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analysis method which applies to causal signals. -The numerical Laplace transform 
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to a wavelet transform in the frequency domain.  The discretized version of the 
numerical Laplace transform is invertible.  The kernel vectors of the transform 
are frame vectors that are nearly tight over a fairly wide range of parameters. 
We demonstrate this with several numerical experiments.  The numerical Laplace 
transform resolves a causal signal onto the s-plane.  With a suitable mapping, 
the signal is resolved into the frequency-damping unit disc. 
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Abstract 

In this paper we introduce the numerical Laplace 
transform, a local time-frequency analysis method 
which applies to causal signals. The numerical 
Laplace transform resolves the identity, has good time- 
frequency resolution, and adapts resolution windows 
according to the time delay. The numerical Laplace 
transform is equivalent to a wavelet transform in the 
frequency domain. The discretized version of the nu- 
merical Laplace transform is invertible. The kernel 
vectors of the transform are frame vectors that are 
nearly tight over a fairly wide range of parameters. We 
demonstrate this with several numerical experiments. 
The numerical Laplace transform resolves a causal sig- 
nal onto s-plane. With a suitable mapping, the signal 
is resolved into the frequency-damping unit disc. 

1     Introduction 

'I ho literature of statistical signal processing has 
been dominated over the past twenty years by work on 
exact and subspace methods for identifying damped 
and undamped complex exponential modes [4, 3]. 
Such modes arise out of the physics of lumped linear 
systems, so they naturally carry physical information. 
Except for some recent extensions [6], the topic is well 
developed. 

During the period of development of modal anal- 
ysis, there has been renewed interest in methods 
of time-frequency analysis such as windowed Fourier 
analysis , Wigner distributions, wavelet decomposi- 
tions, and other techniques for computing infinite- 
dimensional decompositions of signals. In a sense, 
these too are modal decompositions, for they decom- 
pose a signal into spectral modes that are localized in 
time and frequency or time and scale. However, it is 
usually impossible to make direct links between the 

time-frequency coefficients and physical phenomena. 
Windowed Fourier analysis does not help because the 
windowing and shifting process in the transform mech- 
anism simply cut the signals into pieces. It is therefore 
desired to develop a time-frequency analysis method 
which bridges the gap between infinite-dimensional 
modal decompositions and finite-dimensional modal 
analysis. 

2    Continuous      Numerical      Laplace 
Transform 

We start from a wavelet transform in the frequency 
domain. Define the mother wavelet 

iMj") 
2" r(s±i) 

r(n)(i+jv)*P 
n > 1 (1) 

with  corresponding  time domain window function 

Mi)- 
Mt) = Jl/2(t;n,2) (2) 

-y(t;n,a) = 
I» 

(at) n-l-at U(t) 

u(t) is the unit step function,    n G N,    o > 0 

Note that ip„(t) has unit norm.    From this mother 
wavelet, construct the basis of scaled translates 

°~    *i'n[i{ -) ) ,0" > 0,-00 <U < OO 

Then define the complex frequency s — a + ju and 
write the scaled translates of the basis as 

-A-, - / .,v — u. 
°    2^n  [j( ) 

=        0-2 
i r(s±i) /   2<r 

\/2r>) \s*+jv 

=   V"n(jV;s) 

2 

(3) 

(4) 

(5) 



s* is the complex conjugate of s. The inverse Fourier 
transform of i}>n{jv; s) is 

^-M^'"" (6) 

Define a wavelet transform of an analytic signal f{jv) 
as 

Time-frequency  Resolution   of  the 
Continuous Numerical Transform 

The continuous numerical Laplace transform has 
good time-frequency resolution. One way to see this is 
to view this transform as a variable windowed Fourier 
transform [5] with {a~2ipn(at)} or {fll2(t;n,2<r)} as 
the family of window functions. Each window function 

(W^./)(s) = lf(jv), fßnijv; s)\ (7) °   *rpn(crt) has centers t* and w* and radii A( and A^, 

This wavelet transform resolves analytic signals onto 
the s-plane. The wavelet transform resolves the iden- 
tity, meaning it has an inverse. Daubechies [1] calls 
it an isometry from the Hardy space H2( of analytic 
signals) onto the Bergman space of analytic functions 
on the upper half plane. By the Parseval identity, 
one can expect a time domain version of this wavelet 
transform. Now we are ready to define the continuous 
numerical Laplace transform. 

Definition 1 
Let f(t) € L2(R+) be a causal signal. Then the 

nth order numerical Laplace transform of f(t) written 
35 (£</,„/)(«) is 

(c*.f)(s)   =   (f(t),Mt;s)) (8) 

)IWr dtm^e~st (9) 

t'here 

<r > 0,w € R, n>l 

in the time domain and the frequency domain respec- 
tively: 

r = 
UJ* = 

A,= 

A„ = 

n 
27 
0 

\fn 
~2~ä~ 

2<r 

2y/rT^2 

(13) 

(14) 

(15) 

(16) 

Therefore the resolution cell defined by the window 
function cr~ ?ipn(oi) centered at (n/2cr,ui) is 

n       y/n    n       %/n 

2~ä~~2~ä '2~ä^"2~ä 
2a 

w 
2y/n-2 

The size of a resolution cell is thus 

\/n 

,w + 
2(7 

2Vn-2. 

(2At)(2A„)     =     2 
y/n-2 

2,        as    n 

n>2 

oo 

This transform resolves causal signals onto the s- 
plane. We emphasize that this is not quite the usual 
Laplace transform, because the kernel is essentially 
,(n-i)/2f-,( for n > lf not e->t_   Rewrite the kernel 

in(t;s)    =    a-±4>n{at)eiut 

=    71/2(<;n, 2a)ejut 

(10) 

(11) 

One sees that the kernel il>n(t;s) is a complex expo- 
nential with "delay" n and "damping" a. 

The inverse continuous numerical Laplace trans- 
form is [5] 

/ = ^f-^ r ^ r d^ </('). Mt\s)) Mt; s) -IT     J0     a- J-c<> 

(12) 

Note that this size varies as a function of n. When n 
increases it approaches 2 which is the lower bound of 
the Heisenberg Uncertainty Principle which can only 
be achieved by Gabor transform [2]. 

The resolution cells are not rigid. They narrow in 
time resolution when damping is large and widen when 
damping is small. This is exactly what one would 
hope to have in the frequency-damping modal analy- 
sis. Furthermore, the ratio of the "center-time" to the 
"time width" is 

n/2a 
2s/n/2(T 

\fn 
2   ; 

which is indepent of the damping of the window func- 
tion. This is analogous to the constant-Q property 
in wavelet analysis. A plot of the tiling is shown in 
Figure 1. 
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Figure 1: The tiling of the NLT 

4 Discretized Numerical Laplace 
Transform and Frame Bound Esti- 
mation 

The continuous numerical Laplace transform can be 
discretized to a lattice in the s-plane, namely smk = 
Cm + j^k • A suitable choice is crm = <7m and w* = 
<T™kujQ for some oo > 0 and wo > 0. The discretized 
numerical Laplace transform is defined as follows. 

Definition 2 
Let   f(t)    G    L2(R+)   be   a  causal   signal   and 

Smk     =     "o    + 
ja™kuio,<T0  >  0,wo  >  0.    Then the nth order dis- 
cretized numerical Laplace transform of f(t) is 

(C^f)(m,k) 

{f(t),xpn(t;sm,k)) 

dtf(t)t~ 

(17) 

"mki     (18) 

whe 
m,k EZ 

Tlie discretized numerical Laplace transform de- 
fined in the Definition 2 is invertible only when the 
{<Pmk = i'n(l;Smt)} constitute a frame, i. e. when 
there exist frame bounds 0 < A < B such that 

^ll/l|2<£l(/,0m*>|2<£||/||2 (19) 
mk 

for all / in the underlying Hilbert space [1]. Every 
function / in the underlying Hilbert space can then 
be decomposed and reconstructed as 

Wo A B B/A 
.25 36.256 36.262 1.000 
.50 18.127 18.132 1.000 
.75 12.060 12.112 1.004 
1.00 8.947 9.182 1.026 
1.25 6.982 7.522 1.077 
1.50 5.594 6.492 1.160 

(a) 

w0 A    ' B B/A 
.25 13.019 14.138 1.083 
.50 6.546 7.092 1.083 
.75 4.364 4.728 1.083 
1.00 3.223 3.596 1.116 
1.25 2.001 3.454 1.726 
1.50 0.325 4.221 12.986 

» 

Table 1: Frame bounds for (a) numerical Laplace 
frames based on ^3 and (b) wavelet frames based 
on Maxican hat function M(t) = 2/\/3?r-1/4(l — 
<2)e~* I"1. The dilation prameter <TQ = 2 in both cases. 

where <f>mk is called the dual frame of 4>mk- When 
A = B we say the frame is tight and the dual frame 
is just the frame itself scaled by the inversion of the 
frame bound. In this case 

/ = -7 2_j (/> 0mt) ^mk (21) 
mk 

mk mk 

When a frame is nearly tight, i. e.   A is close to B, 
equation (21) serves as a good approximation. 

Since {^(ju; s)} define a continuous wavelet trans- 
form , the existence of numerical Laplace frames is 
guaranteed at least for sufficiently small wo [1]. More 
than this, it turns out that numerical Laplace frames 
are nearly tight for a fairly wide range of choices of 00, 
wo, and order n. Table 1 gives the frame bound esti- 
mations for numerical Laplace frames of order 3 and 
the wavelet frames based on the Maxican hat func- 
tion [1]. (the frame bound estimations associated 
with the Maxican hat function is borrowed from [1]). 
Frame bound estimates for numerical Laplace frames 
for other choices of order n and «To are also given in 
Table 2,  3, 4, 5. 



NLx(omwl«h,Ort»f^,N-2O.M1--S,M2^3,wO-0.75OOO0,»g0-2.00O000.fbound-6.O43500 

Wo A B B/A 
.25 18.105 18.154 1.003 
.50 9.050 9.079 1.003 
.75 5.985 6.102 1.020 

1.00 4.339 4.726 1.089 
1.25 3.253 3.999 1.229 
1.50 2.473 3.570 1.443 

Table 2: Frame bounds for numerical Laplace frames 
based on tps with <ro = 2 

w0 A B B/A 
.25 12.004 12.169 1.014 
.50 5.996 6.090 1.016 
.75 3.917 4.140 1.057 

1.00 2.745 3.299 1.202 
1.25 1.956 2.878 1.471 
1.50 1.394 2.634 1.889 

Table 3: Frame bounds for numerical Laplace frames 
based on rp7 with <TQ = 2 

w0 A B B/A 
.25 22.678 23.067 1.018 
.50 11.338 11.539 1.018 
.75 7.540 7.712 1.023 
1.00 5.578 5.586 1.051 
1.25 4.321 4.829 1.118 
1.50 3.425 4.200 1.226 

Table -1: Frame bounds for numerical Laplace frames 
based on t>3 with <TQ = 3 

Figure 2: Numerical Laplace frame reconstruction of 
7(t;3,1) with n = b,N = 20,M1 = -5,M2 = 3,w0 = 
0.75,0-0 = 2,bound - (A + B)/2 

5    Numerical Experiments 

Since the numerical Laplace frames are nearly tight, 
the tight frame decomposition and reconstruction for- 
mula (21) can be used as a good approximation with 
the tight frame bound approximated by (A + B)/2 
of the numerical Laplace frames. For simplicity we 
demonstrate two cases: (1) f(t) = 7(<;3,1) for a nu- 
merical Lapace frame of order 5 and (2) f(t) = sin(t) 
for a numerical Lapace frame of order 7. For each 
case we present the experiment results with two plots. 
One is the plot of the original signal and its numer- 
ical Laplace reconstruction. The other is the plot of 
numerical laplace coefficients in gray scales over the 
frequency-damping plane, while the former demon- 
strates the good approximation of tight frame expan- 
sions, the later shows how the energy of the signal is 
distributed over the time-frequency plane in numerical 
Laplace frame representations. 

^'0 .4 B B/A 
.25 17.402 18.855 1.083 
.50 8.700 9.428 1.084 
.75 5.783 6.302 1.090 
1.00 4.268 4.796 1.124 
1.25 3.294 3.957 1.201 
1.50 2.952 3.451 1.332 

Table ")•.  Krame bounds for numerical Laplace frames 
based on 1 3 with <r0 = 4 

6    Frequency-Damping   Resolution   of 
the Unit Disc 

Define damping coefficient p and warped frequency 
6 such that 

P = e~\    p€(0,l) (22) 

0 = 2tan_1w,    0e(-7r,7r) (23) 

Define z = peje. Then, via this mapping, the signal is 
resolved into the frequency-damping unit disc in the 
z-plane. We may call the corresponding transform in 
z variable the numerical Z transform except that one 



NUtennwithl-apdf(t:3.1),N^O,Ml--5.M2-3,wO-0.750000,»g(M.C>00000 

9 

B 

7 

e 

s 

4 

3 

2 

20       22     1      2 

Figure 3: The numerical Laplace coefficients in gray 
scales of y(t; 3,1) with n = b,N = 20,M1 = -5,M2 = 
3,w0 = 0.75,0-Q = 2,bound = (A + B)/2 

NLxloim wtlh ,ordw-7.N-20,M1>-5.M2-4,Mi0-0.7S0000.ig0-2.000000,tboiJnd-4.02e500 

Figure 4: Numerical Laplace frame reconstruction of 
7(<:3. 1) with n = 7,N = 20.M1 = -5,M2 = 4,w0 = 
0.75.O-0 = 2,bound = (A + B)/2 
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Figure 5: The numerical Laplace coefficients in gray 
scales of ->(<;3,1) with n = 7,N = 20,Ml = -5,Af2 = 
4,w0 = 0.75,a0 = 2,bound = (A + 5)/2 

should be reminded that this transform takes contin- 
uous signals as input. 

Figure 6 shows the lattice after the mapping. The 
locations of the resolving points are just where we 
would expect them to be: finely spaced in angular 
frequency when damping is small and widely spaced 
when damping is large. This should serve a good 
model for frequency-damping modal analysis. 

Figure 6: Resolving points of the numerical Z trans- 
form. 
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