The following problems have been studied (1) the use of light-scattering techniques to make quasi-binary decisions about small systems in real time (2) tunneling through barrier between quantum wells (3) diffraction feedback lasers which involves the interaction of light with micro systems, including the use of spontaneous emission as a diagnostic tool.
The following problems were studied
(1) the use of light-scattering techniques to make quasi-binary decisions about small systems in real time
(2) tunneling through barrier between quantum wells
(3) Study of diffraction feedback lasers which involves the interaction of light with micro systems, including the use of spontaneous emission as a diagnostic tool.

Recent Progress on Sphere-Shell Discrimination

Significant recent progress is reported on the problem of using light scattering to discriminate between homogeneous spheres such as water droplets, and shells, such as a fluid that can be bacteriological encapsulated in a plastic shell.

This problem was considered well-nigh impossible two years ago because of the extremely rapid variation of the light scattering with index of refraction and radius, and because the light scattering measurements had only ten percent accuracy.

The first effort was a feasibility study. Would ten measurements supply enough information to discriminate, no matter how long it took. By combining Mie light scattering theory with a sophisticated decision theory analysis ten measurements were found to be adequate, but
close to 30 hours of Cray time was needed.

In the next stage, the scattering calculations were speeded up a factor of 10 by precomputing the Bessel functions used there. In the third stage, a sample data-base was set up for comparison purposes. Calculations were done in a reasonable time. But proper accuracy requires a full (not a sampled) data base. Because of the high variability of intensity with radius and index many points (indices and radii) were necessary. For the shell case, a trillion data words of 32 bits were needed. It would not matter how long it took to construct this data base, but it would take too long to search.

In the fourth stage, a compromise was made in which a complete calculation is made during the construction of the data base, but the information is stored in partial form. The information need not be stored to better than 10% accuracy. Moreover, the parameter region can be broken up into cells and one can record with a single bit if anywhere in the cell there are parameters compatible with a given intensity of scattering at a particular angle. This data base was only 200 million 8-bit bytes, and can be searched much faster than the original data base of one trillion 4 byte words. To compensate for this, after some "hits" are found in permissible cells, the numerical calculations must be repeated in the selected cells. Typically only one one-thousandth of the cells are eligible. Thus during the part of the calculation done on an experimental droplet, the calculation time was reduced by a factor one-thousand.

In the fifth and current stage, we have examined empirically, the extent to which a typical spherical droplet is compatible with a spherical data base, and the extent to which a shell is compatible with the same sphere data base. We found that the shell usually had one or more errors with respect to a sphere data base, whereas sphere typically had none. Thus a preliminary judgement can be made using the much smaller spherical data base alone. Only if
one wishes, for a shell to determine its parameters is the shell database needed. The time for
the preliminary judgement was 2 seconds on Sindoni’s fast SGI machine at Edgewood arsenal.

Tunneling through quantum barriers

Tunneling through double barriers or heterostructures is important in high frequency
electronics. Inelastic tunneling with phonon interactions requires non-perturbative techniques.
We have developed a solvable model based on space independent interactions, and a Green’s
function method that permits space dependence. Arbitrary barrier structures are permitted.

Using the theory we developed, we have studied the following subject:
(a) the electron-phonon scattering in a resonant tunneling device;
(b) the electron transmission above a quantum well with dissipation;
(c) the effects of an applied infrared laser on electron tunneling;
(d) the spatial behavior of high-frequency tunneling current;
(e) the time response of the tunneling current to an applied pulse.

DFB (Diffraction Feedback) Semiconductor Lasers

We have solved the stationary nonuniform mode equations and obtained the main
mode and corresponding gain profile for a DFB lasers. With the above gain we have calcu-
lated all “linear” (decaying) modes of DFB laser and have also obtained the gain differential
between the main and the side modes of the DFB laser.

We have developed a general theory for noise fluctuations in open optical systems
with gain or loss based on an expansion in terms of nonorthogonal quasimodes. Below
threshold, this method is formally equivalent to use of Green's matrices. The modes and the fluctuation spectra above threshold for a DFB laser have been calculated including gain saturation effects.

List of Publications


Personnel

The following people have received at least partial support from this grant.

Research Associates: Wei Cai, Xiaoshen Li, Po Hu, Boris Yudanin

Students: Bin Luo, Roberta Marani