We will take

f(EY = ETr(Ey? = L4
2 2
and get,
v=-G
L. = YR (G g} ) (C.4)

The only component of the first Piola-Kirchoff Tensor is

oL. V-G V- el
pt= 9L _ VG0 pypay _ V=Coon B (C.5)
0¢ o1 2 9,
the last expression being true for the strain energy (C.4).
Since in general oy; = J (qS)‘lh,-s(bs P!, we have in our case
o = (¢}) 'L Pl = P (C.6)
we get Hook’s law in the form
[— Zj /— 6 Eel
o= YR () = X (C.7)
i T2 gy
the last expression being true for the strain energy (C.4).
For the second Piola-Kirchoff tensor S we have S/ = pkI 1,[1" and
@
Sag = GaiGpyS™ = Ga1Gps P . (C.8)
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Calculating the only component of Sys we get (since 011 = P})

v-Goof’

2 1 _ 2 1 y~1 = ——
S = G11¢,1011 = G11(¢,1) on = G11 2¢{ 2

(C.9)

In the ground state (GS) approximation where we put

¢1 ~ GUX

, that is assume that the elastic deformation is small in compare to the inelastic
one,

3
S =~ Gijon. (C.10)

Relation between the material and laboratory strain tensors is taken to be

et =EF TFiF7 . (C.12)

In 2D-case this reduces to

et ' =Ef, (C.13)

and, combining that formula with C.1? we get (in the case of Lagrangian C.4)

(C.14)

second formula being true in the GS-approximation (see above).
Calculating variations of L. by G%°, G'! we find (for an arbitrary strain energy f) the
Energy-momentum tensor density

VIGl. . _ [ -%ec. 0
2 T= ( 0 -3(G"¢} 3)Su = —%‘Gufb{) ' & (C.15)

As a result, aging equations (3.5-6) has the form
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0Lm _ Goo
6G% 2

6L 1
et —'2'(0“ 1S

L.,
(C.16)

To calculate variations of the metric Lagrangian and to preform the analysis of the
aging equations we employ the following notations: £ = -Gy, y = G11.

Using the fact that K} = %2, we rewrite C.1 in the form

L= V37 (F(z, )+ Qe L ao<<i’;ig—>l>2) -

= f(z,y) + a(z,y)y + a(z, )%, (C.17)

where second equality serve as the definition of functions

T, - -
f=+zyF(z,y), ¢= AY) o — o112y,

VY
Now we calculate
6L, OLn, 8L, _ ‘ ’
305 = 5 = Clogo =3°(fx + 429 + cuy?). (C.18)
Similarly, we get
0L, ) ) _ )
som = V' (fy — @t + i’ - 2(ad)). (C.18")

As a result, aging equation has the form

:L'2 (fx + Qxy + ar'gz) = %EG
i (C.19)
~y*(fy — 6% + d” — 2(ed)) = - (y1)

Now we turn to the discussion of the three situations mentioned above.

105




1. Free aging

Consider the situation where the rod of a material is not subjected to any load or
volume forces, its left end being fixed. There is no any elastic deformation in this case
(E¢t =0, ¢ = 0) but there may be an inelastic defomation (T, X) # X. This deformation
is defined from the equation

B = Zin(g7'C(9) = 0,

or C(¢) = g¢ (g is flat). Then, clearly, ¢ is defined up to an arbitrary time-dependent
rigid rotation. If we fix a point in the body and a frame in this point and require ¢ to
preserve it during the deformation, ¢ is defined uniquelly:

2
1" =GCGn, ¢"(X,T) = VGu(D)X.

Energy-momentum tensor T is zero and using notations £ = —Goo, y = G11 we get
for G the system of ODE:

. o .2 =
{ (fz + @29 + az9?) =0 (C.20)

(fy — =& + ay3]2 -2(ay)) =0

Solving the first equation for § and using it in the second equation we can rewrite this
system in the form

fy— a,,z\2 - 2ad)y

T= gz + 20\ + 20,
of (C.21)
§=Az,y) = = ,
¢ £ /@2 — 4oz f;
where function A is defined by the second equation.
We take
I
T,Y)=a +cx—1'°,a<0 )
f(z,y) =ay+c(x—1) (C.22)

q=(IO($— 1)m7 m < 1.
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Graphs of typical solutions of this system with Goo(T = 0), G11(T = 0) > 1 looks as
follows

H

1.2 -

1.1 4

\ 4

1.0 x
0 1 2

2. Rod with the fixed boundary

In this case we assume that the rod is fixed on the boundary and (due to a homogeneity
assumption) total deformation is zero: ¢!(T, X) = X,C(¢) = h, E® = %ln(G”). That does
not mean that there are now stresses in the rod: expansion deformation due to the fixed
boundary is compensated by the shrinking due to the aging process. As a result, intrinsic
stresses are developed in the body.

We have L. = v/=Goof(E®)). From this we get

1 e V -G e
o1 = P! = \/=Goof'(E®), Si1 = ‘GTgof'(E h

and the energy-momentum tensor has the form

(%\/ff(—%ln(y)) 0 >
0 -3z f'(—3in(y)).

For f(E¢) = %Eel 2 we get (substituting into (C.19)),
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(| f = R - ) - 200,
= gz + 20 + 20, '

¢ E (C.23)
o B 2(f= — 252 (In(y))?)
y=Az,y) = — —,

\ 0 £ /@ - daa(fo — E2E (In(y))?)

Graphs of typical solutions of this system with Goo(T = 0),G11(T = 0) > 1 looks as

follows

G

"

1.2 4

1.1

Comparision of these graphs shaws that during the aging of the rod with the fixed
boundary, both inelastic deformation and the decrease of the Young module happens more
slowly and their limit value is closer to the pure elastic case (in the absence of aging).
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Appendix D. Energy-momentum conservation law and the relation between

the Canonical Energy-Momentum and the Eshelby tensor.

Energy-momentum conservation law.

Local material translations X7 — X7 + §X7 generate variations of components ¢*
of deformations and their derivatives. Calculating variation of Lagrangian we get material
balance equations. Our calculations are similar to the arguments of J.Eshelby (see [8])
or [12]). We use the fact that the Lagrangian density has the form £ = V=G (Lm(G) +
L.(G, E)), where dependence of metrical and elastic parts of Lagrangian on G and K is

not specified so that all dependence on X! goes through ¢ and its gradient and through
G and its derivatives. We get

s AL 94 L oc 04, Lo dGAB Lo aG4®
§X7 T 0¢*0X7 " 84, 0X7 T 0GAB 9XJ ' 8GAP oXI

1 3 6£ L B
= 5—(5;4) 5T (;ﬂ:{'cb,./) + WG,AJB + W(WG:‘] )- (D.1)

where

6L 0oL 0 ,0L

5T,i - 3¢i Xl(ad)z)

and where variational derivative g—é has the corresponding form. When the equation
of motion (3.5-3.6) are satisfied we get the following conservation law (J =0,1,2,3)

] ac aL
%7 (c55 - %‘7’67 5 - WGﬁB) =0. (D.2)

For J = 0 we get the energy conservation law in the form

oEtt L .. 3 . 0L B > :
aT ‘a:r( £+6G;‘(‘)BG ) Zl '675'—"5 aGf}BGv“ ; (D-2)
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Notice that in our, quasistatical case, Lagrangian does not depend on ¢ . Expression

gtot =L+ agﬁ[j GAB

is the total inner energy density which includes elastic energy and the "metric energy”
which we consider as reflecting the irreversible processes that goes in the system. In the
right side we have the total flow density F. Notice that from the print of view of outside
observer there is no division of £ in the elastic and non-elastic part and, as a result,
conservation laws has their usual form ﬁ;‘—;ﬁ-"—’ﬂ = Flow. On the other hand, from the
point of view of inside observer energy splits and different terms in the balance of energy
will have special meaning (see below).

Introduce the material energy-momentum tensor

oL.
0¢*

bl = -£.8}

‘e (D.3)

Tensor b is the 4D-dynamical energy-momentum tensor P of J.Eshelby (introduced
in [9]), known mainly in its 3D-version (see (8], [23],{7] and [22]). It unifies in itself the
3D-Eshelby tensor b, the 1-form of quasi-momentum (pseudomomentum) P (see [26],[23)),
energy and the energy flow vector. In the (quasistatical) case studied here we do not have
the kinetic energy term and, as a result, L. does not depend on ¢ . It follows that b =
for J = 1,2,3 while b3 = € is the energy density. In the case of a block-diagonal metric G
we have bgg = 0 for all B=1,2,3 and bgy = —L.. Tensor b, is not symmetric in general.

Splitting £ in the first and the last term in the right side at (D.2) and regrouping
terms we get

) 0 0Ly 4B 0 0Le ~aB
dZ'U4b bJ[——aX[ <£7n6J aG"}BG’J>—6_)(-T(aG“}BG’J . (D.4)

Notice that in this formula second term on the right is related with the inhomogeneities
and the evolution of elastic moduli of the media (these moduli depends on the metric G
through the volume element and the reference density and, maybe, also through tensors
K and Ric(g:). At the same time first term is defined by the metrical part of Lagrangian
density and is related to the changes of the intrinsic metric (comp. with [7}).
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For J — 0 we get the energy conservation law (using T instead of X©)

i ("‘Ce + aﬁ'e (j)TO - ‘Cm. + &GAB + a GAB> =

oT 3%’ 0GAE 0 8G"‘B
=9 ac aLC
[ i m ~AB e AB
= — =T G G D.5
— 9X1 ( ¢°+8G"B T *°> (D3)

Here P/ is the first Piola-Kirchoff tensor. In the left side of this equation we have the
time derivative of the total energy £!°! of the system. We see that this total energy splits
into the usual part: elastic energy plus kinetic energy (first two terms), metric energy that
is defined by L., (next two terms) and the last term that is related to the time dependence
of the elastic moduli and can be called the "kinetic energy of elastic moduli”. The sum

in the right side represents the flows present in the scheme - the flow of the Piola-Kirchoff

stress tensor
I=3

oc,
;(557;45,0).1

’

and the flows related to the change of the inner metric G.
If the metric G does not depend on time and, therefore, £ = 0 and if Ric(g:) = 0, we
get the usual energy conservation law of Elasticity Theory (see [HM], Chapter 5,Sec.5):

b ¥ 0 s
I=1

If the metric G does not depend on time and, therefore, £ = 0 but Ric(g) # 0, the
energy conservation law will contain a term representing ”energy of frozen defects”.

Notice that energy conservation law appears here as the "material” and not as the
"space” law.

In the case of a block diagonal metric G and homogeneous media we have the extrinsic

curvature in the form
; 0 0
K -
( [J) ( 0 Zlo-G[J.O )

and, as a result no flow terms except usual Piola-Kirchoff flow appear in the right side in
(D.5):
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o (.. 8L 8L, =8 .
57 (5 e 6GABGAB aGABG“‘) = - (P! $io)r- (D.6)
I=1

?

Now we would like to specialize the energy conservation law in the case of the most
simple elastic Lagrangian function L, = L.(E)). In this case last term in the left side
vanishes and if, in addition, we take

Ly = F(G) + Q(C)TTK + oTr(K?) + B(TrK)?

we get

I=3
2 (£ ~[F(0) - oTr(K?) — ATrIPIV=C) = = S (Plgi)a (1)

I=1

Consider an example of the 2D-metric

_ Goo 0
al_(o Gu).

Here ug = v/—Goo, K} = (l—n(—f\/—é—%‘l We also put 3 = 0 and denote €™ = /G131, E=
(See Appendix B). We have

8 (£ = V=G(F(G) + &= ((In(G11),0)?)
( aT . ) =_56)_(_(P11 0)- (D.8)

Expression of the metric part of energy can be rewritten as follows

\/:E(F(G) + ((ln(Gu 0) )= eoV—G — ((In(G11), 0)2 = COJ—_—G“ —(5")2

=Coo
G
3?

so that finally energy balance law takes the form
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9 (€ — eovV/=G + 2g(¢'m)? 9
( T 2 ) = —6X (Pll(b}O)' (D'g)

Notice that it is natural to have eg < 0 (see above or Appendix B, where the condition
was put, notice also that a > 0). As a result the first term in the expression for the metric
energy, corresponding to the ground energy reserve, shows that as v—G grows, energy £
decreases. Second term contains derivative E so (as it is natural) that when E(t) grows,
(elastic) energy grows too and vice versa. This term describes change of elastic energy
due to the change of elastic properties of material. Finally we interpret the last term

(containing second time derivative of ¢'™) as the energy exchange due to the irreversible
deformation.

Canonical Energy-Momentum Tensor, Piola-Kirchoff Tensor and Eshelby
tensor
Now we would like to discuss the relation between the Eshelby Stress-Energy-Momentum

Tensor b that appears in the energy-momentum balance law (D.4) and the canonical
Energy-Momentum tensor defined by the relation T———”;a = % of Lagrangian field the-
ory with the 4D-metric G. Tensor T is symmetrical by definition and, in the case of a

block-diagonal metric G, has the form

Too 0
0 Ty5,1,J=1,2,3/"

On the other hand tensor b is not symmetrical and its /0 terms are non-zero even for a

block-diagonal metric. Below we will get comparision of 00 and IJ, I,J =1,2,3 terms of
these tensors.

Here we consider the Lagrangian of the form

Le=L.V=C = pof(E*, K)V=GC = \/=Goo f(E*,K) (D.10)

where

E$ T = -nkin(@)Knk, Q) =GMC(9)as +uluy

N —
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(see Appendix B). We present the strain energy function as the function of 3D-tensor
Qs = MQI instead of E: f(E®,K) = h(Q3,K) and we will calculate derivatives and
variations using this representation. Explicit dependence of elastic lagrangian on G goes
through the dependence of the factor v/—Goo and through possible dependence of h (or f)
on K.

Calculations below are done for the BD-metrics only. In this case

1
Q= §G’ACAJA, 1,J=1,2,3

As the first step we recall the calculation of the first and the second Piola-Kirchoff

tensors. We have

oc

L. 1 OC ; : . . .
Pl = oF; = 3503 GAX (hij FL6% + hjiFL65) = m(hﬁpfga{( + hyiF165), (D.11)
since
Qcp = QhGic
-and
0L. 6L B oL,
6Q3  0Qcp (0pCac) = 0QcsB Gac.
From this it follows that
0L, oL,
Q3 T 8Qsk
Recall the definition of Sap as
m  OLc oL, S
Sh=pPLFT = GF"‘F =308 -GAK (6L FR + 65 honn FR)FT =
g
BQA -G (6 Cpy +65CK) = BQA -G Ckay+ 6QA -G Cau,
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from which it follows that

aﬁc AK 8£c
3Qg G CKJGBI+6Q[B BJ (D.12)

Sry=

Now using the the fact that Q;; = C(¢) s is symmetric and that

oL, _ 0L,
QL 9Qay

Gar.

As a result we rewrite the first term in the right side of the last formula as

oL oL oL oL
= Gea- G CkiGpr = 557——GpiCks = s7—CB1Cks = 7
90cs CA KJYBI 90K s BIVYKJ 008K BIVYKJ (9Q§(

Ck,

and, as a result two terms in the expression for Sy coincide and we have

=Ck.J. (D.13)

Now we calculate the Eshelby tensor b:

by = L84 + PIFy = —L£.65 + 8

Covariant tensor b is

biy= G15b§ =—-LGrs+ SrJ (D.14)

Taking symmetrical part of all tensors here we get

by = —LeGry + Sy, (D.15)

where we denoted by A1y = ~%(A 17+ Ayr) the symmetric part of a covariant tensor
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Canonical Energy-Momentum tensor for the Lagrangian (D.10) is (I,J =1,2,3)

,/—‘_GT _ 8L _ L. 5L 6QF _
g T SGT T 6GM ezp ' 6QE 6GTY
5L, 5L,
6G[Je:z:p+ 6Q§(5?CJB+5§CIB). (D.16)

Comparing (D.13) and (D.16) we get (I,J =1,2,3):

v-G 6L, 6L

1
Tiy=5=7 *+355un=5Ar7
2 6GT7 ozp | 27U T G oz

1
b([J) + ECeGIJ. (D.17)

o |

Consider the case where L. does not depend on K and all the explicit dependence on
G is through Goo. Calculate the term

0L,
k[J - 6Gl‘] exp

of the CEM-tensor. We have

Le = poV=Gf(E?) = /=Goo[(E®).

Using
6Gag = —6G! - G4G B

we get

6v/—Goo 1 _1 6Goo 1 GroG o
5~ ~3(~Cw) T gar = 3V G

and the input into the tensor kry from the term S(X)v—GooLe is LeZ1g, Z1y =

~1GGro
2 Goo °
For a case of a block-diagonal metric G where Gor = 0,1 = 1, 2,3, tensor Zj has only
~Copr 9
00 non-zero term. As a result £ has the form 20 € 0. )
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As a result (D.17) takes (in the BD case without dependence of K) the form (1, J =
1,2,3):

V=G Try = biryy + LC1s(1 - 6769). (D.18)

This gives a relation between the Eshelby tensor and the Canonical Energy-Momentum
tensor (CEM-tensor). :

We see that symmetrical part of the Eshelby tensor (I,J = 1,2,3) is that (non-
volume) part of energy-momentum tensor where dependence on the metric G goes through
the elastic moduli (those are hidden in the definition of strain tensor E). The term k is
"flow term” in that it depends on the "space-time” (inixed) part of the metric G and has
only 00-component for the block-diagonal metric G (Robertson-Walker, for example).

If L, depends on G also through K, then the expression for tensor k becomes more
complex.
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