Shear Rate Determination in a Concentric Cylinder Viscometer

H.H. Billon
Shear Rate Determination in a Concentric Cylinder Viscometer

H.H. Billon

Ship Structures and Materials Division
Aeronautical and Maritime Research Laboratory

DSTO-GD-0093

ABSTRACT

A method is described for the determination of the true shear rate in a concentric cylinder viscometer. A computer program based on the MacSporran technique is used. The program is tested on model as well as real fluids and is shown to be satisfactory. Shear rate determination in yield stress and time-dependent fluids is also discussed.
Shear Rate Determination in a Concentric Cylinder Viscometer

Executive Summary

Materials with a complex rheology are often encountered during investigation of the flow behaviour of explosives. These materials may be studied with a concentric cylinder rotational viscometer. This type of viscometer allows ease of sample insertion and ease of cleaning after use.

However, there is a problem associated with determining the true shear rate in a concentric cylinder viscometer. This is because the shear rate usually has to be calculated using a rheological model that describes the fluid under investigation. This fluid model is often unknown. In this paper a computational method is described. This method permits determination of the true shear rate from experimental data without recourse to a fluid model.

The method consists of determining the shear rates from the measured values of the shear stress and angular velocity. The shear rate at each data point is determined from an integral equation using a technique outlined by MacSporran. A computer program based on this technique was written and tested on model fluids and real fluids and shown to be satisfactory. Shear rate determination in yield stress and time-dependent fluids is also discussed.
Contents

1. INTRODUCTION ... 1

2. DESCRIPTION OF THE PROBLEM .. 1

3. DETERMINATION OF THE SHEAR RATE BY SOLUTION OF AN INTEGRAL EQUATION
 3.1 Description of the Method ... 2
 3.2 The Computer Program .. 5
 3.3 Yield Stress Fluids .. 6

4. REFERENCES .. 7
1. Introduction

In examining the flow behaviour of explosives it is often necessary to make an assessment of mixtures that are rheologically complex. An example is the suspension of one explosive in another, as occurs with suspensions of either RDX [1,2] or TATB [3] in molten TNT. At AMRL such studies are carried out in a Haake RV2 viscometer which operates on the concentric cylinder principle [4]. Such geometry allows ease of sample insertion and, after use, ease of cleaning. However, there is a problem associated with determining the true shear rate at the spinning rotor. This arises because the true shear rate usually has to be calculated using a rheological model that describes the fluid under investigation. This fluid model is often unknown.

In this paper a computational method is described. This method determines true shear rates from experimental data without recourse to a fluid model.

2. Description of the Problem

For any fluid the true shear rate \(\dot{\gamma} \) cannot easily be calculated unless there is only a very small gap between the bob and the cup. In this case the shear rate approaches a value given by

\[
\dot{\gamma} = \frac{R_1 \Omega}{R_2 - R_1}
\]

(1)

Where \(\dot{\gamma} \) is the shear rate, \(R_1 \) is the bob radius, \(R_2 \) is the cup radius and \(\Omega \) is the angular velocity of the bob. This relationship is independent of fluid properties.

Experimentally, however, it is impractical to use extremely small gaps, especially when suspensions of large particles are being investigated [4].

The problems associated with the determination of true shear rate are further exacerbated by the fact that many widely promoted, commercially available software packages sold by instrument manufacturers for automatic determination of shear rate erroneously employ the equation:

\[
\dot{\gamma} = 2\Omega s^2 / (s^2 - 1)
\]

(2)

which is strictly only valid for the determination of shear rates in Newtonian fluids. Here \(s \) is the ratio of cup to bob radii. This equation is a special case of a more general equation

\[
\dot{\gamma} = \frac{2(\Omega / n)^{2'}}{(s^{2'} - 1)}
\]

(3)
which is valid for any power-law fluid. For a Newtonian fluid, $n = 1$.

Not all fluids can be described as "power-law fluids" whose behaviour follows equation (3). Some fluids exhibit a yield stress which can lead to incomplete shearing in the annular gap of the viscometer; a plot of measured rotational speed versus shear rate cannot always be described by a simple model and this is a further complication [6].

For some yield stress fluids the shear rate is given by a relationship such as

$$
\dot{\gamma} = \frac{1 - \left(\frac{R_1}{R_2}\right)^2}{1 - \left[\frac{1}{\ln\left(\frac{R_2}{R_1}\right)^2 - 1}\right]\ln\left(\frac{R_2}{R_1}\right)^2}
$$

(4)

These are called "Bingham plastics" [5]. Here $\dot{\gamma}_a$ is the apparent shear rate and R_y is the yield radius.

Krieger and Elrod [7] express the shear rate in a concentric cylinder viscometer in the form of an Euler-Maclaurin series,

$$
\dot{\gamma} = \left(\frac{\Omega}{\ln\epsilon}\right) \left[1 + \ln\epsilon \left(\frac{d\ln\Omega}{d\ln\tau}\right)^{-1} \left(\frac{(\ln\epsilon)^2}{3\Omega}\right) \left(\frac{d^2\Omega}{d(\ln\tau)^2}\right)^{-2}\right]...
$$

(5)

Such an expression does not require any assumptions to be made about the fluid model and may be used as the basis for a technique to determine the true shear rate in a concentric cylinder viscometer. This method would require the determination of derivatives in the torque versus rotation speed curve that is obtained as raw data. Techniques involving differentiation have been used by e.g. Nguyen et al. [6] and Krieger and Maron [9]. However, differentiation of discrete data can be noisy and inaccurate, particularly when high order derivatives must be determined. This problem could be overcome if a technique involving integration could be used.

3. Determination of the Shear Rate by Solution of an Integral Equation

3.1 Description of the Method

The approach followed is outlined by MacSporran in [8]. The shear rate is evaluated by solving the integral relationship

$$
\Omega = 0.5 \int_{\tau_1}^{\tau_2} \left(\frac{f(\tau)}{\tau}\right) d\tau
$$

(6)

Here τ_1 and τ_2 are the shear stresses at the inner and outer cylinders, respectively.
Experimental data is obtained in the form \((\Omega_n, \tau_n)\), where \(\Omega_n\) is the angular velocity of the bob and \(\tau_n\) is the shear stress at either the bob or the cup. In this case \(\tau_n\) will be the stress at the bob. Therefore the problem is to determine the shear rates \(f(\tau_n)\) at each of the points \((\Omega_n, \tau_n)\) by solution of the equation

\[
\Omega(\tau_n) = \int_{0}^{\tau_n} w(\tau) f(\tau) d\tau
\] (7)

Here \(c_n = \frac{\tau_n}{\varepsilon^2}\) represents the shear stress at the cup and \(w(\tau) = \frac{1}{2\tau}\) is a 'weighting function'.

The integral in equation (7) is regarded as the contribution from a number of strips in \((\tau, f(\tau))\) space. For example, suppose we are testing a fluid in a viscometer that possesses a cup to bob radius ratio of \(\varepsilon = 1.2\) and that we obtain the following \((\Omega, \tau)\) measurements:

\((1.4382 \times 10^{-2}, 1), (5.7527 \times 10^{-2}, 2), (0.1294, 3), (0.2301, 4)\). (See Table 1).

The angular velocity at \(\tau_n = 4\) Pa would consist of contributions from the following strips:

- strip 1: \(2.78\) Pa \(\leq \tau \leq 3\) Pa
- strip 2: \(3\) Pa \(\leq \tau \leq 4\) Pa

Here \(2.78\) Pa is the stress at the cup when the stress at the bob is \(4\) Pa (i.e. \(4\) Pa \(\times 1.2\)).

In general, for a bob stress \(\tau = \tau_n\), the strips would possess the integration limits \(c_n\) and \(\tau_n\), where the \(\tau_i\) lie between \(c_n\) and \(\tau_n\).

Table 1: An explanation of the method of determining the number of strips for each data point.

<table>
<thead>
<tr>
<th>Measured (\Omega) (Rad/s)</th>
<th>Measured (\tau) (at the bob) (Pa)</th>
<th>(\tau) at the cup (Pa)</th>
<th>No. of data points with bob (\tau) values lying between the cup and bob (\tau) values of this data point.</th>
<th>No. of strips for this data point.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4382 (\times 10^{-2})</td>
<td>1</td>
<td>0.69</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5.7527 (\times 10^{-2})</td>
<td>2</td>
<td>1.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.1294</td>
<td>3</td>
<td>2.08</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.2301</td>
<td>4</td>
<td>2.78</td>
<td>1*</td>
<td>2</td>
</tr>
</tbody>
</table>

* Meaning the data point for which the measured \(\tau\) value is 3 Pa. Because \(2.78 < 3 < 4\).
The shear rate \(f(\tau) \) is approximated in each strip by a cubic polynomial which
interpolates to \(f(\tau) \) at four successive data points. Modifications are necessary to
the interpolation points at the extremities of the data set [8]. In any event, the strip
contribution, which is of the form \(\int_{t_1}^{t_2} w(\tau) f(\tau) d\tau \), is rewritten (after approximating
the shear rate by a cubic polynomial \(P_3(x) \)) in the form:

\[
\int_{t_p}^{t_p} w(x) P_3(x) dx = \sum_{l=j-2}^{l-3} W_i f_i
\]

where \(x \) is the shear stress, \(x_p \) and \(x_q \) are the strip integration limits and the \(f_i \) are the
desired shear rate values. Details of the method are given by MacSporran [8]. A
brief summary is given below.

After summing contributions for all strips (for a given data point), the following
expression is obtained for \(\Omega_n \):

\[
\Omega_n = \sum_{k=n}^{k=n+1} \sum_{l=n}^{l=n+1} W_i f_i = \sum_{l=j-2}^{l-3} W_i f_i
\]

Here \(W_i = \sum_{k=n}^{k=n+1} W_i \) are the composite weights.

The integration weights for the individual strips are obtained from:

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
x_1 & x_2 & x_3 & x_4 \\
(x_1)^3 & (x_2)^3 & (x_3)^3 & (x_4)^3 \\
(x_1)^2 & (x_2)^2 & (x_3)^2 & (x_4)^2 \\
1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
W_1 \\
W_2 \\
W_3 \\
W_4
\end{bmatrix} = \begin{bmatrix}
M_1 \\
M_2 \\
M_3 \\
M_4
\end{bmatrix}
\]

Here \(M_r = \int_{x_p}^{x_q} x^{-1} w(x) dx \).

Once the integration weights for the individual strips have been found they are
used to calculate the composite weights. The shear rates \(f_n = f(\tau_a) \) for the data
points 1 to \(N \) are calculated from:

\[
\begin{bmatrix}
W_{11} & W_{12} & \rightarrow & W_{1N} & f_1 \\
W_{21} & W_{22} & \rightarrow & W_{2N} & f_2 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
W_{N1} & W_{N2} & \rightarrow & W_{NN} & f_N
\end{bmatrix} = \begin{bmatrix}
\Omega_1 \\
\Omega_2 \\
\Omega_N
\end{bmatrix}
\]
3.2 The Computer Program

A BASIC computer program (called "SHEARE.RAT") has been written to perform the above calculations. The program requires input of the radius ratio for the concentric cylinder viscometer. The shear stress values at the viscometer bob and the rotation speed values are also input. The number of strips for each data point are determined by finding all the bob shear stress values that lie between the cup shear stress value and bob shear stress value for the data point. The program then determines the moments and weights.

In order to test the program, \((\Omega_n, \tau_n)\) pairs were generated for a power law fluid with a constitutive equation of the form \(\tau = 3\dot{\gamma}^{0.5}\). These \((\Omega_n, \tau_n)\) values were then used as 'data' for the program. The results are presented in Table 2. In this case perfect agreement was achieved between the actual shear rates and the shear rates as calculated by "SHEARE.RAT". Another test was conducted using the solids GR-S latex data of Krieger and Maron [9] and these results are presented in Table 3. For comparison, the shear rates as determined by the Tanner and Williams method [10, 11] as well as by MacSporran [8] using the present method, are tabulated. Very good agreement is again obtained.

<table>
<thead>
<tr>
<th>(\tau) (Pa)</th>
<th>(\Omega) (Rad/s)</th>
<th>(\dot{\gamma}) Actual (s(^{-1}))</th>
<th>(\dot{\gamma}) Calculated (s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1.4382 \times 10^{-2})</td>
<td>0.1111</td>
<td>0.1111</td>
</tr>
<tr>
<td>2</td>
<td>(5.7527 \times 10^{-2})</td>
<td>0.4444</td>
<td>0.4444</td>
</tr>
<tr>
<td>3</td>
<td>0.1294</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>4</td>
<td>0.2301</td>
<td>1.778</td>
<td>1.778</td>
</tr>
<tr>
<td>5</td>
<td>0.3595</td>
<td>2.778</td>
<td>2.778</td>
</tr>
<tr>
<td>6</td>
<td>0.5177</td>
<td>4.000</td>
<td>4.000</td>
</tr>
<tr>
<td>7</td>
<td>0.7047</td>
<td>5.444</td>
<td>5.444</td>
</tr>
<tr>
<td>8</td>
<td>0.9204</td>
<td>7.111</td>
<td>7.111</td>
</tr>
<tr>
<td>9</td>
<td>1.1649</td>
<td>9.000</td>
<td>9.000</td>
</tr>
<tr>
<td>10</td>
<td>1.4381</td>
<td>11.11</td>
<td>11.11</td>
</tr>
<tr>
<td>11</td>
<td>1.7402</td>
<td>13.44</td>
<td>13.44</td>
</tr>
<tr>
<td>12</td>
<td>2.0710</td>
<td>16.00</td>
<td>16.00</td>
</tr>
<tr>
<td>13</td>
<td>2.4305</td>
<td>18.78</td>
<td>18.78</td>
</tr>
<tr>
<td>14</td>
<td>2.8188</td>
<td>21.78</td>
<td>21.78</td>
</tr>
<tr>
<td>15</td>
<td>3.2359</td>
<td>25.00</td>
<td>25.00</td>
</tr>
</tbody>
</table>
Table 3: Shear rates calculated by the Tanner and Williams method [10, 11], by MacSporran [8] and by "SHEARE.RAT" for the solids GR-S latex data of Krieger and Maron [9].

<table>
<thead>
<tr>
<th>τ (Pa)</th>
<th>Ω (Rad/s)</th>
<th>(\dot{\gamma}) Tanner & Williams (s(^{-1}))</th>
<th>(\dot{\gamma}) MacSporran (s(^{-1}))</th>
<th>(\dot{\gamma}) Present Work (s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.807</td>
<td>0.03670</td>
<td>0.7283</td>
<td>0.7211</td>
<td>0.7211</td>
</tr>
<tr>
<td>5.706</td>
<td>0.1310</td>
<td>2.611</td>
<td>2.528</td>
<td>2.528</td>
</tr>
<tr>
<td>9.536</td>
<td>0.6020</td>
<td>11.43</td>
<td>11.40</td>
<td>11.40</td>
</tr>
<tr>
<td>15.24</td>
<td>1.940</td>
<td>35.60</td>
<td>35.81</td>
<td>35.81</td>
</tr>
<tr>
<td>19.03</td>
<td>3.120</td>
<td>57.61</td>
<td>57.17</td>
<td>57.17</td>
</tr>
<tr>
<td>22.83</td>
<td>4.660</td>
<td>85.33</td>
<td>85.66</td>
<td>85.66</td>
</tr>
<tr>
<td>26.65</td>
<td>6.410</td>
<td>116.7</td>
<td>116.3</td>
<td>116.2</td>
</tr>
<tr>
<td>30.45</td>
<td>8.330</td>
<td>150.9</td>
<td>151.1</td>
<td>151.1</td>
</tr>
<tr>
<td>34.25</td>
<td>10.45</td>
<td>187.5</td>
<td>188.1</td>
<td>188.1</td>
</tr>
<tr>
<td>38.07</td>
<td>12.51</td>
<td>222.6</td>
<td>220.4</td>
<td>220.7</td>
</tr>
<tr>
<td>53.27</td>
<td>21.70</td>
<td>385.4</td>
<td>387.2</td>
<td>387.0</td>
</tr>
<tr>
<td>68.48</td>
<td>32.20</td>
<td>568.9</td>
<td>563.1</td>
<td>563.8</td>
</tr>
</tbody>
</table>

The program was run on an IBM-compatible PC (80486 processor and 640k base memory) and it was found that there were restrictions, due to memory, on the number of data points that could be processed. The maximum number of points that could be analysed at a time was seventeen. The program required 4 seconds to analyse seventeen points. Improvements in the software and computer memory would increase the efficiency of this program.

3.3 Yield Stress Fluids

The program can be used to determine the shear rates for many types of fluids once adequate rotation speed and torque data have been obtained. However, care must be exercised when dealing with plastic fluids i.e. those exhibiting a yield stress. In such cases the integration method cannot always be used if a fixed viscometer radius ratio is assumed.

If it is necessary to determine the shear rate in a non time-dependent yield stress fluid, the following procedure is recommended. The yield stress must first be accurately determined. A simple method for directly measuring the yield stress is described in [12]. The next step is to determine whether there is partial or complete shearing in the viscometer gap. Partial shear will occur when \(\tau/\varepsilon^2 < \dot{\gamma} < \tau_1 \) and shear will only occur between the viscometer bob and a cylindrical surface at a radial distance \(R_p = R\left(\frac{\tau_1}{\tau_1}\right)^{0.5} \). This distance is clearly less than the width of the entire gap. For the case of partial shear the shear rate may be precisely determined by means of the following equation [6].

\[
\dot{\gamma}_1 = 2\Omega \left(\frac{d \ln \tau_1}{d \ln \Omega} \right)^{-1}
\]
The derivative may be determined e.g. by graphical differentiation of a double log plot of the original stress versus rotation speed data. For the completely sheared situation of a time-independent yield stress fluid, the shear rate may be determined by means of the described computer program.

The case of time-dependent fluids that also exhibit a yield stress is much more complex. An approximate procedure for shear rate determination in this case is presented in [6].

4. References

Shear Rate Determination in a Concentric Cylinder Viscometer

Horace Billon

AUSTRALIA

TASK SPONSOR: DSTO

DEFENCE ORGANISATION

Defence Science and Technology Organisation

Chief Defence Scientist
FAS Science Policy
AS Science Corporate Management
Counsellor Defence Science, London (Doc Data Sheet only)
Counsellor Defence Science, Washington
Scientific Adviser to MRDC Thailand (Doc Data Sheet Only)
Senior Defence Scientific Adviser/Scientific Adviser Policy and Command (shared copy)
Navy Scientific Adviser (3 copies Doc Data Sheet and one copy of the distribution list)
Scientific Adviser - Army (Doc Data Sheet and distribution list only)
Air Force Scientific Adviser
Director Trials

Aeronautical and Maritime Research Laboratory

Director (AMRL only)
Chief, Weapons Systems Division
RLLWS
RLMPP
Mr R. Parker
Mr H. Billon

DSTO Library

Library Fishermens Bend
Library Maribyrnong
Library DSTOS (2 copies)
Library, MOD, Pyrmont (Doc Data Sheet only)

Defence Central

OIC TRS, Defence Central Library
Officer in Charge, Document Exchange Centre (DEC), 1 copy
DEC requires the following copies of public release reports to meet exchange agreements under their management:
*US Defence Technical Information Centre, 2 copies
*UK Defence Research Information Centre, 2 copies
*Canada Defence Scientific Information Service, 1 copy
*NZ Defence Information Centre, 1 copy
National Library of Australia, 1 copy

Defence Intelligence Organisation
Library, Defence Signals Directorate (Doc Data Sheet only)
Army

Director General Force Development (Land) (Doc Data Sheet only)
ABCA Office, G-1-34, Russell Offices, Canberra (4 copies)

Navy

Director General Force Development (Sea), (Doc Data Sheet only)

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering
Senior Librarian, Hargrave Library, Monash University
Librarian Flinders University

OTHER ORGANISATIONS

NASA (Canberra
AGPS

ABSTRACTING AND INFORMATION ORGANISATIONS (Public Release only)
INSPEC: Acquisitions Section Institution of Electrical Engineers
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
American Society for Metals
Documents Librarian, The Center for Research Libraries, US

INFORMATION EXCHANGE AGREEMENT PARTNERS (PUBLIC RELEASE ONLY)

Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and Technology, US

SPARES (10 copies)
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)

2. TITLE
Shear Rate Determination in a Concentric Cylinder Viscometer

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT CLASSIFICATION)
 - Document: (U)
 - Title: (U)
 - Abstract: (U)

4. AUTHOR(S)
H.H. Billon

5. CORPORATE AUTHOR
Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Vic 3001

6a. DSTO NUMBER
DSTO-GD-0093

6b. AR NUMBER
AR-009-701

6c. TYPE OF REPORT
General Document

7. DOCUMENT DATE
July 1996

8. FILE NUMBER
510/207/0291

9. TASK NUMBER
DST 94/229

10. TASK SPONSOR
DSTO

11. NO. OF PAGES
10

12. NO. OF REFERENCES
12

13. DOWNGRADING/DELIMITING INSTRUCTIONS

14. RELEASE AUTHORITY
Chief, Weapons Systems Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT
Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE, DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600

16. DELIBERATE ANNOUNCEMENT
No limitations

17. CASUAL ANNOUNCEMENT
Yes

18. DEFTEST DESCRIPTORS
Shear Rate; Viscometers; Computer Programs

19. ABSTRACT
A method is described for the determination of the true shear rate in a concentric cylinder viscometer. A computer program based on the MacSporran technique is used. The program is tested on model as well as real fluids and is shown to be satisfactory. Shear rate determination in yield stress and time-dependent fluids is also discussed.

Page classification: UNCLASSIFIED