ON EMPIRICAL BAYES SIMULTANEOUS SELECTION PROCEDURES FOR COMPARING NORMAL POPULATIONS WITH A STANDARD

by

Shanti S. Gupta and TaChen Liang
Purdue University and Wayne State University

Technical Report #96-25C

PURDUE UNIVERSITY

CENTER FOR STATISTICAL DECISION SCIENCES AND DEPARTMENT OF STATISTICS

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

DTIC QUALITY INSPECTED
ON EMPIRICAL BAYES SIMULTANEOUS SELECTION PROCEDURES FOR COMPARING NORMAL POPULATIONS WITH A STANDARD

by

Shanti S. Gupta and TaChen Liang

Purdue University and Wayne State University

Technical Report #96-25C

Department of Statistics
Purdue University
West Lafayette, IN USA

May 1996
ON EMPIRICAL BAYES SIMULTANEOUS SELECTION PROCEDURES FOR COMPARING NORMAL POPULATIONS WITH A STANDARD

by

Shanti S. Gupta and TaChen Liang

Department of Statistics and Department of Mathematics

Purdue University and Wayne State University

West Lafayette, IN 47907 and Detroit, MI 48202

Abstract

In this paper, we derive statistical selection procedures to partition \(k \) normal populations into "good" or "bad" ones, respectively, using the nonparametric empirical Bayes approach. The relative regret risk of a selection procedure is used as a measure of its performance. We establish the asymptotic optimality of the proposed empirical Bayes selection procedures and investigate the associated rates of convergence. Under a very mild condition, the proposed empirical Bayes selection procedures are shown to have rates of convergence of order close to \(O(k^{-\frac{1}{2}}) \) where \(k \) is the number of populations involved in the selection problem. With further strong assumptions, the empirical Bayes selection procedures have rates of convergence of order \(O(k^{-\frac{\alpha(r-1)}{2r+1}}) \), where \(1 < \alpha < 2 \) and \(r \) is an integer greater than 2.

AMS 1991 Subject Classification: 62F07, 62C12.

Keywords and Phrases: Asymptotically optimal, comparison with a standard, empirical Bayes, rate of convergence, simultaneous selection, relative regret risk.

*This research was supported in part by US Army Research Office, Grant DAAH04-95-1-0165 at Purdue University.
1. Introduction

Consider \(k \) independent normal populations \(\pi_i \equiv N(\theta_i, \sigma^2) \), \(i = 1, \ldots, k \), with unknown means \(\theta, \ldots, \theta_k \), respectively, and a common variance \(\sigma^2 \). Let \(\theta_0 \) denote a standard or a control. A population \(\pi_i \) is said to be good if \(\theta_i \geq \theta_0 \), and bad otherwise. In certain practical situations, one may be interested in the selection of all good populations while excluding all bad populations. For example, let \(\theta_i \) denote the quality level of a newly developed manufacturing process \(\pi_i, i = 1, \ldots, k \), and \(\theta_0 \) be a specified standard level. Then, one may be interested in finding out all the potential manufacturing processes for further investigation. The preceding described selection goal can also be viewed as a first step of a selection problem in which the selection goal is to select the best from among \(k \) populations provided that the best is at least as good as the specified standard level.

In the literature, the problem of comparing normal populations with a control has been extensively studied by many authors. To mention a few, for example, Dunnett (1955), Gupta and Sobel (1958) and Tong (1969) have proposed and studied some natural selection procedures. Lehmann (1961) and Spjøtvoll (1972) have treated the problem using methods from the theory of testing hypotheses. Randles and Hollander (1971), Miescke (1981) and Gupta and Miescke (1985) have derived optimal procedures via minimax or \(\Gamma \)-minimax approaches.

The purpose of this paper is to derive statistical procedures which partition the \(k \) normal populations into "good" and "bad" ones, respectively, using the empirical Bayes approach. It is assumed that the parameter \(\theta_0 \) is the value of a specified standard level, and therefore is assumed to be known.

The paper is organized as follows. In Section 2, the statistical model of the selection problem is introduced and a Bayes selection procedure for the selection problem is also derived. As seen in the later part of the paper, the Bayes selection procedure depends on the prior distribution. When the prior distribution is unknown, the Bayes selection procedure cannot be implemented. In such a situation, using the empirical Bayes approach and by mimicking the behavior of the Bayes selection procedure, we have developed empirical Bayes selection procedures in Section 3. The relative regret risk of an empirical Bayes selection procedure is used as a measure of the performance of this empirical Bayes selec-
tion procedure. We establish the asymptotic optimality of the proposed empirical Bayes selection procedures in Section 4. The rate of convergence of the relative regret risks is studied in Section 5. Under a very mild condition, the proposed empirical Bayes selection procedures have rates of convergence of order close to $O(k^{-1/2})$. With some further assumptions, the empirical Bayes selection procedures have rates of convergence of order $O(k^{-\alpha}r^{-1})$ where $1 < \alpha < 2$ and $r > 2$ is an integer.

2. The Selection Problem and A Bayes Selection Procedure

Let X_{i1}, \ldots, X_{im} be a sample of size m taken from a normal population $\pi_i \equiv N(\theta_i, \sigma^2)$, $i = 1, \ldots, k$. All samples are assumed to be mutually independent. Let $X_i = \frac{1}{m} \sum_{j=1}^{m} X_{ij}$ and when $m \geq 2$, let $W_k = \frac{1}{k(m - 1)} \sum_{i=1}^{k} \sum_{j=1}^{m} (X_{ij} - X_i)^2$. Note that given $\theta_i, X_i \sim N(\theta_i, \frac{\sigma^2}{m})$, $k(m - 1) W_k / \sigma^2 \sim \chi^2(k(m - 1))$, and X_1, \ldots, X_k and W_k are mutually independent.

Let $\Omega = \{\theta = (\theta_1, \ldots, \theta_k) | -\infty < \theta_i < \infty, i = 1, \ldots, k\}$ be the parameter space, and let $A = \{a = (a_1, \ldots, a_k) | a_i = 0, 1, i = 1, \ldots, k\}$ be the action space. When action a is taken, it means that population π_i is selected as good if $a_i = 1$, and excluded as bad if $a_i = 0$. For each $\theta \in \Omega$ and $a \in A$, the loss function $L(\theta, a)$ is defined to be

$$L(\theta, a) = \sum_{i=1}^{k} \ell(\theta_i, a_i)$$

(2.1)

and

$$\ell(\theta_i, a_i) = a_i(\theta_0 - \theta_i)I(\theta_0 - \theta_i) + (1 - a_i)(\theta_i - \theta_0)I(\theta_i - \theta_0),$$

(2.2)

where $I(x) = 1(0)$ if $x \geq 0$ (otherwise). Note that in (2.2), the first term is the loss due to selecting π_i as good when $\theta_i < \theta_0$, and the second term is the loss due to wrongly excluding π_i as bad when $\theta_i \geq \theta_0$.

It is assumed that for each i, the parameter θ_i is a realization of a random variable Θ_i; and $\Theta_1, \ldots, \Theta_k$ are independently distributed with a common but unknown prior distribution G. Under the preceding assumption, X_1, \ldots, X_k and W_k are mutually independent, and X_1, \ldots, X_k are identically distributed, having a marginal pdf $f(x) = \int f(x|\theta, \sigma^2) dG(\theta)$, where $f(x|\theta, \sigma^2)$ denotes the pdf of a normal $N(\theta, \frac{\sigma^2}{m})$ distribution.
Let $X_i = (X_{i1}, \ldots, X_{im}), i = 1 \ldots k$ and $X = (X_1, \ldots, X_k)$. Let \mathcal{X} be the sample space of X. A selection procedure $\delta = (\delta_1, \ldots, \delta_k)$ is defined to be a mapping from the sample space \mathcal{X} into the product space $[0, 1]^k$, such that for each $i = 1, \ldots, k$, $\delta_i(x)$ is the probability of selecting population π_i as a good population when $X = x$ is observed. Let \mathcal{D} be the class of all selection procedures. Also let $R(G, \delta)$ denote the Bayes risk associated with the selection procedure δ. It is assumed that $E[|\theta_i|] < \infty$ so that the Bayes risk $R(G, \delta)$ is finite. By Fubini's theorem, a straightforward computation yields that the Bayes risk $R(G, \delta)$ can be expressed as:

$$R(G, \delta) = \sum_{i=1}^{k} R_i(G, \delta_i) \tag{2.3}$$

and

$$R_i(G, \delta_i) = \int_{\mathcal{X}} [\theta_0 - \varphi_i(\bar{x}_i)]\delta_i(\bar{x}) \prod_{j=1}^{k} f_j(x_j) d\bar{x} + C \tag{2.4}$$

where $\varphi_i(\bar{x}_i) = E[\Theta_i|X_i = \bar{x}_i]$: the posterior mean of Θ_i given $X_i = \bar{x}_i$; $f_j(x_j)$: the marginal joint pdf of X_j, and $C = \int_{\theta_0}^{\infty} (\theta - \theta_0) dG(\theta)$. Thus, a Bayes selection procedure $\delta_B = (\delta_{B1}, \ldots, \delta_{Bk})$, which minimizes the Bayes risks among all selection procedures in \mathcal{D}, is clearly given by: For each $i = 1, \ldots, k$ and $x \in \mathcal{X}$,

$$\delta_{Bi}(x) = \begin{cases} 1 & \text{if } \varphi_i(\bar{x}_i) \geq \theta_0, \\ 0 & \text{otherwise}. \end{cases} \tag{2.5}$$

Algebraic computation yields that

$$\varphi_i(\bar{x}_i) \equiv \bar{x}_i + \frac{\sigma^2}{m} f^{(1)}(x_i)/f(x_i) \equiv \psi_i(x_i), \tag{2.6}$$

where $f(x_i)$ is the marginal pdf of the sample mean X_i and $f^{(1)}(x_i)$ denotes its corresponding derivative. That is, the posterior mean $\varphi_i(\bar{x}_i)$ depends on \bar{x}_i only through the sample mean value x_i. From (2.5) and (2.6), the i-th component Bayes selection procedure δ_{Bi} depends on x only through x_i. Therefore, (2.5) can be expressed as
\[
\delta_{B_1}(x_i) = \begin{cases}
1 & \text{if } \psi_i(x_i) \geq \theta_0 \\
0 & \text{otherwise}.
\end{cases}
\]

where \(T_i(x_i) = \frac{\sigma_i^2}{m} f^{(1)}(x_i) + (x_i - \theta_0) f(x_i). \) Note that \(\psi_1(\cdot) = \ldots = \psi_k(\cdot) \) and \(T_1(\cdot) = \ldots = T_k(\cdot) \) since \(X_1, \ldots, X_k \) are identically distributed.

One can see that the posterior mean \(\psi_i(x_i) \) is a continuous function in \(x_i \); also \(\psi_i(x_i) \) is strictly increasing in \(x_i \) if the prior distribution \(G \) is non-degenerate. Let \(A_1 = \{ x \mid \psi_i(x) < \theta_0 \} \) and \(A_2 = \{ x \mid \psi_i(x) \geq \theta_0 \} \). Define

\[
a^* = \begin{cases}
sup A_1 & \text{if } A_1 \neq \phi, \\
-\infty & \text{if } A_1 = \phi.
\end{cases}
\]

Note that if \(A_2 \neq \phi \) and \(A_1 \neq \phi \), then \(-\infty < a^* < \infty\); and if \(A_2 = \phi, a^* = \infty \). In terms of \(a^* \), the Bayes selection procedure \(\delta_B \) can be written as:

\[
\delta_{B_1}(x_i) = \begin{cases}
1 & \text{if } x_i \geq a^* \\
0 & \text{otherwise}.
\end{cases}
\]

Finally, the minimum Bayes risk is:

\[
R(G, \delta_B) = \sum_{i=1}^{k} R_i(G, \delta_{B_i}),
\]

and

\[
R_i(G, \delta_{B_i}) = \int [\theta_0 - \psi_i(x_i)] \delta_{B_i}(x_i) f(x_i) dx_i + C.
\]

In the following analysis, we consider those prior distributions \(G \) such that \(\lim_{x_i \to -\infty} \psi_i(x_i) < \theta_0 < \lim_{x_i \to +\infty} \psi_i(x_i) \). Hence \(A_1 \neq \phi \) and \(A_2 \neq \phi \). Therefore, \(-\infty < a^* < \infty \).

3. Empirical Bayes Selection Procedures

Since the prior distribution \(G \) is unknown, it is not possible to implement the Bayes selection procedure \(\delta_B \) for the selection problem at hand. However, according to the statistical model described previously, the \(k \) components share certain similarity. Therefore,
the empirical Bayes approach is employed to incorporate information from among the \(k \) populations to provide robust selection procedures for each of the \(k \) component selection problems.

The proposed empirical Bayes selection procedures mimick the behavior of the Bayes selection procedure \(\delta_B \). For this, the forms of \((2.5') \) and \((2.5'') \) provide important motivation for the construction of the empirical Bayes selection procedures. To construct the empirical Bayes selection procedures, first, we need to have estimates for \(f(x) \) and \(f^{(1)}(x) \).

For an integer \(r > 2 \) and for each \(i = 0, 1 \), let \(\mathcal{K}_i \) be the class of all Borel-measurable bounded functions vanishing outside the interval \((0,1)\), such that for \(k_0 \in \mathcal{K}_0 \),

\[
\int_0^1 y^j k_0(y) dy = \begin{cases}
1 & \text{if } j = 0, \\
0 & \text{if } j = 1, \ldots, r - 1, \\
B_1 & \text{if } j = r;
\end{cases} \tag{3.1}
\]

and for \(k_1 \in \mathcal{K}_1 \),

\[
\int_0^1 y^j k_1(y) dy = \begin{cases}
1 & \text{if } j = 1, \\
0 & \text{if } j = 0, 2, \ldots, r - 1, \\
B_2 & \text{if } j = r.
\end{cases} \tag{3.2}
\]

We may let \(B_3 \) be a positive value such that \(|k_i(y)| \leq B_3 \) for all \(y \in (0,1) \) and \(i = 0, 1 \). Also, let \(h = h(k) \) be a decreasing function of \(k \) such that \(h(k) \to 0 \) as \(k \to \infty \).

Define

\[
\begin{aligned}
f_{ik}(X_i) &= \frac{1}{(k-1)h} \sum_{j=1}^{k} k_0 \left(\frac{X_i - X_j}{h} \right), \\
f^{(1)}_{ik}(X_i) &= \frac{1}{(k-1)h^2} \sum_{j=1}^{k} k_1 \left(\frac{X_i - X_j}{h} \right). \tag{3.3}
\end{aligned}
\]

Note that for each fixed \(X_i = x_i \), \(f_{ik}(x_i) \) and \(f^{(1)}_{ik}(x_i) \) are consistent estimators of \(f(x_i) \) and \(f^{(1)}(x_i) \), respectively; see Singh (1977, 1979).

When the variance \(\sigma^2 \) is known, for each \(i = 1, \ldots, k \), let

\[
T_{ik}^*(X_i) = (X_i - \theta_0) f_{ik}(X_i) + \frac{\sigma^2}{m} f^{(1)}_{ik}(X_i).
\]
Also, let \(\{C^*_k\} \) be a sequence of positive numbers such that \(C^*_k \) is increasing in \(k \) and \(C^*_k \to \infty \) as \(k \to \infty \). We consider an empirical Bayes selection procedures \(\hat{\delta}^* = (\delta^*_1, \ldots, \delta^*_k) \) defined as follows,

\[
\delta^*_i(X) = \delta_i(X_i, \bar{X}(i)) = \begin{cases}
0 & \text{if either } (X_i < -C^*_k) \\
& \text{or } (|X_i| \leq C^*_k \text{ and } T^*_i(X_i) < 0), \\
1 & \text{if either } (X_i > C^*_k) \\
& \text{or } (|X_i| \leq C^*_k \text{ and } T^*_i(X_i) \geq 0),
\end{cases}
\]

(3.4)

where \(\bar{X}(i) = (X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_k) \).

When the variance \(\sigma^2 \) is unknown, we estimate \(\sigma^2 \) by \(W_k \). For each \(i = 1, \ldots, k \), let

\[
\hat{T}_{ik}(X_i) = (X_i - \theta_0)f_{ik}(X_i) + \frac{W_k}{m} f'_{ik}(X_i).
\]

We then consider an empirical Bayes selection procedure \(\hat{\delta} = (\hat{\delta}_1, \ldots, \hat{\delta}_k) \) defined as follows,

\[
\hat{\delta}_i(X) = \hat{\delta}_i(X_i, \bar{X}(i), W_k) = \begin{cases}
0 & \text{if either } (X_i < -C^*_k) \\
& \text{or } (|X_i| \leq C^*_k \text{ and } \hat{T}_{ik}(X_i) < 0), \\
1 & \text{if either } (X_i > C^*_k) \\
& \text{or } (|X_i| \leq C^*_k \text{ and } \hat{T}_{ik}(X_i) \geq 0).
\end{cases}
\]

(3.5)

The Bayes risk of the empirical Bayes selection procedure \(\hat{\delta}^* \) is:

\[
R(G, \hat{\delta}^*) = \sum_{i=1}^{k} R_i(G, \hat{\delta}^*_i)
\]

(3.6)

and

\[
R_i(G, \hat{\delta}_i) = E_i^* \left[\int [\theta_0 - \psi_i(x_i)] \delta_i^*(x_i, \bar{X}(i)) f(x_i) dx_i \right] + C
\]

(3.7)

\[
= \int [\theta_0 - \psi_i(x_i)] E_i^* [\delta_i^*(x_i, \bar{X}(i))] f(x_i) dx_i + C,
\]

where the expectation \(E_i^* \) is taken with respect to the probability measure generated by \(\bar{X}(i) \).

The Bayes risk of the empirical Bayes selection procedure \(\hat{\delta} \) is:

\[
R(G, \hat{\delta}) = \sum_{i=1}^{k} R_i(G, \hat{\delta}_i)
\]

(3.8)
and

\[R_i(G, \hat{\delta}_i) = \int [\theta_0 - \psi_i(x_i)] \hat{E}_i(\hat{\delta}_i(x_i, X(i), W_k)) f(x_i) dx_i + C. \]

(3.9)

where the expectation \(\hat{E}_i \) is taken with respect to the probability measure generated by \((X(i), W_k)\).

Since \(\hat{\delta}_B \) is the Bayes selection procedure, for any selection procedure \(\hat{\delta} = (\delta_1, \ldots, \delta_k) \), \(R_i(G, \delta_i) - R_i(G, \delta_B) \geq 0 \), \(i = 1, \ldots, k \) and \(R(G, \hat{\delta}) - R(G, \hat{\delta}_B) \geq 0 \). Define

\[\rho(G, \hat{\delta}) = \frac{[R(G, \hat{\delta}) - R(G, \hat{\delta}_B)]}{R(G, \hat{\delta}_B)}. \]

(3.9)

\(\rho(G, \hat{\delta}) \) is called as the relative regret risk of the selection procedure \(\hat{\delta} \) compared with the Bayes selection procedure \(\hat{\delta}_B \). The relative regret risk \(\rho(G, \hat{\delta}) \) is used to measure the performance of the selection procedure \(\hat{\delta} \).

Definition 3.1. (a) A selection procedure \(\hat{\delta} \) is said to be asymptotically optimal if \(\rho(G, \hat{\delta}) \rightarrow 0 \) as \(k \rightarrow \infty \).

(b) A selection procedure \(\hat{\delta} \) is said to be asymptotically optimal of order \(\{\alpha_k\} \) if \(\rho(G, \hat{\delta}) = O(\alpha_k) \) where \(\{\alpha_k\} \) is a sequence of decreasing positive numbers such that \(\alpha_k \rightarrow 0 \) as \(k \rightarrow \infty \).

The asymptotic optimality of the empirical Bayes selection procedures \(\hat{\delta}^* \) and \(\hat{\delta} \) will be investigated in the next two sections.

4. Asymptotic Optimality of the Empirical Bayes Selection Procedures

Under the preceding described statistical model and the loss function, one can see that for the Bayes selection procedure \(\hat{\delta}_B \), \(R_1(G, \delta_{B1}) = \ldots = R_k(G, \delta_{Bk}) \) and \(R(G, \delta_B) = k R_1(G, \delta_{B1}) \).

Also, by the symmetric properties of the empirical Bayes selection procedures \(\hat{\delta}^* \) and \(\hat{\delta} \), we have \(R_1(G, \delta_{i}^*) = \ldots = R_k(G, \delta_{k}^*) \) and \(R(G, \hat{\delta}^*) = k R_1(G, \delta_{i}^*) \), \(R_1(G, \hat{\delta}_1) = \ldots = R_k(G, \hat{\delta}_k) \) and \(R(G, \hat{\delta}) = k R_1(G, \hat{\delta}_1). \)

Therefore, \(\rho(G, \hat{\delta}^*) = \frac{[R_1(G, \hat{\delta}_i^*) - R_1(G, \delta_{B1})]}{R_1(G, \delta_{B1})} \) and \(\rho(G, \hat{\delta}) = \frac{[R_1(G, \hat{\delta}_1) - R_1(G, \delta_{B1})]}{R_1(G, \delta_{B1})}. \) Since \(R_1(G, \delta_{B1}) \) is a fixed positive value, to study the asymptotic optimality of the empirical Bayes selection procedures, it suffices to investigate the
asymptotic behavior of $R_1(G, \delta^*_1) - R_1(G, \delta_{B1})$ and $R_1(G, \hat{\delta}_1) - R_1(G, \delta_{B1})$ for sufficiently large k.

Theorem 4.1 For the statistical model previously described in Section 2, assume that $E[|\Theta_i|] < \infty$ and a^* is a finite number. Then, the empirical Bayes selection procedures δ^* and $\hat{\delta}$ are asymptotically optimal in the sense that $\rho(G, \delta^*) \to 0$ and $\rho(G, \hat{\delta}) \to 0$ as $k \to \infty$.

Proof: It is assumed that k is sufficiently large so that $a^* \in (-C_k^*, C_k^*)$, where $\{C_k^*\}$ is a sequence of increasing positive numbers such that $\lim_{k \to \infty} C_k^* = \infty$ as described in Section 3. By the finiteness of a^* and from (2.5''), (2.9), (3.4) and (3.7),

$$R_1(G, \delta^*_1) - R_1(G, \delta_{B1})$$

$$= \int [\theta_0 - \psi_1(x_1)] E_1^* \{\delta^*_1(x_1, X(1)) - \delta_{B1}(x_1)\} f(x_1) dx_1$$

$$= \int_{-C_k^*}^{a^*} [\theta_0 - \psi_1(x_1)] P\{\delta^*_1(x_1, X(1)) = 1, \delta_{B1}(x_1) = 0\} f(x_1) dx_1$$

$$+ \int_{a^*}^{C_k^*} [\psi_1(x_1) - \theta_0] P\{\delta^*_1(x_1, X(1)) = 0, \delta_{B1}(x_1) = 1\} f(x_1) dx_1.$$

Also, from (2.5''), (2.9), (3.5) and (3.9),

$$R_1(G, \hat{\delta}_1) - R_1(G, \delta_{B1})$$

$$= \int_{-C_k^*}^{a^*} [\theta_0 - \psi_1(x_1)] P\{\hat{\delta}_1(x_1, X(1), W_k) = 1, \delta_{B1}(x_1) = 0\} f(x_1) dx_1$$

$$+ \int_{a^*}^{C_k^*} [\psi_1(x_1) - \theta_0] P\{\hat{\delta}_1(x_1, X(1), W_k) = 0, \delta_{B1}(x_1) = 1\} f(x_1) dx_1.$$

From a corollary of Robbins (1964), to prove the asymptotic optimality of δ^* and $\hat{\delta}$, it suffices to show that for each x_1, and $\epsilon = 0, 1$,

$$P\{\delta^*_1(x_1, X(1)) = \epsilon, \delta_{B1}(x_1) = 1 - \epsilon\} \to 0$$
and
\[P\{\hat{\delta}_1(x_1, X(1), W_k) = \epsilon, \delta_{B1}(x_1) = 1 - \epsilon\} \rightarrow 0 \]
as \(k \rightarrow \infty \). Note that for each fixed \(x_1, f_{1k}(x_1) \) and \(f^{(1)}_{1k}(x_1) \) are consistent estimates of \(f(x_1) \) and \(f^{(1)}(x_1) \), respectively. Also, \(W_k \) is a consistent estimator of \(\sigma^2 \). Hence, \(\hat{T}_{1k}(x_1) \) is a consistent estimator of \(T_1(x_1) \) for the \(\sigma^2 \) known case, and \(\hat{T}_{1k}(x_1) \) is a consistent estimator of \(T_1(x_1) \) for the \(\sigma^2 \) unknown case. Therefore,
\[P\{\hat{\delta}_1^*(x_1, X(1)) = 1, \delta_{B1}(x_1) = 0\} \]
\[= P\{T^*_{1k}(x_1) \geq 0, T_1(x_1) < 0\} \rightarrow 0 \text{ as } k \rightarrow \infty, \text{ and} \]
\[P\{\delta_1^*(x_1, X(1)) = 0, \delta_{B1}(x_1) = 1\} \]
\[= P\{T^*_{1k}(x_1) < 0, T_1(x_1) \geq 0\} \rightarrow 0 \text{ as } k \rightarrow \infty. \]

Similarly,
\[P\{\hat{\delta}_1(x_1, X(1), W_k) = \epsilon, \delta_{B1}(x_1) = 1 - \epsilon\} \rightarrow 0 \text{ as } k \rightarrow \infty. \]

Hence the proof of the theorem is complete. \(\square \)

5. Rates of Convergence

The following theorem gives the main results of the paper concerning rates of convergence of the empirical Bayes selection procedures.

Theorem 5.1 For the statistical model described in Section 2, assume that \(E[|\Theta_1|] < \infty \) and \(a^* \) is a finite number.

(a) If we take \(h = c_1(k - 1)^{-1/(2r+1)} \) and \(C^*_k = c_2 h^{-1} \) for some fixed positive values \(c_1 \) and \(c_2 \), then, \(\rho(G, \hat{\delta}^*) = O(k^{-\frac{a^*}{2r+1}}) \) and \(\rho(G, \hat{\delta}) = O(k^{-\frac{a^*}{2r+1}}) \).

(b) Furthermore, suppose that for some \(1 < \alpha < 2 \), and for some \(h > 0 \),
\[(A1) \int \frac{|x_1|^\alpha M^{\alpha/2}(x_1, h)}{f^{\alpha-1}(x_1)} dx_1 < \infty \text{ and } (A2) \int \frac{|x_1|^\alpha N^{\alpha}(x_1, h)}{f^{\alpha-1}(x_1)} dx_1 < \infty \]
where \(M(x_1, h) \) and \(N(x_1, h) \) are defined in Lemma 6.3. If we take
\(h = (k - 1)^{-1/(2r+1)} \), then, \(\rho(G, \hat{\delta}^*) = O(k^{-\frac{a^*(r-1)}{2r+1}}) \) and \(\rho(G, \hat{\delta}) = O(k^{-\frac{a^*(r-1)}{2r+1}}) \).

Proof: We provide proof of the theorem for the empirical Bayes selection procedure \(\hat{\delta}^* \) only. The proof for the empirical Bayes selection procedure \(\hat{\delta} \) is analogous to that of \(\hat{\delta}^* \) and hence is omitted here. Also, assume that \(k \) is large enough so that \(a^* \in (-C^*_k, C^*_k) \).
From (4.1) and Lemma 6.1 - 6.3, by noting that \([\psi_1(x_1) - \theta_0]f(x_1) = T_1(x_1)\), we have,

\[
R_1(G, \delta_1^*) - R_1(G, \delta_B^*)
\leq \int_{-C_k^*}^{C_k^*} E[|T_{1k}^*(x_1) - T_1(x_1)|^\alpha] / |T_1(x_1)|^{\alpha-1} dx_1
\]

\[
\leq \frac{b_1(\alpha)}{[(k-1)h]^\alpha/2} \int_{-C_k^*}^{C_k^*} [M(x_1, h)]^{\alpha/2} / |T_1(x_1)|^{\alpha-1} dx_1
\]

\[
+ b_1(\alpha)h^{\alpha(r-1)} \int_{-C_k^*}^{C_k^*} N^\alpha(x_1, b) / |T_1(x_1)|^{\alpha-1} dx_1
\]

\[
+ \frac{b_2(\alpha)}{[(k-1)h]^\alpha/2} \int_{-C_k^*}^{C_k^*} |x_1 - \theta_0|^\alpha M^{\alpha/2}(x_1, h) / |T_1(x_1)|^{\alpha-1} dx_1
\]

\[
+ b_2(\alpha)h^{\alpha r} \int_{-C_k^*}^{C_k^*} |x_1 - \theta_0|^\alpha N^\alpha(x_1, h) / |T_1(x_1)|^{\alpha-1} dx_1.
\]

(5.1)

Since \(f(x_1) = \int \frac{\sqrt{m}}{\sqrt{2\pi}\sigma} e^{-\frac{m(x_1 - \theta)^2}{2\sigma^2}} dG(\theta) \leq \frac{\sqrt{m}}{\sqrt{2\pi}\sigma} = B_4\) for all \(x_1\),

\[
0 \leq M(x_1, h) = \int_0^1 f(x_1 - vh) dv \leq B_4
\]

(5.2)

for all \(x_1\) and \(h\). Also,

\[
\frac{\partial^r f(t)}{\partial t^r} \bigg|_{t = x_1 - hw} = \int \frac{\sqrt{m}}{\sqrt{2\pi}\sigma} e^{-\frac{m(x_1 - hw - \theta)^2}{2\sigma^2}} \left[\sum_{j=0}^{r} a_j(x_1 - hw - \theta)^j \right] dG(\theta)
\]

where \(a_j, j = 0, \ldots, r\), are finite numbers. Therefore, \(\left| \frac{\partial^r f(t)}{\partial t^r} \bigg|_{t = x_1 - hw} \right| \leq B_5\) for some positive number \(B_5\) for all \(x_1, w\) and \(h\) and hence, for all \(x_1\) and \(h\)

\[
N(x_1, h) \leq B_5.
\]

(5.3)
For $\alpha = 1$, substituting the inequalities of (5.2) and (5.3) into (5.1) we obtain,

$$R_1(G, \delta_1) - R_1(G, \delta_{B1})$$

$$\leq 2b_1(1)B_4^{1/2} C_k^* / [(k - 1)h^3]^{1/2} + 2b_1(1)B_5 C_k^* h^{r-1}$$

$$+ b_2(1)B_4^{1/2} \int_{-C_k^*}^{C_k^*} |x_1 - \theta_0|dx_1 / [(k - 1)h]^{1/2}$$

$$+ b_2(1)B_5 h^r \int_{-C_k^*}^{C_k^*} |x_1 - \theta_0|dx_1$$

$$\leq 2b_1(1)B_4^{1/2} C_k^* / [(k - 1)h^3]^{1/2} + 2b_1(1)B_5 C_k^* h^{r-1}$$

$$+ b_2(1)B_4^{1/2} \left\{2|\theta_0|C_k^* + \frac{C_k^{*2}}{2}\right\} / [(k - 1)h]^{1/2}$$

$$+ b_2(1)B_5 h^r \left\{2|\theta_0|C_k^* + \frac{C_k^{*2}}{2}\right\}$$

$$= O(C_k^* / [(k - 1)h^3]^{1/2}) + O(C_k^{*2} h^{r-1})$$

Thus, if we let $h = c_1(k - 1)^{-1/(2r+1)}$ and $C_k^* = c_2 h^{-1}$ where c_1 and c_2 are positive constants, then, from (5.4), $R_1(G, \delta_1) - R_1(G, \delta_{B1}) = O(k^{-\frac{r+2}{2r+1}})$.

This completes the proof of part (a).

For each k, let $I_k^* = [-C_k^*, a^* - c_0) \cup (a^* + c_0, C_k^*]$. Since $T_1(x_1) = [\psi_1(x_1) - \theta_0]f(x_1)$, by Lemma 6.4, for $x_1 \in I, |T_1(x_1)| \geq |x_1 - a^*|f(x_1)b_3$, and for $x_1 \in I_k^*, |T_1(x_1)| \geq f(x_1)b_4$. Combining these inequalities with (5.1) together, we obtain
\[
R_1(G, \delta_1^*) - R_1(G, \delta_{B_1}) \\
\leq \frac{b_1(\alpha)E_1}{b_3^{\alpha-1}((k-1)h^3)^{\alpha/2}} + \frac{b_1(\alpha)E_2}{b_4^{\alpha-1}((k-1)h^3)^{\alpha/2}} + \frac{b_1(\alpha)h^{\alpha(r-1)}E_3}{b_3^{\alpha-1}} \\
+ \frac{b_1(\alpha)h^{\alpha(r-1)}E_4}{b_4^{\alpha-1}} + \frac{b_2(\alpha)E_5}{((k-1)h)^{\alpha/2} b_3^{\alpha-1}} + \frac{b_2(\alpha)E_6}{((k-1)h)^{\alpha/2} b_4^{\alpha-1}} \\
+ \frac{b_2(\alpha)h^{\alpha r}E_7}{b_3^{\alpha-1}} + \frac{b_2(\alpha)h^{\alpha r}E_8}{b_4^{\alpha-1}},
\]

where

\[
E_1 = \int_I \frac{M^{\alpha/2}(x_1, h)}{||x_1 - a^*|f(x_1)|^{\alpha-1}} dx_1,
\]

\[
E_2 = \int_{I_k} \frac{M^{\alpha/2}(x_1, h)}{f^{\alpha-1}(x_1)} dx_1,
\]

\[
E_3 = \int_I \frac{N^{\alpha}(x_1, h)}{||x_1 - a^*|f(x_1)|^{\alpha-1}} dx_1,
\]

\[
E_4 = \int_{I_k} \frac{N^{\alpha}(x_1, h)}{f^{\alpha-1}(x_1)} dx_1,
\]

\[
E_5 = \int_I \frac{|x_1 - \theta_0|^\alpha M^{\alpha/2}(x_1, h)}{||x_1 - a^*|f(x_1)|^{\alpha-1}} dx_1,
\]

\[
E_6 = \int_{I_k} \frac{|x_1 - \theta_0|^\alpha M^{\alpha/2}(x_1, h)}{f^{\alpha-1}(x_1)} dx_1,
\]

\[
E_7 = \int_I \frac{|x_1 - \theta_0|^\alpha N^{\alpha}(x_1, h)}{||x_1 - a^*|f(x_1)|^{\alpha-1}} dx_1,
\]

and

\[
E_8 = \int_{I_k} \frac{|x_1 - \theta_0|^\alpha N^{\alpha}(x_1, h)}{f^{\alpha-1}(x_1)} dx_1.
\]

Since \(I\) is a bounded interval and \(0 \leq M(x_1, h) \leq B_4, 0 \leq N(x_1, h) \leq B_5\) for all \(x_1\) and \(h\), one can see that for \(1 < \alpha < 2, 0 \leq E_i < \infty, i = 1, 3, 5, 7\). Also, under the
assumptions (A1) and (A2), 0 ≤ Ei < ∞, i = 2, 4, 6, 8. Therefore,

\[R_1(G, \delta^*_1) - R_1(G, \delta_{B1}) = O(((k - 1)h^3)^{-\alpha/2}) + O(h^{\alpha(r-1)}). \]

If we take \(h = (k - 1)^{-\frac{1}{r+1}} \), then \(R_1(G, \delta^*_1) - R_1(G, \delta_{B1}) = O(k^{-\frac{\alpha(r-1)}{2(r+1)}}). \)

Hence, this completes the proof of part (b). \(\square \)

Remarks

(a) In Theorem 5.1(a), we have demonstrated that under the very mild conditions that \(E[|\Theta_1|] < \infty \) and \(a^* \) is finite, the relative regret risk converges to zero with a rate of order \(O(k^{-\frac{\alpha(r)}{2(r+1)}}) \) where \(r > 2 \) is a positive integer, involving in the choice of the kernels \(k_0 \) and \(k_1 \), see (3.1) and (3.2). According to (3.1) and (3.2), there is no restriction about the choice of the value \(r \). Therefore, we may choose \(r \) as large as possible, so that the rate of convergence of the relative regret risk may have an order close to \(O(k^{-1/2}) \).

(b) Though under the assumptions A1 and A2, the empirical Bayes selection procedure \(\delta^* \) may have a better convergence rate, it is possible that the assumptions A1 and/or A2 may not hold for any \(1 < \alpha < 2 \) and any \(0 < h < 1 \). For example, consider a prior distribution with density \(g(\theta) \) where

\[g(\theta) = \begin{cases} \frac{1}{4} & \text{if } |\theta| \leq 1, \\ \frac{1}{4e^2} & \text{if } |\theta| > 1. \end{cases} \]

Then, one can see that \(f(x) \) is symmetric about the point 0 and \(f(x) \) is decreasing in \(x \) for \(x \geq 0 \). Hence, for \(x > vh > 0 \), \(M(x, h) = \int_0^1 f(x - vh)dx \geq f(x) \). Also, as \(x > 2 \), \(f(x) \geq \frac{c}{x^2} \) for some \(c > 0 \). Therefore,

\[\int_{-\infty}^{\infty} \frac{|x|^{\alpha} M^{\alpha/2}(x)}{f^{\alpha-1}(x)} dx \geq \int_{2}^{\infty} \frac{x^{\alpha} M^{\alpha/2}(x, h)}{f^{\alpha-1}(x)} dx \]

\[\geq \int_{2}^{\infty} x^{\alpha} f^{1-\alpha/2}(x) dx \]
\[N \leq \int_{2}^{\infty} x^\alpha \left(\frac{c}{x^2} \right)^{1-\alpha/2} \, dx \]
\[= c^{1-\alpha/2} \int_{2}^{\infty} x^{2-\alpha} \, dx \]
\[= \infty \text{ since } 1 < \alpha < 2. \]

Therefore A1 does not hold in this case.

(c) We provide an example in which both the assumptions A1 and A2 hold for any $1 < \alpha < 2$.

Assume that $\Theta_1 \sim N(0, \tau^2)$. Then, marginally $X_1 \sim N(0, q)$ where $q = \frac{\sigma^2}{m} + \tau^2$. We need to verify that

\[\int \frac{|x|^\alpha M^{\alpha/2}(x, h)}{f(x)} \, dx < \infty \text{ and } \int \frac{|x|^\alpha N^{\alpha}(x, h)}{f(x)} \, dx < \infty. \]

Since \(f(x) = \frac{1}{\sqrt{2\pi q}} e^{-\frac{x^2}{2q}} \),

\[\frac{M(x, h)}{f(x)} = \int_{v=0}^{1} e^{\frac{2uv-2h^2}{2q}} \, dv \leq \begin{cases} 1 & \text{if } x < 0, \\ e^{\frac{hx}{q}} & \text{if } x > 0. \end{cases} \]

Hence,

\[\int \frac{|x|^\alpha M^{\alpha/2}(x)}{f(x)} \, dx \leq \int_{-\infty}^{0} |x|^\alpha f^{1-\alpha/2}(x) \, dx + \int_{0}^{\infty} x^\alpha f^{1-\alpha/2}(x) e^{\frac{hx}{q}} \, dx < \infty. \]

Also,

\[\frac{\partial^r f(t)}{\partial t^r} \bigg|_{t=x-hw} = \frac{1}{\sqrt{2\pi q}} e^{-\frac{(x-hw)^2}{2q}} \left[\sum_{j=0}^{r} a_j (x-hw)^j \right] \]

for some real values $a_j, j = 0, 1, \ldots, r$. Then,

\[\frac{\partial^r f(t)}{\partial t^r} \bigg|_{t=x-hw} = e^{\frac{2hx-x^2-\frac{h^2w^2}{2q}}{2q}} \left[\sum_{j=0}^{r} a_j (x-hw)^j \right]. \]

Hence,

\[\frac{N(x, h)}{f(x)} \leq e^{\frac{|a|}{q}} \sup_{0 \leq w \leq 1} \sum_{j=0}^{r} |a_j| |x-hw|^j. \]
Therefore,

\[\int \frac{|x^\alpha N^\alpha(x,h)|}{f^{\alpha-1}(x)} dx \leq \sum_{j=0}^{r} \sup_{0 \leq w \leq 1} \int |x^\alpha f(x)|a_j| |x - hw|^j e^{h|w|} dx < \infty. \]

That is, both the assumptions A1 and A2 hold.

6. Useful Lemmas

The following lemmas are useful for presenting a concise proof of Theorem 5.1.

Lemma 6.1 (a) For \(x_1 < a^* \) and \(\alpha > 0 \),

\[P\{\delta_1^*(x_1, X(1)) = 1\} \leq E[|T^*_1(x_1) - T_1(x_1)|^\alpha] / |T_1(x_1)|^\alpha. \]

(b) For \(x_1 > a^* \) and \(\alpha > 0 \),

\[P\{\delta_1^*(x_1, X(1)) = 0\} \leq E[|T^*_1(x_1) - T_1(x_1)|^\alpha] / |T_1(x_1)|^\alpha. \]

Proof: For \(x_1 < a^* \), \(T_1(x) = \frac{\sigma^2}{m} f^{(1)}(x_1) + (x_1 - \theta_0)f(x_1) < 0 \). Then by the definition of the empirical Bayes selection procedure \(\delta^* \) and by Markov inequality,

\[P\{\delta_1^*(x_1, X(1)) = 1\} = P\{T^*_1(x_1) \geq 0\} \]

\[= P\{T^*_1(x_1) - T_1(x_1) \geq -T_1(x_1)\} \]

\[\leq E[|T^*_1(x_1) - T_1(x_1)|^\alpha] / |T_1(x_1)|^\alpha. \]

Part (b) can also be obtained in a similar way. \(\Box \)

Lemma 6.2 For \(0 < \alpha \leq 2 \), for each fixed \(x_1 \),

\[E[|T^*_1(x_1) - T_1(x_1)|^\alpha] \]

\[\leq C_2 \left(\frac{\sigma^2}{m} \right)^\alpha \{ \text{Var}^{\alpha/2}(f^{(1)}(x_1)) + |E f^{(1)}(x_1) - f^{(1)}(x_1)|^\alpha \} \]

\[+ C_2|x_1 - \theta_0|^\alpha \{ \text{Var}^{\alpha/2}(f_1h(x_1)) + |E f_1h(x_1) - f(x_1)|^\alpha \}, \]

16
where
\[C_{\alpha} = \begin{cases}
1 & \text{if } 0 < \alpha \leq 1, \\
2^{\alpha-1} & \text{if } 1 < \alpha \leq 2.
\end{cases} \]

Proof: By the definitions of \(T_{1k}^{*}(x_i) \) and \(T_{1}(x_1) \) and by \(C_{r}\)-inequality,
\[
E[|T_{1k}^{*}(x_1) - T_{1}(x_1)|^{\alpha}] \\
= E \left[\left| \frac{\sigma^2}{m} f_{1k}^{(1)}(x_1) + (x_1 - \theta_0)f_{1k}(x_1) - \frac{\sigma^2}{m} f^{(1)}(x_1) + (x_1 - \theta_0)f(x_1) \right|^{\alpha} \right] \\
\leq C_{\alpha} \left(\frac{\sigma^2}{m} \right)^{\alpha} E \left[|f_{1k}^{(1)}(x_1) - f^{(1)}(x_1)|^{\alpha} \right] \\
+ C_{\alpha} |x_1 - \theta_0|^\alpha E \left[|f_{1k}(x_1) - f(x_1)|^{\alpha} \right].
\] (6.1)

Again, by \(C_{r}\)-inequality, for \(0 < \alpha \leq 2 \),
\[
E[|f_{1k}^{(1)}(x_1) - f^{(1)}(x_1)|^{\alpha}] \\
= E \left[|f_{1k}^{(1)}(x_1) - Ef_{1k}^{(1)}(x_1) + Ef_{1k}^{(1)}(x_1) - f^{(1)}(x_1)|^{\alpha} \right] \\
\leq C_{\alpha} E \left[|f_{1k}^{(1)}(x_1) - Ef_{1k}^{(1)}(x_1)|^{\alpha} \right] + C_{\alpha} |Ef_{1k}^{(1)}(x_1) - f^{(1)}(x_1)|^{\alpha} \\
\leq C_{\alpha} \text{Var}^{\alpha/2}(f_{1k}^{(1)}(x_1)) + C_{\alpha} |Ef_{1k}^{(1)}(x_1) - f^{(1)}(x_1)|^{\alpha},
\] (6.2)

and
\[
E[|f_{1k}(x_1) - f(x_1)|^{\alpha}] \\
\leq C_{\alpha} E \left[|f_{1k}(x_1) - Ef_{1k}(x_1)|^{\alpha} \right] + C_{\alpha} |Ef_{1k}(x_1) - f(x_1)|^{\alpha} \\
\leq C_{\alpha} \text{Var}^{\alpha/2}(f_{1k}(x_1)) + C_{\alpha} |Ef_{1k}(x_1) - f(x_1)|^{\alpha}. \tag{6.3}
\]

Substituting (6.2) and (6.3) into (6.1) yields the result of the lemma.

Lemma 6.3 For each fixed \(x_1 \),

(a) \(\text{Var} \left(f_{1k}(x_1) \right) \leq B_5^2 M(x_1, h) / ([k - 1]h) \),

(b) \(\text{Var} \left(f_{1k}^{(1)}(x_1) \right) \leq B_5^2 M(x_1, h) / ([k - 1]h^3) \).
(c) \(|Ef_{1k}(x_1) - f(x_1)| \leq B_3 \ h^r \ N(x_1, h),\)

(d) \(|Ef_{1k}^{(1)}(x_1) - f^{(1)}(x_1)| \leq B_3 h^{r-1} N(x_1, h),\)

(e) \(E[T_{1k}^a(x_1) - T_1(x_1)]^a\)

\[\leq b_1(\alpha) \{[M(x_1, h) / ((k - 1)h^3)]^{\alpha/2} + [h^{r-1} N(x_1, h)]^\alpha\} \]

\[+ \ b_2(\alpha)|x_1 - \theta_0|^\alpha \{[M(x_1, h) / ((k - 1)h)]^{\alpha/2} + [h^r N(x_1, h)]^\alpha\},\]

where \(b_1(\alpha) = C_\alpha^2 \ B_3^\alpha \left(\frac{\sigma^2}{m}\right)^\alpha, \ b_2(\alpha) = C_\alpha^2 \ B_3^\alpha, \ M(x_1, h) = \int_0^1 f(x_1 - vh) dv, \) and \(N(x_1, h) = \)

\[\sup_{0 \leq w \leq 1} \left| \frac{\partial^r f(t)}{\partial t^r} \right|_{t = x_1 - hw}.\]

Proof: (a) \(\text{Var}(f_{1k}(x_1)) = \frac{1}{(k - 1)h^2} \ \text{Var}(k_0(\frac{x_1 - X_2}{h}))\)

\[\leq \frac{1}{(k - 1)h^2} \ E[k_0^2(\frac{x_1 - X_2}{h})]\]

\[= \frac{1}{(k - 1)h} \int_0^1 k_0^2(v)f(x_1 - vh) dv\]

\[\leq \frac{B_3^2}{(k - 1)h} \int_0^1 f(x_1 - vh) dv\]

\[= \frac{B_3^2}{(k - 1)h} \ M(x_1, h).\]

Part (b) can be obtained in a similar way.

(c) \(Ef_{1k}(x_1) = \frac{1}{h} E k_0(\frac{x_1 - X_2}{h}) = \int_0^1 k_0(w)f(x_1 - hw) dw.\)
Since \(f_0(x) \) is positive and \(k_0(x) \) is non-negative, hence, by the property of \(k_0 \),
\[
|E f_1(x_1) - f(x_1)| = \int_0^1 k_0(w) [f(x_1 - hw) - f(x_1)] dw
\]
\[
= \left| \int_0^1 k_0(w) \left[\frac{\partial f(t)}{\partial t} \right]_{t=x_1-hw} (-hw)^r dw \right|
\]
where \(0 < w^* < w \)
\[
\leq B_3 h^r \sup_{0 \leq w \leq 1} \left| \frac{\partial f(t)}{\partial t} \right|_{t=x_1-hw}
\]
\[
= B_3 h^r N(x_1, h).
\]

The proof of part (d) can be obtained in a way similar to part (c).

Finally, part (e) is obtained by plugging the results of parts (a)-(d) into the inequality in Lemma 6.2.

For a positive constant \(c_0 \), define interval \(I = [a^* - c_0, a^* + c_0] \). Note that \(\psi_1(x_1) = \int \theta e^{\frac{m_\theta z_1}{\sigma^2} - \frac{m_\theta^2}{2\sigma^2}} dG(\theta) / \int e^{\frac{m_\theta z_1}{\sigma^2} - \frac{m_\theta^2}{2\sigma^2}} dG(\theta) \). Hence,
\[
\psi_1^{(1)}(x_1) = \frac{m_\sigma^2 \left\{ \int \theta^2 e^{\frac{m_\theta z_1}{\sigma^2} - \frac{m_\theta^2}{2\sigma^2}} dG(\theta) \int e^{\frac{m_\theta z_1}{\sigma^2} - \frac{m_\theta^2}{2\sigma^2}} dG(\theta) - \left[\int \theta e^{\frac{m_\theta z_1}{\sigma^2} - \frac{m_\theta^2}{2\sigma^2}} dG(\theta) \right]^2 \right\}}{\left[\int e^{\frac{m_\theta z_1}{\sigma^2} - \frac{m_\theta^2}{2\sigma^2}} dG(\theta) \right]^2},
\]
which is continuous in \(x_1 \) and positive for all \(x_1 \) since \(G \) is nondegenerate.

Lemma 6.4

(a) Let \(b_3 = \inf \{ \psi_1^{(1)}(x_1) | x_1 \in I \} \). Then \(b_3 > 0 \).

(b) For any \(x_1 \in I, |\psi_1(x_1) - \theta_0| \geq |x_1 - a^*| b_3 \).

(c) For any \(x_1 \notin I, |\psi_1(x_1) - \theta_0| \geq b_4 \) for some \(b_4 > 0 \).

Proof: (a) Since \(\psi_1^{(1)}(x_1) \) is continuous in \(x_1 \) on the compact interval \(I \), there exists an \(x^* \in I \) such that \(\psi_1^{(1)}(x^*) = b_3 \). Also, note that \(\psi_1^{(1)}(x^*) \) can also be viewed as the variance of some non-degenerate distribution. Hence \(b_3 > 0 \).
(b) By the definition of \(a^* \), \(\psi_1(a^*) = \theta_0 \). By mean-value theorem, for \(x_1 \in I \):

\[
|\psi_1(x_1) - \theta_0| = |\psi_1(x_1) - \psi_1(a^*)|
\]

\[
= |(x_1 - a^*)\psi_1^{(1)}(x_1^*)|
\]

\[
\geq |x_1 - a^*| b_3,
\]

where \(x_1^* \) is a point between \(x_1 \) and \(a^* \).

(c) Note that \(\psi_1(x_1) - \theta_0 \) is strictly increasing in \(x_1 \) and \(\psi_1(a^*) - \theta_0 = 0 \). So, \(|\psi_1(x_1) - \theta_0| \geq \min(|\psi_1(a^* - c_0) - \theta_0|, |\psi_1(a^* + c_0) - \theta_0|) \equiv b_4 > 0 \) for all \(x_1 \notin I \). \(\square \)

References

In this paper, we derive statistical selection procedures to partition k normal populations into “good” or “bad” ones, respectively, using the nonparametric empirical Bayes approach. The relative regret risk of a selection procedure is used as a measure of its performance. We establish the asymptotic optimality of the proposed empirical Bayes selection procedures and investigate the associated rates of convergence. Under a very mild condition, the proposed empirical Bayes selection procedures are shown to have rates of convergence of order close to $O(k^{-\frac{1}{2}})$ where k is the number of populations involved in the selection problem. With further strong assumptions, the empirical Bayes selection procedures have rates of convergence of order $O(k^{-\frac{a(r-1)}{2r+1}})$, where $1 < \alpha < 2$ and r is an integer greater than 2.