
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 
QUANTITATIVE EVALUATION OF THE 

LIMITATIONS OF THE RADIATION BOUNDARY 
ELEMENTS IN THE FINITE ELEMENT CODE 

ATILA 

by 

Panagiotis A. Sinanoglou 

June 1996 

Thesis Advisor: 
Co-Advisor: 

Steven R. Baker 
Clyde L. Scandrett 

Approved for public release; distribution is unlimited. 

DTIC QUALITY DJSFECJTED 3 

cxj 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of 
this collection of information suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave Bla 2. REPORT DATE 

June 96 
3. REPORT TYPE AND DATES COVERED 

Master's Thesis 
4. TITLE AND SUBTITLE 

QUANTITATIVE EVALUATION OF THE LIMITATIONS OF THE 
RADIATION BOUNDARY ELEMENTS IN THE FINITE ELEMENT 

CODE ATILA 
6. AUTHOR(S) 

Sinanoglou, Panagiotis A. 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
 Monterey, CA 93943-5000  

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

5. FUNDING NUMBERS 

8. PERFORMING ORGANIZATION 

REPORT NUMBER 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

The views expressed in this thesis are those of the author and do not reflect the official policy or position 
of the Department of Defense or the U.S. Government 

12A. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words) 

A quantitative evaluation of the limitations of the radiation boundary elements in the finite element code ATILA 
[Ref. 1] has been performed. Five three-dimensional models were employed, each representing a rigid spherical 

solid surrounded by water. Monopolar, dipolar and quadrupolar incident spherical waves were introduced and the 
corresponding scattered waves were computed using the ATILA code and an exact analytical solution. 

The dimensionless parameters that characterize the problem are ka, kL, and kR where k is the wavenumber of 
sound in water, a is the radius of the scatterer, R is the outer fluid mesh radius, and L is the thickness of the fluid 
layer. The range of values investigated were kR = 1.5, 2.5, 4.0, ka = 0.5, 1.0, 2.0 and kL = 0.5, 1.0. 

For axially symmetric incident fields, the maximum normalized errors occurred at the poles and were 9%, 12%, 

and 6% respectively. Furthermore, the errors for monopolar and dipolar incident fields were strongly influenced by 
the location of the radiation boundary (kR), less so by the scatterer's radius (ka); specifically the error decreases 
with increasing kR and/or ka. The errors for quadrupolar incident fields do not exhibit any significant dependence 
on kR or ka. The errors for all the axially symmetric incident fields were not affected by variations of the element's 
size (kL). For non-axially symmetric incident fields, the maximum deviation occurred at the equatorial points and 
was less than 5.5%. 

Further investigation using a two-dimensional model is proposed in order to determine the range of values of ka, 
kL, and kR which will result in negligibly small errors. 
14. SUBJECT TERMS 

ATILA, finite element code, radiation boundary elements, monopolar, dipolar and 
quadrupolar incident fields 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 
NSN 7540-01-280-5500 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

 65  
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 

D1TC QUÄLET/ INGFECTED 8 
Standard Form 298 (Rev 2-89) 
Prescribed by ANSI Std Z39-18 
298-102 



V, 



Approved for public release; distribution is unlimited. 

QUANTITATIVE EVALUATION OF THE LIMITATIONS OF THE 
RADIATION BOUNDARY ELEMENTS IN THE FINITE 

ELEMENT CODE ATILA 

Author: 

Panagiotis A. Sinanoglou 
Lieutenant, Hellenic Navy 

B.S., Hellenic Naval Academy, 1985 

Submitted in partial fulfillment 
of the requirements for the degree of 

MASTER OF SCIENCE IN APPLIED PHYSICS 

from the 

NAVAL POSTGRADUATE SCHOOL 
June 1996 

anagiotis A. Sinanoglou 

Approved by: ^   /?. 
Steven R. Baker, Thesis Advisor 

W*jc 
de L. Scandrett, Co-Advisor 

(jJL    ft.    {*L*IAJ 
William B. Colson, Chairman 

Department of Physics 



IV 



ABSTRACT 

A quantitative evaluation of the limitations of the radiation boundary 

elements in the finite element code ATILA [Ref. 1] has been performed. Five 

three-dimensional models were employed, each representing a rigid spherical 

solid surrounded by water. Monopolar, dipolar and quadrupolar incident 

spherical waves were introduced and the corresponding scattered waves were 

computed using the ATILA code and an exact analytical solution. 

The dimensionless parameters that characterize the problem are ka, kL, 

and kR where k is the wavenumber of sound in water, a is the radius of the 

scatterer, R is the outer fluid mesh radius, and L is the thickness of the fluid 

layer. The range of values investigated were kR=1.5, 2.5, 4.0, ka=0.5, 1.0, 2.0 

andkL=0.5, 1.0. 

For axially symmetric incident fields, the maximum normalized errors 

occurred at the poles and were 9%, 12%, and 6%, respectively. Furthermore, 

the errors for monopolar and dipolar incident fields were strongly influenced by 

the location of the radiation boundary (kR), less so by the scatterer's radius (ka); 

specifically, the error decreases with increasing kR and/or ka. The errors for 

quadrupolar incident fields do not exhibit any significant dependence on kR or 

ka. The errors for all the axially symmetric incident fields were not affected by 

variations of the element's size (kL). For non-axially symmetric incident fields, 

the maximum deviation occurred at the equatorial points and was less than 

5.5%. 

Further investigation using a two-dimensional model is proposed in order 

to determine the range of values of ka, kL, and kR which will result in negligibly 

small errors. 
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INTRODUCTION 

The investigation described in this thesis is part of an ongoing research 

project in the numerical modeling of arbitrary densely packed, random volumetric 

active sonar arrays [Ref. 1]. The technique employed is an extension of the so- 

called T-matrix method, which has been applied to other scattering problems 

[Ref. 2]. This method rigorously accounts for multiple scattering to all orders. To 

apply the T-matrix method to the problem of active sonar array performance 

prediction, it is necessary to compute the radiating and scattering properties of a 

single array element in a free field environment. To accomplish this for a real 

transducer, the ATILA [Ref. 3] finite element code is employed. 

ATILA is a French finite element code especially developed for the 

analysis of underwater acoustic transducers. This code was written by engineers 

at the Institut Superieur d'Electronique du Nord (ISEN), Lille, France and is in 

use by U.S. scientists within and outside the Navy working on U.S. Navy- 

sponsored research. 

Computation of the radiating and scattering properties of a sonar 

transducer using ATILA involves building a finite-element model representing the 

transducer and surrounding it by a finite-element mesh representing water, which 

is terminated by so-called "radiation boundary elements". The radiation 

boundary elements are intended to "absorb" all incident acoustic radiation. In 

practice, they perform this function less than perfectly. This has a direct effect 

on the computation of a transducer's radiating and scattering properties. 

The present investigation focuses on the evaluation of ATlLA's radiation 

boundary elements. For this purpose, a three dimensional spherical fluid mesh, 

surrounding a spherical rigid body and terminated by radiation boundary 

elements is studied. An incident spherical wave consisting of a single 

component of a multipolar acoustic field strikes the sphere, and the resulting 

scattered wave field is calculated using ATILA. The amounts of acoustic field in 
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the intended outgoing component and in other multipolar components are then 

analyzed. The influence on the results of the fluid mesh element size, fluid mesh 

inner radius, and fluid mesh outer radius relative to the acoustic wavelength are 

investigated and quantitative guidelines developed in order to minimize the effect 

of imperfect absorption. 

The remainder of this thesis is divided into four chapters. Chapter II 

describes the theory involved in the finite element analysis, the possible types of 

analyses that can be performed, particularly the harmonic analysis of a radiating 

spherical structure excited by an incident spherical wave. 

Chapter III describes the three dimensional spherical models which were 

employed. Chapter IV presents and discusses the scattering results for different 

incident multipolar components and the influence of element size and mesh 

inner and outer radius. Chapter V concludes the thesis. Appendix A contains 

the C program used to analytically calculate the pressure scattered from the 

spherical boundary for pressure release and rigid surface boundary conditions. 

Appendix B presents the FORTRAN code used in ATILA for the generation of 

the spherical incident pressure wave. 



I. THEORY 

A.       GENERAL PRESENTATION OF ATILA VERSION 5.03 

The finite element method is a technique that provides numerical 

solutions for boundary value problems and field calculations. [Refs. 4,5,6,7,8] 

ATILA is a finite element code developed specifically for the analysis of sonar 

transducers. 

The ATILA code is able to perform: 

1. elastic or piezoelectric structures modeling, 

2. magnetostrictive structures modeling, 

3. periodic structures modeling, 

following a general formulation shown in Figure 1 (after [Ref. 3]), to model an 

underwater acoustic transducer. 

Closed Interior 
Fluid Domain 

Open Exterior Fluid Domain 

Elastic 
Domain 

Fluid - Structure 
Interfaces 

Non Reflecting 
Boundary S 

Active Domain 

Figure! ATILA general formulation. After Ref. [3] 



The ATILA code is based on the separation of the physical problem under 

consideration into a discrete number of elements which are in turn described by 

their nodes, in a given order. For each node there are a number of degrees of 

freedom (d.o.f.) that can be specified using certain boundary conditions. The 

elements, nodes, and the specific node-numbering order, is referred to as the 

topology of the problem. 

An ATILA job organization is carried out in several steps, as follows: 

1. Model definition. 

2. Mesh generation. 

3. Data file preparation. 

4. Running a job. 

5. Result file postprocessing. 

First of all, the type of analysis to be performed has to be specified, for 

example, harmonic analysis of a solid structure excited by an impinging wave. 

The type of elements that are required to describe the fluid and structure domain 

are then chosen. ATILA includes a library of 46 different elements to model 

composite, piezoelectric, fluid, magnetostrictive, coupling FEM-BEM, interface, 

and radiation dampers. 

The mesh generation procedure includes the assignment of coordinates 

for each node and the node-numbering order for each element. Throughout this 

procedure the whole physical problem is discretized into elements which allow 

the representation and modeling of many different geometrical shapes and lines, 

as, for example, PRIS15F, a fifteen-node isoparametric triangular base prism 

used to model homogenous fluid media, or TRIA06R, a six node isoparametric 

triangular element to prescribe a monopolar, dipolar, or multipolar radiation 

condition. 

One of the facilities of the ATILA code is the MOSAIQUE preprocessor. 

This routine enables the use of super-elements and generates all the necessary 

elements and node data for ATILA. 
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The data file includes all the neccessary input data such as the type of 

analysis, the material properties, the node coordinates, the elements, the 

boundary conditions, the loading data, and possibly the plane wave data, to carry 

out the analysis. 

Running an ATILA job involves calling up the subroutines to compute 

elementary matrices, solve equations and display the results. 

The available results file, if desired, can be postprocessed to create 

graphic displays of the structure, contours of constant value for potentials, 

pressures, and displacements. A simple flow chart of an ATILA job is shown in 

Figure 2 (after [Ref. 3]). 

1. MODEL DEFINITION 

2. MESH GENERATION 

3. DATA FILE PREPARATION 

4. RUNNNING A JOB RESTART I 
A 

5. RESULT FILE / POSTPROCESSING 

Figure 2. Flow chart of an ATILA job. After Ref.[3] 



B.       ATILA FINITE ELEMENT COMPUTATION FOR RADIATING AND 
SCATTERING PROBLEMS 

1.       General Elastic or Piezoelectric Structures Modeling 

A large number of analyses can be performed. These are based upon the 

complete set of equations of elasticity in the structure, the Helmholtz equation in 

the fluid, and Poisson's equation in the elastic or piezoelectric material. 

Appropriate radiation boundary conditions are applied on the surface which 

surrounds the fluid domain. 

The unknown quantities are the nodal values of the displacement field U 

in the whole structure, the electric potential O in the piezoelectric material, and 

the pressure P_in the fluid. The system of equations is written in matrix form: 

([Kuu]-co2[M])    [K^] -[L] "If F 

[KU(|,]               [Kw] [0] O = _9 
-P2C2CD2[L]T        [0]T ([HJ-o)2^]) P PC2V(/ 

where: 

U: vector of the nodal values of the components of the displacement field. 

O: vector of the nodal values of the electric potential. 

P: vector of the nodal values of the pressure field. 

F: vector of the nodal values of the applied forces. 

g: vector of the nodal values of the electric charges. 

\j/:   vector of the nodal values of the integrated normal derivative of the 

pressure on the surface boundary S. 

[Kuu]: stiffness matrix. 

[KU|),]; piezoelectric matrix. 

[KM]: dielectric matrix. 

[M]: consistent mass matrix. 

[H]: fluid (pseudo-)stiffness matrix. 



[Mi]: consistent (pseudo-)fluid mass matrix. 

[L]: coupling matrix at the fluid structure interface (connectivity matrix). 

[0]: zero matrix. 

a»: angular frequency. 

p: fluid density. 

c: fluid sound speed. 

T: means transposed. 

ATI LA is able to perform: 

1. Static analysis of an elastic, piezoelectric, or hydroelastic system, 

where the displacement field and/or the electric potential or the pressure fields 

are required. 

2. Modal analysis of an elastic, piezoelectric, hydroelastic system, 

where the eigenfrequencies, the resonance and antiresonance frequencies, and 

the normal modes are computed. 

3. Harmonic analysis of a driven elastic or piezoelectric structure, or 

the scattering of an arbitrary incident wave by an elastic or piezoelectric 

structure. 

A scattered wave analysis of a spherical pressure wave incident on a solid 

structure is required to investigate the performance of the radiation boundary 

elements, and is presented in the following section. 

2.       Harmonic Analysis of a Solid Structure Excited by an 
Impinging Wave 

In this type of analysis, the real and imaginary parts of the pressure field 

(P), the displacement field (U), the potential (O), and the electric current 0©Q) 

are computed. The pressure (P) and the flux pc2¥, are split into incident and 

scattered parts.   The normal derivative of the incident pressure on the surface 

boundary S is written i»|=p]—\ where [D] is a matrix obtained by assembling the 
—        3n 

damping elements on the surface, provided by the code. 



The incident pressure field  (P|)  is provided via a FORTRAN function 

"INCPRE (x,y,z,k)", included at the end of the main program by the user as 

shown in Appendix B, after [Ref 2]. Utilization of a user-provided incident 

pressure allows the excitation of the structure with an incident wave of any kind, 

while the default function provided with ATILA generates a plane wave ejkx 

traveling from the positive to the negative direction along the Ox axis (ejmt time 

harmonic dependence is assumed). 

By assigning a specific entry in the ATILA code, we are able to compute 

the total pressure or just the scattered one, utilizing the "TOTAL" or 

"SCATTERED" attribute, respectively. 

The equations of elasticity in the structure, the Helmoltz equation in the 

fluid, and Poisson's equation in the solid material are written in matrix form : 

([Kuu]-co2[M])    [KU<J 

[Ku*] [Kw] 

-[L]T [0]T 

-[L] 

[0] 

_[H]__jMiL 
pVco2     p2c2 

y 

2   2    2 [G]Pe 

F-[L]Pi 

[D]    gPj ,,    [H] 
2„2    Sn     ^2„2„2 

p CO p C CO 

[Mil 
2   2 p V )P1 

where: 

pes: vector of the nodal values of the elastic scattered pressure field, 

P,: vector of the nodal values of the incident pressure field, 

[G]: frequency dependent complex linear matrix, 

[D]: matrix of the damping elements. 

Furthermore, the internal losses of the material used can be taken into 

account throughout a specified program entry "SKYLINE COMPLEX" and when 

no losses are required, with "SKYLINE REAL", respectively. 
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I. THREE DIMENSIONAL SPHERICAL MODELS 

A. INTRODUCTION 

In order to evaluate ATlLA's radiation boundary elements, we first 

developed a family of three-dimensional spherical models. These models 

simulate a spherical rigid structure surrounded by an infinite fluid environment. 

A total of five models were employed. All models are composed of an 

inner spherical boundary representing a rigid solid, several concentric spherical 

fluids layers, and an outer spherical boundary composed of radiation boundary 

elements (dampers), each representing a semi-infinite fluid region. 

B. DESCRIPTION OF MODELS 

The models developed are distinguished by their values of the inner 

radius a, the number and thickness L of each fluid layer, and the outer radius R. 

The appropriate dimensionless forms for these parameters are ka, kl_, kR, where 

k=— is the acoustic wavenumber.   Table 1 lists the properties of each model 
c 

used in the investigation. 

Model 1 had already been used in the calculation of the transition matrix 

for the scattering of acoustic waves from a thin elastic spherical shell [Ref. 2]. 

This model contains four fluid layers of two different thicknesses. To separately 

investigate the influence of each of the dimensionless parameters (ka, kR, kl_), 

four additional models were created. 

Model 2 serves as a reference model. Each of models 3 through 5 is 

distinguished from model 2 in that the value of only one of ka, kl_, kR is changed. 



Model 1 

Original 

Model 2 

Basic 

Model 3 

ka 

Model 4 

kL 

Model 5 

kR 

Wavenumber k in meters"1 2 1 1 1 1 

Radius a in meters 0.5 0.5 1.0 0.5 0.5 

Scatterers Radius ka 1.0 0.5 1.0 0.5 0.5 

Number of Fluid Layers 2 of 

L = 0.25 

2 of 

L = 0.5 

4 of 

L = 0.5 

3 of 

L = 0.5 

2 of 

L=1.0 

2 of 

L = 0.5 

Element's Size kL 1.0 0.5 0.5 1.0 0.5 

Radiation Boundary kR 4.0 2.5 2.5 2.5 1-5 

Table 1. Properties of each model used in the investigation. 

The solid structure is modeled by specifying a zero-flux or boundary 

condition on the scatterer surface (interface between solid and fluid domain). 

This is the default condition. 

For radiation problems, the fluid mesh outer limit must be spherical. 

Therefore, the surrounding solid structure fluid is modeled with a spherical 

surface of dimensionless radius kR = 2.5 or 1.5, for models 2 through 5. 

The fluid (water) is simulated by assuming the following properties: 

1. E=0.222*l010Pa  (Young's modulus) 

2. p=0.1*104kg/m3   (Density) 

3. v=0.0   (Poisson's Ratio) 

The whole solid structure and fluid mesh was constructed using fifteen- 

node, three-dimensional isoparametric right triangular prismatic elements 

(PRIS15) from the ATILA finite element library [Ref.3]. 

ATILA offers monopolar, dipolar, and multipolar radiation boundary 

elements. Multipolar damping elements were selected to terminate the fluid 

mesh outer radius and the appropriate condition was set in the data input file. 
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The multipolar damping element used is a six-node isoparametric triangular 

element (TRIA06R) and it has to be spherical and attached to the outer surface 

of the fluid mesh. 

The topology of the prismatic (PRIS15) and of the triangular (TRIA06R) 

elements are shown in Figures 3 and 4, respectively.   The numbers represent 

the nodes and the order of numbering required for each element. 

C.       MESH GENERATION 

The major limitation of the three-dimensional finite element model is the 

number of degrees of freedom (D.O.F.) available (displacement along the 

coordinate axes, rotation along the coordinate axes, pressure, electric or 

magnetic potential, and magnetic excitation currents). For this reason the 

models developed were limited by the number of nodes and elements that were 

allowed. 

Specifically, the number of nodes employed in the models ranged from 

1546 to 2346 for the structure and fluid mesh, and the total number of elements 

ranged from 216 to 360. Of these, 144 to 288 are fluid elements and 72 are 

damping elements. The fluid mesh is arranged in successive layers of various 

thicknesses. The original fluid mesh was divided into four layers, two of them 

with 0.25m thickness and the other two fluid layers with 0.5m thickness. 

Figure 5 shows a Mercator projection of the nodes and elements on the 

inner surface of the fluid. The node numbers and selected element numbers 

corresponding to this layer are given. 

For the mesh generation procedure all the nodes were specified using 

spherical coordinates with the origin at the center of the spherical structure. The 

mesh spacing was always less than a quarter of the acoustic wavelength used. 

The aspect ratio of each element according to the reference manual 

should be less than or equal to 3; in our models it is 1 to 4. 

11 



Figure 3. PRIS15F Element Topology. After Ref.[3] 

Figure 4. TRIA06R Element Topology. After Ref.[3] 
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Figure 5. Inner Surface Fluid Layer Model, Mercator Projection. 
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The internal angles of our elements were modeled between 30 and 90 

degrees while the reference manual states that these should lie between 30 and 

100 degrees. 

The mesh was built in such a way that adjacent elements, like elements 1 

and 2 shown in Figure 5, were able to share common nodes. The top side 

exploded mesh view of the three dimensional model created by ATI LA DEPL 

program is shown in Figure 6. 

The types of isoparametric elements used in the mesh generation are 

described in [Ref. 3] and listed in the following Table 2. 

Region Element Geometry 

Fluid PRIS15F 15-node triangular 

prism 

Radiation Damping TRIA06R 6-node triangular 

Table 2. Isoparametric Elements Used in The Three Dimensional Mesh 
Generation 
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Figure 6. Three Dimensional Spherical Model. Topside View 
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IV. RESULTS 

A.       EXACT ANALYTICAL RESULTS FOR SCATTERED PRESSURE WAVE 

The linearized homogenous wave equation for the propagation of sound 

in ideal (nonviscous) fluids and the time-independent, lossless Helmholtz 

equation for a pressure wave with time-harmonic dependence p(t,r)=p(r)*eja>t, at a 

position r=(r,e,(p) and time (t), is given by [Refs. 9, 10]: 

V2p(t,r)-4- ^-^ = 0 => V2p(r) + k2p(r) = 0 (1) 

The solution of the Helmoltz Equation (1) for the incident (Pin) and 

scattered (Psc) pressure fields in the spherical coordinate system shown in 

Figure 7 is given by Equations 2 and 3: 

i 

e       >^ 

(r,e,q>) 

y 

/   y 

 — y ""W 

X      *£ 

Figure 7. The Spherical Coordinates (r.ö.cp). 
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oo      n 
Z     Z 

n = Om = -n 
Pin(r,e,<p)=  Z^    Z   Pnm1-h(n

1)(kr)-Yn
m(e,<|)) 

CO n ,n\ 

Psc(r,6,cp)=  Z      I    Pnm2-h(n)(kr)-Ynm(6-*) (3) 
n = Om = -n \°) 

where: 

Pnm1 and Pnm2are the amplitudes of the n,m components of the incident 

and scattered waves, respectively, 

h™(kr) = the nth order spherical Hankel function of the first kind, 

h[,2)(kr) = the nth order spherical Hankel function of the second kind, 

Y™(e,<|>)  = the spherical harmonic of order n,m, which is related to the 

associated Legendre polynomial by the equation 

y   4TC      (n + m)! 

Application of boundary conditions on the inner surface of the spherical 

fluid mesh for vanishing of the pressure or its normal derivative, provides 

solutions for the scattered wave for the case of a pressure release or rigid 

surface. 

1.       Analytical   Expression  for the   Scattered   Pressure  from   a 
Pressure Release Spherical Surface 

The following equations apply for the n,m component: 

Pjn(r,e,cp)=Yn
m(e,(P)-hn(1)(kr) (4) 

Psc(r,e,(P)=[-hjl
1)(ka) / hj,2>(ka)] • Yn

m(9,(p) • hj^kr) (5) 
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where: 

a = the radius of the spherical shell, 

k = the wavenumber of sound, 

2.       Analytical Expression for the Scattered Pressure from a Rigid 
Spherical Surface 

The following equations apply: 

Pjn(r,0,(p)=Yjn(e,(P)-h}1
1)(kr), (6) 

Psc(r,e,(p)=[-^n
1)(ka)j /[hj1

2>(ka)j].Yj,1(eiq))-h(
n
2)(kr)> (7) 

where (hj,1)(ka))' and (h<,2)(ka))'are the spatial derivatives of hf,1)(kr) and h(
n
2)(kr) 

evaluated at the spherical surface. 

Appendix A contains a C program used to calculate analytically the values 

of the  pressure  scattered/radiated  from  a vibrating,  spherically symmetric 

surface, for the above boundary conditions [Ref. 11]. 

B.       NORMALIZED SCATTERED PRESSURE DEVIATION COMPUTED BY 
ATILA 
Using the requried ATILA input data file, the pressure scattered by a rigid 

spherical surface due to an incident spherical harmonic wave was computed. 

The results were compared with an exact analytical solution computed using the 

C program described in Appendix A. Accordingly, the limitations of the boundary 

elements were obtained. 

Since the scattered pressure is proportional to the incident pressure and 

has angular dependence, the error in the ATILA results at each finite-element 

node was quantified by normalizing the deviation from the exact value by the 

maximum magnitude of the scattered pressure at the same radius. This 

represents the normalized scattered pressure deviation computed by ATILA. 
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C.       RESULTS FOR THE THREE DIMENSIONAL SPHERICAL MODEL 
(MODEL 1) 

The following Figures 8 and 9 depict the results of the calculation for the 

original three-dimensional spherical model (model 1) that had been used in the 

previous investigation [Ref. 2].  In this model, the fluid is divided into four layers 

of thickness: 

1. Layer a: 0.25 m 

2. Layer b: 0.25 m 

3. Layer c: 0.5 m 

4. Layer d: 0.5 m 

The radius of the scattering (inner) surface (a) is 0.5m: the radius of the radiation 

boundary is 2.0m.  The frequency (f) is 474Hz; the corresponding wavenumber 

of sound in the water is k=—=2m~1. 
c 

Figure 8, from top to bottom, presents the normalized scattered pressure 

deviation computed by ATI LA using multipolar dampers for monopolar and 

dipolar incident pressure fields, versus the dimensionless radius (kr) from the 

center of the structure. Figure 9 presents the normalized scattered pressure 

deviation for the quadrupolar incident pressure field. 

The following Table 3 provides the normalized maximum error in 

percentages in the middle of each fluid layer and the angular location of that 

error for the monopolar, dipolar, and quadrupolar incident fields. 

Nodes located at the poles are points with coordinate spherical angles: 0 

(polar) = 000,180 and <p (azimuthal) = 000, degrees. Nodes located on the 

equator are points with coordinate spherical angles: G (polar) = 090 and <p 

(azimuthal) = 000,090,180,270 degrees. Near the equator, nodes are points with 

coordinate spherical angles: 0 (polar) = 075,105 and 9 (azimuthal) = 

090,180,270 degrees. 
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Figure 8. Normalized scattered pressure deviation computed by ATILA versus kr 
for monopolar and dipolar incident fields. 
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NORMALIZED SCATTERED PRESSURE DEVIATION COMPUTED BY 
ATILA USING MULTIPOLAR DAMPERS 
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Figure 9. Normalized scattered pressure deviation computed by ATILA versus kr 
for quadrupolar incident field. 
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Type of 

Field 

Scatterer 

Surface 

ka=1.0 

Center 

of 

Layer a 

kr=1.25 

Center of 

Layer b 

kr=1.75 

Center of 

Layer c 

kr=2.5 

Center of 

Layer d 

kr=3.5 

Maximum 

Normalized 

Error 

kr=1.5 

Monopolar 

m=n=0 

2.6 

Poles 

3.8 

Poles 

5.7 

Poles 

7.8 

Poles 

5.8 

Poles 

8.6    kr=3.0 

Poles 

4.6 

Poles 

Dipolar 

n=1, m=0 

2.2 

Poles 

3.0 

Poles 

5.0 

Poles 

9.2 

Poles 

8.5 

Poles 

11.8kr=3.0 

Poles 

3.9 

Poles 

Dipolar 

n=1, m=±1 

1.8 

Equator 

2.2 

Equator 

3.6 

Equator 

5.1 

Equator 

4.0 

Equator 

5.7 kr=3.0 

Equator 

3.0 

Equator 

Quadrupolar 

n=2, m=0 

0.3 

Poles 

0.4 

Poles 

0.8 

Poles 

2.7 

Poles 

5.3 

Poles 

5.8 kr=3.0 

Poles 

0.6 

Poles 

Quadrupolar 

n=2, m=±1 

0.3 

Equator 

0.4 

Equator 

0.5 

Equator 

0.9 

Equator 

3.7 

Equator 

3.6 kr=3.5 

Equator 

0.5 

Equator 

Quadrupolar 

n=2, m=±2 

0.3 

Near 

Equator 

0.5 

Near 

Equator 

0.9 

Near 

Equator 

1.9 

Near 

Equator 

3.6 

Near 

Equator 

3.6 kr=3.5 

Near 

Equator 

0.5 

Near 

Equator 

Table 3.   Percent normalized scattered pressure deviation and location of the 
maximum error for monopolar, dipolar and quadrupolar incident fields. 

From the above table and Figures 8 and 9, it can be concluded that: 

1. The greatest normalized errors appear for the following type of 

fields: 

a. Monopolar, n=m=0: 8.6% at kr=3.0 

b. Dipolar, n=1, m=0: 11.8% at kr=3.0 

c. Quadrupolar, n=2, m=0: 5.8% at kr=3.0 

2. For the above axisymetrical incident pressure fields the 

corresponding location of the maximum error points is close to the poles and 

exactly on the poles for the scatterer's surface and on the poles for each layer, 

respectively. 
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3. For the cases, where the maximum error points appear on the 

equator or near the equator (dipolar n=1, m=±1, quadrupolar n=2, m=±1), the 

location of the minimum error points is on the poles. 

4. If the maximum error points are ignored for the monopolar and 

dipolar fields then the maximum normalized error is always less than 4%. 

5. If the maximum error points are ignored for the quadrupolar field 

then the maximum normalized error is always less than 3.5%. 

6. The normalized scattered pressure deviation computed by ATILA 

as it is presented in Figures 8 and 9 appears to increase when moving further 

away from the acoustic center. 

The above results for the monopolar, dipolar and quadrupolar incident 

fields indicate that, for a given value of n, the maximum normalized errors occur 

for the axially symmetric type of fields (i.e., for m = 0). Hence, in investigating 

the influence of the fluid mesh inner radius (ka), the element's size (kl_), and the 

fluid mesh outer radius (kR) on the results, only the axially symmetric incident 

waves were analyzed. 

D.       INFLUENCE OF FLUID MESH INNER RADIUS 

In order to evaluate the influence of fluid mesh inner radius on the results, 

models 2 and 3 were used. Recall that model 2 is divided into four equal fluid 

layers of thickness L=0.5m and the scatterer's radius is 0.5m. Model 3 is divided 

into three equal fluid layers of thickness L=0.5m and scatterer's radius 1.0m. For 

both cases, the radiation boundary and element's size satisfy kR=2.5 and 

kL=0.5, with k = 1.0m"1 and R=2.5m. 

Figure 10 presents the influence of the scatterer's radius (ka) on the 

normalized scattered pressure deviation, versus kr. The monopolar (a,b), dipolar 

(c,d) and quadrupolar (e,f) fields are shown from top to bottom. On the left side 

the scatterer radius is ka=0.5 and on the right side the scatterer radius is ka=1.0. 
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Figure 10. Normalized scattered pressure deviation computed by ATILA versus 
kr. From top to bottom monopoloar (a,b), dipolar (c,d) and quadrupolar (e,f) 
incident field; on the left: scatterer radius ka = 0.5; on the right: scatterer radius 
ka = 1.0, radiation boundary R and element size L satisfy: kR = 2.5 and kl_ = 0.5 
for all cases. 
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Table 4 summarizes the results for the maximum error in percent in the 

middle of each layer and the node location for the monopolar, dipolar and 

quadrupolar incident fields when the scatterer radius ka varies and kL and kR do 

not. 

Type of Scatterer Center of Center of Center of Center of Maximum 

Field Surface Layer   a Layer b Layer c Layer d Normalized kr=1.5 

kr=0.75 kr=1.25 kr=1.75 kr=2.25 Error 

Monopolar Poles Poles Poles Poles Poles Poles Poles 

n=m=0 

ka=1.0 2.4 — 3.5 5.8 5.7 7.0 kr=2.0 4.6 

ka=0.5 1.7 2.9 4.9 6.9 5.9 7.8 kr=2.0 5.7 

Dipolar Poles Poles Poles Poles Poles Poles Poles 

n=1, m=0 

ka=1.0 1.5 — 1.9 3.3 3.8 4.2 kn=2.0 2.5 

ka=0.5 0.5 0.6 1.8 3.0 3.9 4.0 kr=2.0 2.2 

Quadrupolar Poles Poles Poles Poles Poles Poles Poles 

n=2, m=0 

ka=1.0 0.4 — 0.6 1.4 2.8 4.1 kr=2.5 0.9 

ka=0.5 0.2 0.3 0.5 1.2 2.6 4.1 kr=2.5 0.7 

Table 4. Percent normalized scattered pressure deviation and location of the 
maximum error for monopolar, dipolar and quadrupolar incident pressure field 
when ka=1.0 and ka=0.5, radiation boundary kR=2.5, element's size kL=0.5., 

From this table and Figure 10 it is observed that: 

1.        For the monopolar field: 

a. The normalized error at a given value of kR decreases as ka 

is increased from 0.5 to 1.0. 

b. The maximum error decreases as the scatterer radius ka is 

increased from 0.5 (7.8%) to 1.0 (7.0%). 

c. For both cases, the maximum error occurs at kR=2.0. 

d. If the maximum error points (poles) are disregarded, then 

the maximum error is less than or equal to 4%. 
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2. For the dipolar field: 

a. The normalized error at kr = 1.0 increases by a factor of 5, 

from about 0.3% to about 1.5% as the scatterer radius ka is increased from 0.5 

to 1.0. 

b. The normalized error at all other radii is essentially 

unchanged by varying ka. 

c. The maximum error still occurs at kr=2.0 as it occurred for 

the monopolar field. 

d. When the maximum error points (poles) are disregarded 

then the maximum error is less than 3%. 

3. For the quadrupolar field: 

a. The normalized error at a given node shows very little 

dependence on the value of ka. 

b. The maximum error remains the same (4.1%) as the 

scatterer radius ka is increased from 0.5 to 1.0, from the acoustic center 

c. For both cases, if the maximum error points are disregarded 

then the error is less than 2%. 

For the above dipolar and quadrupolar fields, the minimum error appears 

on the equatorial points. Moreover, from Figure 10, very similar deviation curves 

for the monopolar (a,b), dipolar (c,d) and quadrupolar (e,f) fields, for ka=0.5 and 

ka=1.0 are observed. Also, we observe that the maximum normalized error on 

the scatterer's surface increases as the scatterer's radius increases. 

E.       INFLUENCE OF FLUID MESH ELEMENT SIZE 

In order to evaluate the influence of fluid mesh element size on the 

results, we used models 2 and 4. Recall that model 2 is divided into four equal 

fluid layers of thickness L=0.5m while model 4 is divided into two equal fluid 

layers of thickness L=1.0m. For both cases, the radiation boundary and 

scatterer's radius satisfy kR=2.5 and ka=0.5, with k = 1.0m~1, R=2.5m and 

a=0.5m. 

27 



Figure 11 presents the influence of the element's size (kl_) on the 

normalized scattered pressure deviation, versus kr. The monopolar (a,b), dipolar 

(c,d), and quadrupolar (e,f) fields are shown from top to bottom. On the left side 

the element's size is kl_=0.5 and on the right side the element's size is kl_=1.0. 

Table 5 summarizes the results for the maximum error in percent on the 

scatterer's surface, in the middle and at the end of each layer and the node 

location for the monopolar, dipolar and quadrupolar fields, when the element's 

size varies and kR, ka do not. 

Type of Scatterer Maximum 

Field Surface Normalized 

ka=0.5 kr=1.0 kr=1.5 kr=2.0 kr=2.5 Error kr=1.5 

Monopolar Poles Poles Poles Poles Poles Poles Poles 

n=m=0 

kl_=1.0 1.2 4.1 6.3 6.3 4.5 6.3 kr=2.0 6.3 

kl_=0.5 1.7 3.8 5.7 7.9 3.8 7.9 kr=2.0 5.7 

Dipolar Poles Poles Poles Poles Poles Poles Poles 

n=1, m=0 

kl_=1.0 0.7 1.0 2.6 3.3 3.9 3.9 kr=2.5 2.6 

kL=0.5 0.6 0.5 2.2 4.0 3.6 4.0 kr=2.0 2.2 

Quadrupolar Poles Poles Poles Poles Poles Poles Poles 

n=2, m=0 

kL=1.0 0.2 0.6 0.9 1.7 4.2 4.2 kr=2.5 0.9 

kL=0.5 0.2 0.6 0.7 1.9 4.0 4.0 kr=2.5 0.7 

Table 5. Percent normalized scattered pressure deviation and location of the 
maximum error, for monopolar, dipolar and quadrupolar incident pressure field, 
when kL=1.0 and kL=0.5, scatterer radius ka=0.5, radiation boundary kR=2.5. 
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Figure 11. Normalized scattered pressure deviation computed by ATILA versus 
kr. From top to bottom monopolar (a,b), dipolar (c,d) and quadrupolar (e,f) 
incident field; on the left: element size kl_ = 0.5: on the right: element size kL = 
1.0. Scatterer radius a and radiation boundary R satisfy: ka = 0.5 and kR = 2.5 
for all cases. 
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From this table and Figure 11 we observe that: 

1. For the monopolar field: 

a. On the scatterer's surface ka=0.5, as the element's size is 

increased, the maximum error decreases slightly from 1.7% to 1.2%. 

b. The maximum error at each layer becomes greater as kL is 

increased, except at the maximum deviation point, at kr=2.0. 

c. For both cases the maximum error occurs at kr=2.0. 

d. Once the maximum error points (poles) are disregarded, 

then the maximum error is less than or equal to 4%. Also, in that case, the 

corresponding deviation for both cases is similar. 

2. For the dipolar field: 

a. On the scatterer's surface for both cases the deviation is 

almost the same. 

b. As the element's size is increased, the error increases 

except at the maximum deviation point at kr=2.0. 

c. The maximum deviation for kl_=0.5 occurs at kr=2.0, while 

for kl_=1.0 it occurs at kr=2.5. 

d. When the maximum error points (poles) are disregarded, 

then the maximum deviation is very similar and less than 3% for both cases. 

3. For the quadrupolar field: 

a. On the scatterer's surface, ka=0.5, the maximum deviation 

for both cases is 0.2%. 

b. For both cases, the variation in the normalized deviation 

follows the same trend, and corresponding values are very close to each other. 

c. For both cases, when the maximum error points are 

disregarded, the deviation is less than 2%. 

d. The maximum deviation occurs at kr=2.5 for both cases. 

F.        INFLUENCE OF FLUID MESH OUTER RADIUS 

In order to evaluate the influence of the mesh outer radius, we used 

models 2 and 5.   Model 2 is the reference model and is divided into four equal 
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fluid layers of thickness L=0.5m, while model 5 is divided into two equal fluid 

layers of thickness L=0.5m. For both cases, the scatterer radius a and elements 

size L, satisfy ka=0.5 and kl_=0.5, for k = 1.0m~1 and a=0.5m. 

Figure 12, presents the influence of the radiation boundary (kR) on the 

normalized scattered pressure deviation versus kr. The monopolar (a,b), dipolar 

(c,d) and quadrupolar (e,f) fields are shown from top to bottom. On the left side 

the radiation boundary is kR=1.5 and on the right side the radiation boundary is 

kR=2.5. 

Table 6 summarizes the results for the maximum error in percent in the 

middle of each layer and the node location for the monopolar, dipolar and 

quadrupolar fields when the radiation boundary kR varies and kl_ and ka are the 

same. 

It is observed from this table and Figure 12 that: 

1. For the monopolar field: 

a. At a given radius, the error increases as the radiation 

boundary kR is increased. For example, in the case where kR=2.5, the error is 

100% greater than the corresponding error when kR=1.5 at the location where 

kr=1.5. 

b. At the outer fluid boundary, the error remains almost the 

same (2%) when the maximum error points (poles) are disregarded. 

c. When kR=1.5, the maximum error occurs at the outer radius 

surface points. On the other hand, when kR=2.5, the maximum error occurs at 

kr=2.0. 

2. For the dipolar field: 

a. The error decreases drastically as we increase the radiation 

boundary kR and becomes almost 100% lower at the boundary for kR=2.5. 

b. The maximum error still occurs at the same radius as it does 

for the monopolar field. 
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Figure 12. Normalized scattered pressure deviation computed by ATI LA versus 
kr. From top to bottom monopolar (a,b), dipolar (c,d) and quadrupolar (e,f) 
incident field; on the left: radiation boundary at kR = 1.5; on the right: radiation 
boundary at kR = 2.5; scatterer radius a and element size L satisfy: ka = 0.5 and 
kL = 0.5 for all cases. 
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Type of Scatterer Center of Center of Center of Center of Maximum 

Field Surface Layer a Layer b Layer c Layer d Normalized kr=1.5 

ka=0.5 kr=0.75 kr=1.25 kr=1.75 kr=2.25 Error 

Monopolar Poles Poles Poles Poles Poles Poles Poles 

n=m=0 

kR=1.5 0.8 1.4 2.3 — — 2.3kr=1.5 2.3 

kR=2.5 1.7 2.9 4.9 6.9 5.9 7.8 kr=2.0 5.7 

Dipolar Poles Poles Poles Poles Poles Poles Poles 

n=1, m=0 

kR=1.5 0.8 1.6 5.3 — — 8.1 kr=1.5 8.1 

kR=2.5 0.5 0.6 1.8 3.0 3.9 4.0 kr=2.0 2.2 

Quadrupolar Poles Poles Poles Poles Poles Poles Poles 

n=2, m=0 

kR=1.5 0.2 0.2 1.6 — — 4.8kr=1.5 4.8 

kR=2.5 0.2 0.3 0.5 1.2 2.6 4.1 kr=2.5 0.7 

Table 6. Percent normalized scattered pressure deviation and location of the 
maximum error for monopolar, dipolar and quadrupolar incident fields, when 
kR=1.5 and kR=2.5, scatterer radius ka=0.5 and element size kl_=0.5. 

c. Once again, if we disregard the maximum error points 

(poles), for kR=2.5, the error is always less or equal to 3%. On the other hand, 

for kR=1.5, the error is less than 7%. 

d. The minimum error points for both cases appear on the 

equator. 

3.        For the quadrupolar field: 

a. At a given radius, the error decreases as the radiation 

boundary increases. 

b. The maximum error for kR=1.5 and kR=2.5 occurs on the 

outer boundary surface. 

c. For both cases, if the maximum error points (poles) are 

disregarded the error is always less than 2%. 

33 



d.        Finally, the minimum error for both cases appears on the 

equatorial points. 

G.       SUMMARY OF RESULTS 

The detailed analyses developed for the five models listed in Chapter III, 

Table 1, indicate that: 

1. For the original three dimensional model (model 1), the maximum 

deviation occurs close to or at the poles for the axially symmetric monopolar 

(8.6%), dipolar (11.8%) and quadrupolar (6%) incident pressure fields. Also, the 

minimum deviation points are at equatorial nodes. Moreover, for the non-axially 

symmetric incident fields, the maximum deviation is less than 5.5% and occurs at 

equatorial points, while the minimum deviation occurs at points located at the 

poles. 

2. Further investigation of the influence of the fluid mesh inner radius 

(ka), the element's size (kl_), and the fluid mesh outer radius (kR), on the results 

for axially symmetric incident pressure fields, revealed that: 

a. For monopolar and dipolar incident fields, when the poles 

are disregarded: 

(1) As the radiation boundary kR increases while ka and 

kL remain constant, the maximum deviation decreases by approximately the 

same amount in percent. This occurs specifically from 6.6% when kR=1.5, to 

4% when kR=2.5, for ka=0.5 and kl_=0.5, respectively, which corresponds to 

65%. 

(2) As the scatterer's radius ka increases, while kL and 

kR remain constant, the maximum deviation decreases by a small amount in 

percent. This occurs, specifically, from 4% when ka=0.5, to 3.7% when ka=1.0, 

for kl_=0.5 and kR=2.5, respectively, which corresponds to 8%. 

(3) As the element's size kL increases, while ka and kR 

remain constant, the maximum deviation remains constant. 

b. For a quadrupolar incident field, the maximum deviation 

remains essentially the same between 1.9% and 1.8%. 
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Table 7, which combines three tables, summarizes our results for the 

maximum normalized error in percent, when the poles are disregarded, and the 

type of field for which this error occurs. Also, from this table it can be observed 

that the maximum deviation occurs for monopolar and dipolar axially symmetric 

incident fields. 

ka=0.5 kL=0.5 kl_=1.0 

kR 

1.5 

6.6 

Dipolar 

kR 

2.5 

4.0 

Monopolar 

4.0 

Dipolar 

kL=0.5 ka=0.5 ka=1.0 

kR 

1.5 

6.6 

Dipolar 

kR 

2.5 

4.0 

Monopolar 

3.7 

Monopolar 

kR=2.5 kl_=0.5 kL=1.0 

ka=0.5 4.0 

Monopolar 

4.0 

Dipolar 

ka=1.0 3.7 

Monopolar 

Table 7. Percent normalized maximum scattered pressure deviation and type of 
incident pressure field, when poles are disregarded, computed by ATILA. 

35 



36 



V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER 
INVESTIGATION 

A.       CONCLUSIONS 

Five three-dimensional spherical models were developed in order to 

evaluate the radiation boundary elements used in the ATILA finite element code. 

The models simulate a rigid spherical solid structure surrounded by an infinite 

fluid. 

Monopolar, dipolar, and quadrupolar incident spherical pressure wave 

fields were imposed, and the scattered pressure was calculated using ATILA. 

Since the scattered pressure is proportional to the incident pressure and has 

angular dependence, the error in the ATILA results at each finite-element node 

was quantified by normalizing the deviation from the exact value by the 

maximum magnitude of the scattered pressure at the same radius. This 

represents the normalized scattered pressure deviation computed by ATILA. 

The range of values of the dimensionless lengths which characterized the 

problem was: 

The fluid mesh inner radius ka (scatterer radius): 2.0 , 1.0 , 0.5 

The fluid mesh element size kL: 0.5 , 1.0 

The radiation boundary kR: 4.0 , 2.5 , 1.5 

The maximum deviations observed were for the axially symmetric 

monopolar (9%), dipolar (12%), and quadrupolar (6%) incident pressure fields. 

For these cases, it can be concluded that the maximum deviation points are at 

the poles, while the minimum deviation occurs on the equatorial points. 

When the poles are disregarded, for the monopolar and dipolar incident 

pressure fields there is a strong influence of the fluid mesh outer radius (kR) and 

a weak influence of the fluid mesh inner radius (ka) on the results. Specifically, 

as the fluid mesh outer radius increases and/or the fluid mesh inner radius 

increases then the normalized scattered pressure deviation decreases.   For the 
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quadrupolar field, the maximum deviation remains essentially constant, 

independent of the above factors (ka, kR). Furthermore, variation of the 

elements size (kL) does not affect the maximum normalized scattered pressure 

deviation. 

Moreover, for the non-axially symmetric incident pressure fields, the 

maximum deviation observed was less than 5.5%, and was found to occur at 

nodes on the equator, while the minimum deviation points were located at the 

poles. 

B.       SUGGESTIONS FOR FURTHER INVESTIGATION 

The magnitudes of the errors in the scattered pressures computed by 

ATILA were larger than expected, based upon the mesh sizes employed in the 

models; for all of the models the radial length L of the fluid elements was less 

than 1/6 wavelength. It would have been desirable to examine the calculated 

scattering for a more refined mesh. However, to divide the element scale size by 

a factor of 2 would have resulted in models which exceed the allowed number of 

degrees of freedom. Of course, this is because all the models employed were 

fully three-dimensional, and did not make use of any possible reductions in size 

due to wave function symmetry (in fact, our choice of eJ* for the azimuthal wave 

function precluded reduction in that direction). Also, we are interested in the 

computed scattering in all of the spherical harmonic wave components for an 

incident wave of only one component. 

It is suggested that further investigation of the performance of the ATILA 

radiation boundary elements be conducted using two-dimensional models. It 

might also be advantageous to use sin <|> or cos (j> instead of eim<p to represent the 

azimuthal dependence. This will allow a finer mesh to be employed, and a 

broader range of values of ka, kL, and kR to be examined. 

38 



APPENDIX A. C CODE FOR ANALYTICAL PRESSURE 
SCATTERED CALCULATION 

************************************************************************ 

* PROGRAM SCHAR.C , by Panagiotis Sinanoglou 2/2/1996 
* Program:Computes the Scattered Spherical Harmonic pressure from a rigid 
* spherical structure at the point r1(x,y,z), for the Wavenumber k, for: 
* natural boundary and pressure release condition 
* Input Variables: 
* x,y,z: Cartesian Coordinates of the Node Point. 
* k: Wavenumber. 
* r2: Radius of the Scatterer's Surface. 

n,m: Orders of Spherical Hankel and Legendre functions. 
* Output Variables: 
* r1: Radius in meters. 
* phi: Azimouthial angle in degrees. 
* theta: Polar angle in degrees. 
* rp5: Real part of computed scattered pressure at r1 in pascals 
* rp6: Imaginary part of computed scattered pressure   at r1 in pascals 
* Formula for Incident Wave: Pinc=Pnm(costheta)*eA(imphi)*hn(1)(kr2) 
* Formula for Scattered Wave from Rigid Boundary: 
* Psc=-Pnm(costheta)*eA(imphi)*[hn'(1 )(kr2)/hn'(2)(kr2)]*hn2(kr1) 
* Formula for Scattered Wave from Pressure Release Surface: 
*Psc=-Pnm(costheta)*eA(imphi)*[hn(1)(kr2)/hn(2)(kr2)]*hn2(kr1) 
* External Functions: sphbes.c, plgndr.c, bessjy.c, beschb.c, chebev.c, 

complex.c, nrutil.c 
* Header Files for prototype function declaration:nr.h nrutil.h,complex1.h 
* Functions: 
* Normalized Legendre[ plgndr(n,m,x) ],Spherical Hankel for the 
* real and the imaginary parts[ sphbes(n,(k*r2),&xsj,&xsy,&xsjp,&xsyp) ], 
* Complex(structures)[ Cexp(mphi), Cdiv(a,b), Cmul(a,b), RCmul(a,b) ] 
* File nphra33n.c provides node coordinates(x,y,z). 
* File dimldt stores the corresponding spherical coordinates(r1,theta,phi) 
* File dim13.dt stores the Legendre plgndr(n,m,(z/r1). 
* File dim11 .dt stores the real,imaginary part of exp. function eA(imphi). 
* File dim14.dt stores the ratio of the derivatives of the Spherical Hankel for the 

real and 
* imaginary part of hn'(1)(kr2)/hn'(2)(kr2) for natural boundary conditions and the 

ratio of 
*hn(1)(kr2)/hn(2)(kr2) for pressure release.evaluated at the scattering surface, at 
r2=0.5m. 

* File dim15.dt stores the real and the imaginary part of the Spherical 
* Hankel hn2(kr1) at the node range r1. 
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* File dim16.dt stores the real and the imaginary part of the scattered pressure 
Psc, at the * range r1. 

********************************************************************** 

#include <stdio.h> 
#include <math.h> 
#include<string.h> 
#include<stdlib.h> 
#include "complexl.h" 
#define NRANSI 
#include "nr.h" 
#include "nrutil.h" 
#define pi 3.141592654 

main() 
{ 

FILE *f1; FILE *f3; FILE *f2;   FILE *f4; FILE *f5;FILE *f6;FILE *f7; 
FILE *f20; FILE *f21;FILE*f22; 
fcomplex a,b,hn2; 
float r2=0.5,k=2.0; 
float sj,sy,sjp,syp,xsj,xsy,xsjp,xsyp,rp1 ,rp2,rp3,rp4,rp5,rp6; 
intj.rpm; 
float fac,val,t,f11,f12,f13lf14,Pnm,s1,s2; 
unsigned int factorial(unsigned int a); 
double x,y,z,z1 ,r,M ,theta,phi,q,mphi; 
intd,i,N,ch,m,n; 
charg[11],h[11],c[11],e[11],f[11]; 

f3=fopen("dim1.dt","w"); 
printf("Enter the integer valuesfor N,n,m\n"); 
scanf("%d %d %d",&N,&n,&m); 
f4=fopen("sphra33b.c","r"); 
f5=fopen("dim11.dt,,,"w"); 
f6=fopen("dim12.dt","w"); 
f7=fopen("dim13.dt","wM); 
f20=fopen("dim14.dt","w"); 
f21=fopen("dim15.dt","w"); 
f22=fopen("dim16.dt","w"); 

for(i=0; i<N; ++i) 
{ 
fscanf(f4,"%lf %lf %lf %d 

%lf%s%s%s%s%s\n,,,&x,&y)&z,&d,&q,&g,&h,&c,&e,&f); 
/* Converts from cartesian(x,y,z) to spherical coordinates(r1,theta,phi).*/ 

if((x>0.0 && y>=0.0)) 
{r1=sqrt(x*x+y*y+z*z); 
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phi=atan(y/x); 
theta=acos(z/r1);} 

else if(x==0.0 && y==0.0 && z==0.0) 
{r1=0.0;theta=0.0;phi=0.0;} 

else if (x==0.0 && y==0.0 && z!=0.0) 
{r1=sqrt(x*x+y*y+z*z); 
phi=0.0; 
r1 =sqrt(x*x+y*y+z*z); 
theta=acos(z/r1);} 

else if(x==0.0 && y>0.0 &&(z==0.0||z!=0.0)) 
{phi=pi/2; 
r1 =sqrt(x*x+y*y+z*z); 

theta=acos(z/r1);} 
else if(y==0.0 && x<0.0 ) 

{phi=pi; 
r1 =sqrt(x*x+y*y+z*z); 

theta=acos(z/r1);} 
else if(y<0.0 && x==0.0) 

{phi=3*(pi/2); 
r1 =sqrt(x*x+y*y+z*z); 

theta=acos(z/r1);} 
else if ((x<0.0 && y>0.0)) 

{phi=+(pi)+atan(y/x); 
r1 =sqrt(x*x+y*y+z*z); 

theta=acos(z/r1);} 
else if (x<0.0 && y<0.0) 

{phi=pi+atan(y/x); 
r1 =sqrt(x*x+y*y+z*z); 

theta=acos(z/ii);} 
else if (x>0.0 && y<0.0) 

{phi=(2*pi)+atan(y/x); 
r1 =sqrt(x*x+y*y+z*z); 

theta=acos(z/r1);} 

theta=theta*(180/pi); 
phi=phi*360/(2*pi); 
fprintf(f3," %+4.3lf %+6.3lf %+6.3lf\n",ii,(theta),(phi)); 

/* The required value of xx=cos(theta) for the Pnm(xx) is: (z/r1) */ 
/* Calculates the Normalized Legendre function "plgndr(n,m,(z/r1) */ 

fprintf(f7,"%4s %4s %10s %24s\n","n,,,"m,,,"x","plgndr(n,m,x)"); 
rpm=abs(m); 

if(m>=0 ) 
{f 13=factorial(n-m); 

f14=factorial(n+m); 
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s1 =sqrt((2*n+1 )*f 13/(4*pi*f 14)); 
Pnm=(plgndr(n,m,(z/r1))*s1); 

fprintf(f7,"%4d %4d %13.6lf %19.6e\n",nfm,(z/r1),Pnm); 
} 

if(m<0) 
{f13=factorial(n-rpm); 
f14=factorial(n+rpm); 
s2=sqrt((2*n+1)*f14/(4*pi*f13)); 
f11=factorial(n-rpm); 
f 12=factorial(n+rpm); 
r=pow(-1,rpm); 
t=r*(f11/f12); 
Pnm=(plgndr(n,rpm,(z/r1))*t*s2); 

fprintf(f7,"%4d %4d %13.6lf %19.6e\n",n,m,(z/r1),Pnm); 

} 
/* Calculates the eA(imphi) Real/lmagin parts */ 

mphi=(m*phi)*2*(pi/360); 
fprintf(f6,"%lf %lf \n",Cexp(mphi).r,Cexp(mphi).i); 

/* Calculates the (z/r1),phi(degrees) */ 
fprintf(f5,"%+6.3lf %+6.3lf \n",(z/r1),(phi)); 

/* Calculates the ratio of the Spherical Hankel for the real and the imaginary 
parts    */ 
/* of hn'(1)(kr2)/hn'(2)(kr2) on the scattering surface at r2=0.5 for N.B.C , or the 
7 
/* ratio of hn(1)(kr2)/hn(2)(kr2) for pressure release condition 
*/ 

sphbes(n,(k*r2),&xsj,&xsy,&xsjp,&xsyp); 
a.r=xsjp; /*   a.r=xsj;   */ 
a.i=xsyp; /*    a.i=xsy; */ 
b.r=xsjp; /*   b.r=xsj;   7 
b.i=-xsyp; /*   b.i=-xsy; 7 

fprintf(f20,"%30s \n","The real and the imag. of hn'(1)/hn'(2) is:"); 
fprintf(f20,"%f %f \n",Cdiv(a,b).r,Cdiv(a,b).i); 

/* Calculates The real and the imag. of hn2(kr1) 7 
sphbes(n,(k*r1),&xsj,&xsy,&xsjp,&xsyp); 

hn2.r=xsj; 
hn2.i=-xsy; 

fprintf(f21,"%30s \n","The real and the imag. of hn2(r1) is:"); 
fprintf(f21,"%f %f \n",hn2.r,hn2.i); 

/* Calculates The real and the imag.parts of the scattered pressure at the 7 
/* radius (r1) :Psc=-Pnm(costheta)*eA(imphi)*[hn'(1)(kr2)/hn,(2)(kr2)]*hn2(kr1)7 

rp5=Cmul(RCmul(-Pnm,Cmul(Cdiv(a,b),Cexp(mphi))),hn2).r; 
rp6=Cmul(RCmul(-Pnm,Cmul(Cdiv(a,b),Cexp(mphi))),hn2).i; 

42 



fprintf (f22, "%f %f\n", rp5, rp6); 
} 

fclose(f4); 
fclose(f3) 
fclose(f5) 
fclose(f6) 
fclose(f7) 
fclose(f20) 
fclose(f21) 
fclose(f22) 
return 0; 

} 
#undef NRANSI 

unsigned int factorial(unsigned int a) 
{ 

if((a==1)||(a==0)) 
return 1; 

else 
{a*=factorial(a-1); 
return a; 
} 

} 
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APPENDIX B. FUNCTION INCPRE(X,Y,Z,K) 

FUNCTION INCPRE(X,Y,Z,K) 

* PROGRAM BY ARTHUR LOBO DA COSTA RUIZ 12/23/93 
* MODIFIED BY STEVEN R. BAKER 3/4/96 
* 

* FUNCTION: 
* COMPUTES THE INCIDENT SPHERICAL HARMONIC PRESSURE AT THE 
*POINT (X,Y,Z),FOR THE WAVENUMBER K 
* VARIABLES INPUT: 

X.Y.Z: CARTESIAN COORDINATES OF THE POINT 
K: WAVENUMBER 

* VARIABLES OUTPUT: 
RADIUS: R IN METERS 
PHI IN DEGREES (HORIZONTAL ANGLE) 
THETA IN RADIANS (AZIMUTAL ANGLE) 
INCPRE : PRESSURE AT POINT IN PASCAL 

* 

* FORMULA USED: 
* 

* INCPPRE= H1(N)*P(M,N)*DCMPLX(DCOSD(M*PHI),DSIND(M*PHI)) 
* THIS MAKES AN OUTGOING INCIDENT WAVE FOR EAIWT TIME 
* DEPENDENCE, AS FOR ATILA 

DOUBLE PRECISION K.X.Y.Z.R.PHIJHETA.KR 
REAL*8 F1,PMN(-2:2,0:2),LOUT 
INTEGER N.M.NMAX 
COMPLEX*16 INCPRE,H1(0:2),H1OUT 

* N AND M ARE ORDERS FOR HANKEL AND LEGENDRE FUNCTIONS 
N=0 
M=0 

* H10UTAND LOUT ARE HANKEL AND LEGENDRE OUTPUTS 
* REFTONANDM 

NMAX=2 
* TRANSFORM CARTESIAN COORDINATES (X,Y,Z) 
* INTO SPHERICAL COORDINATES 
* R(RADIUS), PHI(AZIMUTAL ANGLE) AND THETA(POLAR ANGLE) 

R=DSQRT(X*X+Y*Y+Z*Z) 
PHI=DATAN2D(Y,X) 
IF((X.EQ.0).AND.(Y.EQ.0))PHI=0.0D0 
THETA=DACOS(Z/R) 
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KR=K*R 
* NMAX IS THE MAXIMUM NUMBER OF HARMONICS 

CALL HANKEL1(KR,NMAX,H1) 
* SUBROUTINE HANKEL1 RETURNS SPHERICAL HANKEL 
* FUNCTIONS OF THE FIRST KIND JN + I YN 

CALL LEGNDR(THETA,NMAX,PMN) 
LOUT=F1(N,M)*PMN(M,N) 

* SUBROUTINE LEGNDR RETURNS ASSOCIATE LEGENDRE FUNTION 
H10UT=H1(N) 
INCPRE=H10UT*LOUT*DCMPLX(DCOSD(M*PHI),DSIND(M*PHI)) 
IF ((R.LE.0.501).AND.(R.GT.0.499)) THEN 

* PRINT *,"X,Y,Z =",X,Y,Z 
* PRINT *,PHI,THETA 
* PRINT *,"K,R,KR =",K,R,KR 
* PRINT YREAL HANKEL1 =",H1 OUT 
* PRINT YLEGENDRE =",LOUT 
* PRINT MNCPRE 

ELSE 
CONTINUE 
ENDIF 
RETURN 
END 

/~> **************************************************************** 

SUBROUTINE HANKEL1(X,NMAX,H1) 
IMPLICIT REAL*8 (A-H.O-Z) 
COMPLEX*16 H1(0:NMAX) 

C GIVEN THE VARIABLE X, AND THE MAXIMUM ORDER NMAX, 
C THIS ROUTINE GENERATES THE SPHERICAL HANKEL FUNCTION OF 
THE 
C   FIRST KIND H1N FOR ALL N FROM 0 TO NMAX (INCLUSIVE) 
C   INPUT: 
C     X = DOUBLE PREC. VARIABLE (RADIUS) 
C     NMAX = INTEGER MAXIMUM ORDER OF BESSEL FUNCTIONS 
DESIRED 
C   OUTPUT: 
C    H1 (N) = ARRAY OF SPHERICAL HANKEL FUNCTIONS H1 N(X), WHERE 
C    H1N = JN + IYN 
C    THIS ROUTINE IS BASED ON THE RECURSION FORMULA 
C     FROM ABRAMOWITZ & STEGUN: 10.1.10 & 10.1.15, PP.438-9 
C     THE F'S ARE THE COEFFICIENTS OF ORDER N & -(N+1), 
C     THE FO'S ARE OLD PS, FOR RECURSION 

IF(X.LE. 0.0D0)THEN 
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H1(0) = DCMPLX(1.0D0,-1.0D35) 
D02N = 1,NMAX 

H1(N) = CMPLX(0.0D0,-1.0D35) 
2   CONTINUE 

RETURN 
END IF 
SX = DSIN(X) 
CX = DCOS(X) 
XINV=1.0D0/X 
M1N = -1.0D0 
FN = XINV 
FMN = 0.0D0 
FNO = FMN 
FMNO = FN 
DO 4 N = 0, NMAX 
H1(N) = CMPLX( FN*SX + M1N*FMN*CX, -FN*CX + M1N*FMN*SX ) 
T1 =(2*N+1)*XINV 
T2 = T1*FN-FNO 
FNO = FN 
FN = T2 
T2 = -T1*FMN-FMNO 
FMNO = FMN 
FMN = T2 
M1N = -M1N 

4   CONTINUE 
RETURN 
END 

/-> **************************************************************** 

SUBROUTINE LEGNDR(THETA,NMAX,PMN) 
IMPLICIT REAL*8 (A-H.O-Z) 
REAL*8 F1,PMN(-NMAX:NMAX,0:NMAX) 

C GIVEN THE VARIABLE THETA, AND THE MAXIMUM ORDER NMAX, 
C   THIS ROUTINE GENERATES THE ASSOC. LEGENDRE FUNCTIONS PMN 
C   OF THE ARGUMENT COS(THETA) (THETA MUST BE BETWEEN 0 & PI) 
C   FOR ALL N FROM 0 TO NMAX (INCLUSIVE) 
C   AND FOR ALL M FROM -N TO N (SOME OTHERS SET TO ZERO) 
C INPUT: 
C     THETA = VARIABLE (POLAR ANGLE), MUST BE BETWEEN 0 & PI 
(INCL.) 
C     NMAX = INTEGER MAXIMUM ORDER OF LEGENDRE FUNCTIONS 
C     DESIRED 
C OUTPUT: 
C     PMN = DOUBLE PREC. ARRAY, CONTAINS ASSOC. LEGENDRE FNS 
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C THIS ROUTINE IS BASED ON THE RECURSION FORMULAE 
C     FROM ABRAMOWITZ & STEGUN 

X = DCOS(THETA) 
SINTHT = DSIN(THETA) 
IF ( SINTHT .GT. 0. ) THEN 
SININV=1.0D0/SINTHT 

ELSE 
SININV = 0.0D0 

END IF 
C SET VALUES FOR N = 0, 1  (NMAX MUST BE AT LEAST 1) 

PMN(0,0) = 1.0D0 
PMN(1,0) = 0.0D0 
PMN(-1,0) = 0.0D0 
PMN(0,1) = X 
PMN(1,1) =-SINTHT 
PMN(-1,1) = SINTHT*0.5D0 

C IN LOOP, TNP1 = 2*N+1, TNP2FC = (2*N+2)!, M1N = (-1)**(N+1) 
TNP1 = 1.0D0 
TNP2FC = 2.0D0 
M1N = -1.0D0 
DO 4 N = 1, NMAX-1 
TNP1 = TNP1 + 2.0D0 
TNP2FC = TNP2FC * TNP1 * (TNP1+1) 
M1N = -M1N 
DO 3 M = -N, N 

PMN(M,N+1) = (TNP1*X*PMN(M,N) - (N+M)*PMN(M,N-1))/(N-M+1) 
3 CONTINUE 

PMN(N+1,N) = 0.0D0 
PMN(-N-1,N) = 0.0D0 
PMN(N+1,N+1) = (X*PMN(N,N+1) - TNP1*PMN(N,N)) * SININV 
PMN(-N-1,N+1) = M1N*PMN(N+1,N+1)/TNP2FC 

4 CONTINUE 
RETURN 

END 
******************************* 

FUNCTION F1(NN,MM) 
IMPLICIT REAL*8 (A-H.O-Z) 
REAL*8FACT1,FACT2,PI 
PI=4.0D0*DATAN(1.0D0) 
FACT1=1.0D0 
DO10l=1,NN+MM 

10   FACT1=FACT1*I 
FACT2=1.0D0 
DO20l=1,NN-MM 
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20   FACT2=FACT2*I 
F1=DSQRT((2*NN+1)*FACT2/4.0D0/PI/FACT1) 
RETURN 
END 
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