WL-TR-96-2082

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

DATE ACCESIONED

DATE RETURNED

DATE RECEIVED IN DTIC

19960812 167

REGISTERED OR CERTIFIED NUMBER

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

PHOTOCOPIES OF DTIC DOCUMENTS ARE NOT COVERED BY THE REPROGRAPHIC RIGHTS AGREEMENT OF THE DEPARTMENT OF THE ARMY. THE REPRODUCTION OF DOCUMENTS OR OTHER MATERIALS PROTECTED BY COPYRIGHT LAW IS NOT PERMITTED WITHOUT PERMISSION OF THE COPYRIGHT OWNER.
TURBINE AERO THERMAL RESEARCH

Richard B. Rivir

JULY 9, 1996

INTERIM REPORT 1 NOVEMBER 1995--9 JULY 1996

Approved for public release; distribution unlimited

AERO PROPULSION & POWER DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7650

This paper is declared a work of the U.S. Government and as such is not subject to copyright protection in the United States
NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT-RELATED PROCUREMENT, THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY OBLIGATION WHATSOEVER. THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS LICENSING THE HOLDER, OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THE TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

RICHARD B. RIVIR
Manager, Aerothermal Research
Turbine Branch
Turbine Engine Division
Aero Propulsion & Power Directorate

CHARLES D. MACARTHUR
Chief
Turbine Branch
Turbine Engine Division
Aero Propulsion & Power Directorate

RICHARD J. HILL
Chief of Technology
Turbine Engine Division
Aero Propulsion & Power Directorate

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE NOTIFY WL/POTT, WPAFB OH 45433-7650 TO HELP MAINTAIN A CURRENT MAILING LIST.
REPORT DOCUMENTATION PAGE

This report indicates current areas of turbine aero thermal research in house at the Aero Propulsion and Power Directorate and lists current publications (17) from Nov 95 to Jul 96.
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Contract</td>
</tr>
<tr>
<td>G</td>
<td>Grant</td>
</tr>
<tr>
<td>PE</td>
<td>Program</td>
</tr>
<tr>
<td>PR</td>
<td>Project</td>
</tr>
<tr>
<td>TA</td>
<td>Task</td>
</tr>
<tr>
<td>WU</td>
<td>Work Unit</td>
</tr>
<tr>
<td>Element</td>
<td>Accession No.</td>
</tr>
</tbody>
</table>

Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report Number. (If known)

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOD</td>
<td>See DoDD 5230.24, "Distribution Statements on Technical Documents."</td>
</tr>
<tr>
<td>DOE</td>
<td>See authorities.</td>
</tr>
<tr>
<td>NASA</td>
<td>See Handbook NHB 2200.2.</td>
</tr>
<tr>
<td>NTIS</td>
<td>Leave blank.</td>
</tr>
</tbody>
</table>

Block 12b. Distribution Code.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOD</td>
<td>Leave blank.</td>
</tr>
<tr>
<td>DOE</td>
<td>Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.</td>
</tr>
<tr>
<td>NASA</td>
<td>Leave blank.</td>
</tr>
<tr>
<td>NTIS</td>
<td>Leave blank.</td>
</tr>
</tbody>
</table>

Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.
1995-1996 Task Report 2307S315

LRIR: 92WL013
Title: Turbine Aero Thermal Research Laboratory
Task Manager: Dr. Richard Rivir
Phone: 513-255-2744, DSN: 785-2744, FAX 513-476-4531
WL/POTF BLDG 18
1950 FIFTH STREET
WPAFB OH 45433-7251
email: rivirrb@wl.wpafb.af.mil
AFOSR Program Manager: Dr. James McMichael

Research Objectives:
- Establish fundamental understanding of heat transfer mechanisms in gas turbine engines.
- Provide an understanding of the effects of unsteady free stream turbulence on turbine blade heat transfer.
- Improve the accuracy of heat transfer predictions.
- Develop concepts and strategies for the control of turbulent heat transfer.
- Transition basic research results to the gas turbine industry and to IHPTET Technology Demonstrations

Progress for 1995-1996: The Low Pressure, Low Reynolds Number Turbine experiment have been conducted on a Langston cascade at the Air Force Academy and at UC Davis with freestream turbulence levels of 0.5%, 1%, 8% and 10%. Reynolds numbers of 67.5K, 110K, 134K, and 144K have been run. Different pitch to chord ratios and cascade flow angles significantly affect the transition and separation processes and have been documented. Pratt low pressure blade profiles are being used in the cascade experiment at WL with a moving stator section and free stream turbulence levels to 17%. Computations have been run here using the Allison Blade Vane Interaction Program for all cases investigated for the Langston cascade at AFA and UC Davis.

Extensive Particle Image Velocimetry measurements on our 2D Boundary layer high turbulence film cooling experiments have been carried out for the forced and unforced film cooling flows. The double pulsed YAG exposures provide flow visualization in addition to the vector velocity field. These photos show details such as the shear layer resulting from the film hole walls rolling up in the opposite direction to the primary flow, shear layer growth, jet spread, and the changes in film cooling flow turbulence scales with changes in freestream turbulence that have not been possible to documented with conventional measurements.

Two members of our team completed their PhD's this year. Rolf Sondergaard from Stanford University (Palace Knight) and Ed Michaels, from the University of Dayton. Dr Sondergaard received the Ballhaus Award for the best Stanford Aero Dissertation for 1995. Dr Michaels worked on a two scale turbulence model for about 7 years here in our lab. His model now predicts Stanton Number and skin friction for turbulence levels of 0.5 to 20%, far more accurately than any other model (within ±2% of measured values). Dr Sondergaard’s and Dr Michaels Dissertations are available from the authors. R. Rivir and J. Bons received the 1995 S. D. Heron Award from the Aero Propulsion and Power Directorate for High Turbulence Effects on Film Cooling. R. Rivir organized and hosted the 1995 AFOSR Contractors and Grantees Meeting on Turbulence and Internal Flows. Dr Won Chang joined the group in May of 1996. Our PIV work was selected for the American Physical Society’s Gallery of Fluid Motion for 1996.

PUBLICATIONS 1996:

Turbulence scales grow rapidly as film cooling flow penetrates freestream freestream flow with high turbulence $R=1.0$, $Tu=17\%$

$R=0.7$, $Tu=17\%$

$R=0.5$, $Tu=17\%$

$R=0.7$, $Tu=17\%$

$R=1.0$, $Tu=17\%$

$R=1.5$, $Tu=17\%$

Jet Exit

High free stream turbulence influence on turbine film cooling flows
Submitted by S. Gogineni (Systems Research Laboratories), R. Rivir (Wright Laboratory), D. Pestian (Univ. of Dayton Research Institute), L. Goss (Innovative Scientific Solutions, Inc.), Dayton, OH

Double pulsed two-color Particle Image Velocimetry (PIV) images of simulated turbine film cooling flows are shown for a range of film cooling blowing ratios ($R = \frac{\rho_c U_c}{\rho_\infty U_\infty}$) of 0.5, 0.7, 1.0 and 1.5. The simulated turbine conditions include the film cooling jet $l/d = 3$, film jet Reynolds number of 20,000 and free stream turbulence level of up to 17% among other characteristics described by Bons et. al. (1994). These images are obtained by seeding the jet flow only with sub-micron size smoke particles and illuminating the particles with a two-color PIV system. These images illustrate how the jet spreads and shear layer grows with two of the problem parameters, the blowing ratio and the free stream turbulence level. There is a decrease in film cooling effectiveness and increased heat transfer associated with the increase in turbulence intensity which is currently difficult to predict. PIV images and the reduced PIV data are useful in providing additional physics on mixing and dissipation for improved modeling of these flows.