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Abstract 

The focus of the effort being carried out under the AFSOR grant 
is to fully characterize the behavior of rotating stall phenomenon in 
turbomachinery systems and to assess effectiveness of nonlinear 
control strategies using both CFD simulations and experiments on the 
axial compressor facility in the LICCHUS lab. Towards accomplishing 
this objective, a CFD model has been developed and it has been 
validated using experimental data available in the literature. The 
axial compressor facility in the LICCHUS lab will be used for 
correlation with CFD simulations and for stall controller studies. 



1    Introduction 

A renewed interest in modeling and simulation of aircraft engine components has emerged during the 

past twenty years. One motivation for such interest is the prediction of unsteady stall phenomena 

in compressors and its relation to fluid dynamic stability. Modeling of complex turbomachinery 

systems has grown to embrace the field of modern control theory, in search for mechanisms of 

instability suppression. 

The pursue of simplified models stems from the motivation of reducing the dimensionality and 

associated complexity of complete aerodynamic simulations. While these efforts offer the advantage 

of computational economy, the simplifications made result in the residualization of physical system 

dynamics which might be of interest, and whose detailed study could reveal finer details of insta- 

bility inception and development. However, models that reduce to systems of ordinary differential 

equations possess antf additional advantage. The impressive advances in the numerical analysis, 

simulation, and control of complex, ODE-based nonlinear systems have allowed the development 

of control strategies for turbomachinery flow instabilities based on such models. In this manner, 

the reduction or elimination of the design stall margin through active control has become a major 

objective for addressing instability phenomena in turbomachinery. 

In principle, the practical validation and implementation of these control strategies will enable 

the design and manufacture of more robust, high-performance machinery. However, as pointed out 

earlier, most existing models lack quantitative description capabilities for most physical systems. 

When such models are employed, the physical system under consideration must be tailored to the 

model by means of system identification tools and a certain degree of empiricism, given the standing 

ideal-behavior assumptions present in these models. Such detailed numerical analysis, transient 

parameter adjustment, and map identification are required when the control law to be implemented 

in a physical system is derived from a mathematical model. 

While no simplified model can adequately capture the behavior of a physical system, it is 

believed that the element of empiricism can be removed from a model formulation by studying 

detailed physical aspects of the modeled system. For example, in a post-stall model validation 

program carried out at Georgia Tech it was found that the addition of input terms to mimic the 

behavior of rotor disturbances results in some improvements in the dynamic response of the modeled 

system. Simplified models available in the present day literature do not address the disturbances 

created by the rotors and blade row interference effects. While these issues can be studied through 

experiment, the advances in instrumentation and measurement in turbomachinery have yet to insure 

an increased understanding of the flow pattern. On the other hand, it has been established in recent 

times that flow field information obtained from the numerical solution of the fundamental equations 



of fluid motion in their different levels of simplification has become a profitable means of obtaining 

and analyzing data for complex turbomachinery flows. Given that the behaviors which can be 

analyzed by detailed flow simulations are quite often those which have a large impact on the response 

of these complex flow systems, one can identify an incentive for considering such calculations, as 

they provide information not completely conveyed by simplified models. 

In this spirit, the work that has been performed under the grant will take on the renewed 

objective of demonstrating the feasibility of simulating stall phenomena in turbomachinery based 

on the numerical solution of the Navier-Stokes equations. The simulation of stalled flows in turbo- 

machinery is a virgin area of research; it is expected that this work will be one of the first few in its 

class. In addition to these efforts, the numerical calculations will be used in conjunction with the 

one of the simplified-model-based instability control concepts presented in the growing literature of 

stall control in an attempt to quantify the degree of success of such strategies. 

The major contribution of this work to the existent literature is expected to be the practical 

demonstration of the possibility of increasing current knowledge of rotating stall instabilities by the 

application of well established tools in Computational Flujd Dynamics (CFD). It is also expected 

that exploring and analyzing simple simulation results will generate ideas for better guidance on 

post-stall modeling of rotating machinery. 

2    Progress in 1995 

During the past year, validation of a simplified post-stall model against experimental data from an 

axial flow compressor rig at Georgia Tech LICCHUS1 has been carried out. The focus has been the 

validation of nonlinear behaviors associated with bifurcations in the system dynamics, as captured by 

the model. Steady-state validation has been carried out through nonlinear programming techniques. 

These optimal results work quite well but good matching over some flow/pressure regimes is often 

hard to obtain; however, the technique can be used directly in a robust control design methodology, 

in order to account for uncertainty in the model. In addition, the control approach presented 

in the grant-supported publications "A Simplified Approach for Control of Rotating Stall, Part I: 

Theoretical Development and Part II: Experimental Results? (AIAA Journal, (11)6, 1195 - 1223, 

1995) has been tested in the model, to complement the experimental and analytical results presented 

in those papers. The results obtained for the validated model under controlled operation (system 

gains and parameters) will be used, along with the numerical simulation, to establish the effect of 

this particular controller. 

1 Acronym for Laboratory for Identification and Control of Complex, Highly Uncertain Systems. 



In order to perform the main task of simulating stalled flows in a compressor rotor, a two- 

dimensional multiblock Navier-Stokes based flow solver called MFOIL and developed by Prof. L.N. 

Sankar at Georgia Tech, has been modified for the application of solving steady and unsteady flows in 

cascades. During the past year and after approximately nine months of work, confidence in the code 

has been established by comparing its output to experimental data, both in steady and unsteady 

flow scenarios. The numerical approach is based on the well-known Alternating Direction Implicit 

(ADI) scheme employing an Approximate Factorization (AF) on the linearization of the equations. 

Typical simulation results are shown in Figures 1 and 2. Figure 1 shows a comparison of the 

blade loads on a NACA 65-410 profile cascade at zero angle of attack (ai = 0), 30 degrees flow 

off the axial direction (ft = 30"), cascade solidity, a, of 1.25, free-stream Mach M^ — 0.085, and 

Reynolds number Re = 245,000. In these results, loading is reported in terms of total-to-static 

pressure difference, 

•Jjur/ace — 
  PO ~ Psurface 

where po is the stagnation pressure of the upstream flow. For incompressible flow, S is simply 

1 - Cp, where Cp is the standard static-to-static pressure difference coefficient. The experimental 

data comes from the NACA Report no. 1368 published in 1958 by J. C. Emery, L. J. Herrig, 

J. R. Erwin and R. Felix under the title "Systematic Two-Dimensional Cascade Tests of NACA 65- 

Series Compressor Blades at Low Speeds". Other cases in this report compared well with the output 

of the program. Minor discrepancies can be attributed to the application of boundary conditions for 

the curvilinear grid employed and perhaps an unaccounted small bending of the blades under load 

in the experiment. 

Figure 2 shows a comparison of the amplitude, |CP. | and phase relative to input of the lifting 

pressure coefficient Cp. = Cp,„er -CPloW€T of a flat plate cascade in which the blades undergo simple- 

harmonic pitching about their leading edges. The phase angle between the motion of neighboring 

blades, otherwise known as the interblade phase angle (IBPA), is zero in this case, as well as the mean 

angle of attack and blade stagger angle, y = ft — a\. The free stream Mach number is 0.5 and the 

pitch angle amplitude, ap is 0.01 degrees. The reduced frequency of oscillation based on semichord 

is Jb = wc/(2Voo) = 0.5, where u, c and V^ are the circular oscillation frequency, blade chord 

length, and free-stream speed, respectively. The results are compared to the output of LINSUB, a 

numerical program written by D. S. Whitehead for the calculation of linearized unsteady subsonic 

flows in cascades and presented in volume 1 of the AGARD Manual on Aeroelasticity in Axial 

Flow Turbomachines (AGARDograph no. 298, 1987). The output of MFOIL varies considerably 

more than that of LINSUB over the chord length. The discrepancy is a result of the grid resolution, 



coupled with a time-varying spatial accuracy at the surface as a result of the currently-implemented 

grid deformation technique for the blade motion. Otherwise, the MFOIL output is seen in good 

qualitative agreement with that of LINSUB. Although this issue could be addressed by implementing 

a grid-deformation method which does not allow the grid near the solid surfaces to change in time, 

the exploratory research to be carried does not call for this type of blade surface motions. Such 

motions have only been coded to validate the cascade-modified MFOIL program in unsteady flow 

cases. 

3    Plan for 1996 

The primary objective for this research period will be the successful simulation of rotating stall in an 

isolated rotor based on the numerical solutions obtained through MFOIL. To that end, it is expected 

that the first five months of the year will allow a study of the parameters that will be required to 

obtain a propagating stall scenario in such rotor. 

Once the the occurrence of rotating stall is established, the issue of comparing simulation 

outputs with simplified model outputs will be undertaken. According to simplified models, it is 

necessary to account for the fact that nonlinearity has a strong effect on the behavior of the math- 

ematical formulations which model these systems. In particular, the presence of finite domains of 

attraction of certain operating conditions will be investigated, given that this concept has allowed the 

development of a stall controller by 0. O. Badmus at Georgia Tech and documented in his Doctoral 

Thesis. This controller will be implemented in the numerical code to assess the effectiveness of the 

control strategy and to point out the feasibility of improving modeling through CFD simulations. 

This part of the work is expected to take up the second part of the year and into the year 1997. 
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Figure 1:  Comparison of Experimental and Numerical Results for Cascade Loading on NACA 
65-410 profile, M^ - 0.085, Äc = 245,000, Oi = 0, ft = 30°, a - 1.25. 
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Figure 2: Comparison of LINSUB ("0") and Numerical Results ("X") for Lifting Pressure Coeffi- 
cient CPa on Flat Plate Cascade Oscillating About Leading Edge, k = 0.5, AfTO = 0.5, IBP A = 0. 
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ABSTRACT 

For the control of combustion instability in a ramjet engine by fuel injection, a math- 

ematical model of Fung, Yang, Sinha and Menon reduces to a forced wave equation with 

delayed boundary control. The first and only step in the analysis that was completed dealt 

with the unforced problem which exhibits instabilities even for small delays. The main 

contribution of our analysis was to relate these instabilities to the instabilities in difference 

equations, a problem that is better understood than the wave equation. 



Delayed Feedback Control of Hyperbolic PDE and Combustion Instabilities 

The Physical Problem. Combustion instability in a ramjet engine involves nonlinear 

interaction among acoustic waves, vortex motion and unsteady heat release. The instability 

is often observed as a large amplitude pressure oscillation in the low frequency range. At 

some critical limit of the amplitude, there can be structural damage due to fatigue or there 

can be engine unstart. The latter occurs when the shock in the inlet duct is expelled to 

form a bow shock ahead of the inlet and is one of the most serious problems in developing 

an operational ramjet engine. 

The results of experimental ([1], [2]) and numerical studies ([3]) indicate that the 

pressure fluctations in the combustor grow to large amplitude low frequency oscillations 

when the unsteady heat release in the combustor is in phase with the pressure fluctuation. 

These studies showed also that a large scale vortex/flame structure propagates through 

the combustor at the same frequency. This suggests some nonlinear coupling between the 

shear flow, the pressure oscillation and the unsteady heat release. 

There have been many attempts to suppress these instabilities using both passive 

controls (geometric modifications) and active controls (acoustic feedback control and sec- 

ondary fuel injection control) (see [4] for a survey). Acoustic controllers appear to be 

impractical due to the hostile environment in the combustor and the large power require- 

ments. Active control techniques using secondary fuel injection have been shown to be 

effective in certain situations and also have the possibility of increasing the net thrust of 

the engine (see [5]), and therefore seem to be a promising approach to the control of full 

scale ramjet engines. 

Practical application of secondary fuel injection control in a full scale combustor has 

not been demonstrated. Part of the difficulty arises from the fact that, in a high flow 

rate combustor, the combustion is irregular and multiple frequencies are amplified. In 

this case, the dominant instability mode can change with the operating conditions. Even 

when control is applied to suppress the dominant mode, additional new frequencies can be 

excited and become unstable (see [6],[7],[8]). 

A Mathematical Model. Our study is concerned with an active control based on fuel 

injection based on a model developed in [9], [10], [11]. This approach is based on a wave 

equation which describes the dynamic behavior of nonlinear oscillations with distributed 

feedback actions. The resulting boundary value problem is a forced linear wave with the 

forces including all influences of acoustic motion, mean flow and combustion response under 

conditions without external forcing together with the effects of the control inputs, one of 



which is a source term. 

A closed loop control system is obtained by relating the source term to the mass flow 

rate of the injected fuel by means of a time lag theory developed in [12]. This term is 

proportional to the rate of change of the injection rate of the control fuel at a delayed time 

and a spatial distribution function characterizing the fraction of the fuel element burned 

at a fixed position with a time delay with respect to the moment of injection. 

The system is implemented by first determining the state of the acoustic field by 

monitoring the instantaneous pressure signature at a fixed location, for example, at the wall 

near the downstream diffuser ([13]). This can be interpreted as a point sensor, located at a 

fixed position with a certain amplication factor c. Following the idea in [12], a Proportional- 

plus-Integral (PI) controller is then introduced to modulate the mass injection rate of the 

secondary fuel. Since the time derivative of the fuel injection rate exerts direct influence on 

the acoustic field, the PI control law is equivalent to a Proportional-plus-Derivative (PD) 

control law. Therefore, the acoustic pressure input produced by the combustion of the 

injected fuel is given as a linear function of the error and its rate of change at a delayed 

time, with proportionality constants Kp and KQ. The time delay between the sensor 

output and fuel injecton accounts for the actual time required for data acquisition, signal 

processing and dynamic response of the fuel injection mechanism. 

The parameters Kp and KD are control parameters. In addition to these parameters, 

there is the freedom in the selection of the time delays and the spatial distribution of the 

external forcing associated with the burning of the injected fuel. 

In [11], the authors approximated the above problem by using a finite number of modes 

and gave a procedure to relate the control parameters Kp,Ko and the time delays r£ to 

the elimination of instabilities. Numerical results also were obtained which showed that 

the reduction of the amplitude of the lowest mode was approximately the same as obtained 

by the experimental results in [6]. On the other hand, it was also noted numerically that 

another low frequency was excited. They were unable to explain the source of this mode 

due to the fact that the simulation was not carried out long enough to obtain sufficient 

data to spectrally resolve this low frequency. 

Even though the above model applies only to acoustic effects (ignoring all convective 

components), there are still many unanswered questions which appear to be fundamental. 

This is particularly true with respect to the manner in which stabilization of some modes 

seems to lead to instability of other modes. 

The effects of delays in boundary control. The above model in combustion reduces 

to a discussion of the dynamics of a wave equation when it is subjected to a delayed control 



at some points on the boundary. It has been known for some time that the introduction 

of the delay can lead to unexpected behavior in the dynamics.   For example, for the 

linear unforced wave equation for which instantaneous boundary control yields exponential 

stability, it is known that arbitrarily small time delays can destroy stability (see [14]  [15] 

[16])- 

The fact that phenomenon of this type could occur had been observed long before these 

particular control problems were considered (see [17], [18], [19], [20], [21], [22]). Although 

these earlier investigations were concerned mainly with neutral delay differential equations, 

a simple change of coordinates shows that the above hyperbolic PDE is equivalent to a 

neutral delay differential equation. The instabilities are a consequence of the dynamics 

associated with a difference equation arising from the neutral delay differential equation. 

The main accomplishment so far in this research has been to make this identification 

clear. The problem is still under investigation. 
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Effects of Delays on Dynamics 

by 

Jack K. Hale* 

Abstract 

Part one of these lectures is devoted to two fixed point theorems motivated by 

dynamics in delay equations: an aympototic fixed point theorem which can be 

applied to determine w-periodic solutions of an ^-periodically forced equation 

and an ejective fixed point theorem which can be applied to the determination 

of nontrivial periodic solutions of autonomous equations. Part two is devoted to 

large delays, Hopf bifurcations and fixed points of maps. Part three shows that 

small delays can destroy stability properties in delay differential equations as well 

as boundary control of partial differential equatons. 

Key Words: Delay equations, dynamical systems, asymptotic fixed point theo- 

rems, ejective fixed point theorems, periodic solutions, stability, singular pertur- 
bations, boundary control. 

Part 1. Fixed Point Theorems Motivated by Dynamics 

1. Asymptotic Fixed Point Theorems. Let us begin by considering the ordinary 
differential equation 

(1-1) * = /(«,*) 

where / : R x Rn -, En is a smooth function, /(*,x) = f(t + u,x) for all t,x. It is of 

interest for such an equation to know if there exists a periodic solution of the same period 

as the vector field; namely, an ^-periodic solution. If the equation arises as a model of 

a physical system, then it is expected that all of the solutions will be defined for t > 0 

and also that they remain bounded. Is this enough to imply that there is an ^-periodic 

solution? In general, this is not the case and determining conditions under which this is 

true has led to interesting asymptotic fixed point theorems. In this section, we survey some 

of the known results on this problem. We point out also the types of conditions that will 

imply similar results for problems in infinite dimensions and that will have applications to 

functional differential equations and partial differential equations. 

* Partially supported by NSF, DARPA, AFOSR 



The determination of w-periodic solutions of (1.1) is equivalent to finding the fixed 

points of the Poincare map T, where Tx0 = x(u>,x0) and x(t,x0) is the solution of (1.1) 

satisfying 2(0, .T0) = x0. The following result is due to Massera (1950). 

Theorem 1.1. 

(i) If n = 1 and there is a solution of (1.1) bounded on [0, oo), then there is an 
u-periodic solution. 

(ii) If n = 2, all solutions of (1.1) are defined for t > 0 and there is a solution of (LI) 

bounded on [0,oo), then there is an ^-periodic solution. 

(iii)Ifn = 2, then there is a vector field f such that there is a solution of (1.1) bounded 

on (0,oo) and there does not exist an u>-periodic solution. 

(iv) Ifn = 3, then there is a vector field f such that all solutions of (1.1) are bounded 

on [0,oo) and there does not exist an u-periodic solution. 

The proof of (i) is very easy because the Poincare map is monotone. In fact, if x(t, x0) 

is bounded on (0,oo), then the sequence Tkx0, k = 1,2,..., is bounded and monotone. 

Thus, there is a limit x* and it must be a fixed point of T. The proof of (ii) is more 

difficult and uses a fixed point theorem of Brouwer which relies heavily upon the fact that 

the dimension of the space is two. The construction of counterexamples to the result for 

n = 2, n = 3 as stated in (iii), (iv) are difficult (for another example for n = 3 due to S.-N. 

Chow, see Yoshizawa (1975)). 

In the case where the vector field in (1.1) is affine, it is possible to show that the exis- 

tence of a bounded solution implies the existence of an w-periodic-solution (see Yoshizawa 

(1975), for example). This result also is true for affine mappings T on infinite dimensional 

spaces. To state the result, we need some additional notation which also will play an im- 

portant role in our subsequent discussion of nonlinear problems. For any bounded subset 

B of a Banach space A", the Kuratowski measure of noncompactness ct(B) is defined as 

a(B) = inf{d : B has a finite cover U of diameter  < d). 

A map T : A* -> A" is said to be condensing if a(T(B)) < a(B) for any bounded set B 

in X for which a(B) > 0. If, in addition, there exists a constant fc,0 < it < 1, such that 

a(T(B)) < ka(B) for any bounded set B in X, then T is said to be an a-contraction. 

The following result is essentially due to Chow and Hale (1974). We give the proof since 

it is very simple and uses the fixed point theorem of Massatt (1980) (which generalizes 

a result of Darbo (1955) on a-contracting maps) and states that a condensing map of a 

closed bounded convex subset of a Banach space into itself must have a fixed point. 

Theorem 1.2. If A' is a Banach space, z € X is fixed, L is a linear a-condensing map 

on X,Tx = Lx + z for x € X and there is an x0 € X such that {Tkx0, k = 0,1,...} is 

bounded, then there is a fixed point ofTinX. 



Proof. Let D be the convex hull of the set {xn = Tnx0,n = 1,2,...}. If y G D, then 
y = E,€ jßii', where J is a finite subset of the positive integers, /?, > 0, E,g jßi = 1. Since 

Ty = Ly + z = !(£,•<= jßx'") + (£i6 jft> 

= ZieMLx* + z) = ZiejßiTx* e D, 

we have T(D) C .D. Since T is a-condensing, there is a fixed point of T in D. 

Let us return to the nonlinear system (1.1). Levinson (1944), in his study of the 
periodically forced van der Pol equation, initiated the study of the modern theory of 
dissipative systems. If T is a continuous map on a Banach space X, we say that T is point 
dissipative if there is a bounded set B in X if, for any x £ X, there is an no = no(x, B) such 
that Tnx € B for n > no- If X is finite dimensional and T is point dissipative, Levinson 
(1944) showed that the map T has a maximal compact invariant set A (that is, TA = A). 

He then showed that the Poincare map for the periodically forced van der Pol equation was 
point dissipative and used the above property of existence of a maximal compact invariant 
set to show that there is an integer k such that there is a periodic solution of period ku>; 

that is, a subharmonic of order k. From Theorem l.l(ii), since n = 2, we know that there 
must be a periodic solution of period u;. Other results allow us to prove the following 

rather remarkable result. 

Theorem 1.3. If the Poincare map for (1.1) is point dissipative, then there is a fixed 
point ofT. 

A proof of this result can be supplied (see, for example, Pliss (1966), Yoshizawa (1975)) 
using the following asymptotic fixed point theorem of Browder (1959): 

Theorem 1.4. Let S and Si be open convex subsets of the Banach space X and let SQ 

be a closed convex subset of X such that So C S\ C S. If T : S —► X is continuous, T(S) 
is contained in a compact set of X and if, for a positive integer m, Tm is defined on Si 

and Uo<j<mr
j'So C Si and TmS\ C So, then T has a fixed point in So- 

It was also observed by Gerstein and Krasnoselskii (1968), Horn (1970), Billotti and 
LaSalle (1971) that Theorem 1.4 could be used to extend Theorem 1.3 to the case where 
T is completely continuous. Jones (1965) and Yoshizawa (1966) used a similar method to 
obtain u>-periodic solutions of retarded functional differential equations (RFDE) when the 
period u> is at least as large as the delay. This condition was imposed to have the Poincare 
map completely continuous. 

Theorem 1.3, when extended to completely continuous maps on a Banach space, is 
very useful in the applications to parabolic partial differential equations (parabolic PDE) 

and to RFDE when the period a; > r, where r is the delay. What happens when u> < r? 
What about other applications that deal with neutral functional differential equations 



(NFDE) and damped hyperbolic PDE? Extensions have been made which are sufficiently 

general to apply to these situations. To describe one of the main results, we need some 

additional concepts. We say that the continuous map T : X —► X is compact dissipative if 

there is a bounded set B in X such that, for any compact set K C A, there is an integer 

n0 = n0(K,B) such that TnK C B for n > n0. The following result was independently 

proved by Hale and Lopes (1973), Nussbaum (1972). 

Theorem 1.5. If X is a Banach space and T : X —► A' is condensing and compact 

dissipative, then T has a fixed point. 

A set A' is said to attract points (attract compact sets) (attract bounded sets) of a set 

B if, for any e > 0, and any point x e B (compact set H in B) (bounded set U in £), 

there is an integer n0 such that Tnx (TnH) (TnU) belongs to the e-neighborhood of K for 

n > n0. It is known that the conclusion of Theorem 1.5 is still valid if we replace 'compact 

dissipative' by 'there is a compact set which attracts compact sets of A" (see, for example, 

Hale and Lopes (1973), Nussbaum (1972), or Hale and Verduyn-Lunel (1993)). 

We give a brief indication of the proof of Theorem 1.5 following the ideas in Hale and 

Lopes (1973) since it can be deduced from the following result of Horn (1970), which is an 

extension of Browder's Theorem 1.4. 

Theorem 1.6. Let S0 C Si C S2 be convex subsets of a Banach space X with S0,S2 

compact and S\ open in S2. Let T : S2 -+ X be a continuous mapping such that, for some 

integer m > 0, TjSi C S2 for Q < j <m - 1 and Tj Sj C So for m<j<2m-l. Then T 
has a £xed point. 

To use this result, Hale and Lopes (1973) first prove the following intriguing 

Lemma 1.1. Suppose that K C B C S are convex subsets of a Banach space X with 

K compact, S closed and bounded, and B open in S. If T : S -* X is continuous, 

{T]B,j > 0} C S and K attracts points of B, then there is a closed, bounded, convex 
subset A of S such that 

A = cölöj^T^B n A)]       AnK ^ 0.' 

Using Lemma 1.1 and Theorem 1.6, it is possible to prove 

Lemma 1.2. Suppose that K C B C S are convex subsets of a Banach space X with 

K compact, S closed and bounded, and B open in S. If T : S ,-> X is continuous, 

{TjB,j > 0} C S, K attracts compact sets ofB, and the set A of Lemma 1.1 is compact, 
then there is a fixed point of T. 

It is now easy to see that T being a-condensing implies that the set A of Lemma 

1.1 is compact. To verify that the conditions of Lemma 1.2 are satisfied if T is compact 



dissipative requires some effort, and the verification uses arguments that are more closely 
related to stability theory (see Hale and Verduyn-Lunel (1993)). 

As a simple application of Theorem 1.5, let us consider the RFDE 

C1-2) x(t) = f(t,xt) 

where xt{8) = x(t + 6),6 € [-r,0], r > 0, and the initial data is chosen to be in the 
space C = C([-r,0] : Rn). We assume that the function / : JR. x C -> Un is smooth 
and that f(t + u>,tp) = f(t,<p) for all t,<p. The Poincare map T : C -► C is defined as 
PV](0) = x(i + 0,v?), 6 € [-r,0], where x(t,tp) is the solution of (1.2) with initial data tp 
on [-r,0]. Let us assume that, for each fixed t > 0, the set {x(s,<p),0 < s < t,<p 6 B) is 

bounded if B is bounded. Since a solution of (1.2) is continuously differentiable for t > 0, 

if u > r, then the Ascoli-Arzela theorem implies that T is completely continuous. Ifw<r, 
this is no longer true. On the other hand, if we write the solution x(-,vJ) °f (1-2) as 

xt(;<p) = S(t)<? + U(t)<f, 

where yt = S(t)<p satisfies 
y(t) = 0 for t > 0, 

y(0 = v(0,for<€[-r,0], 
then it is easy to see that U(t) is a completely continuous operator. Furthermore, for any 
7 > 0, there is a ß > 0 such that 

HS(0lk(C;C) ^ ^c-^,    < > 0. 

Therefore, if we change the norm in C, the Poincare map T is an a-contraction. Also, it is 
not too difficult to show that, if T is point dissipative, then it is compact dissipative. We 

can now use Theorem 1.5 to prove that there is a fixed point of T without any restriction 
on the period u. 

For other applications of Theorem 1.5 to NFDE, hyperbolic PDE, the beam equation, 
etc. see, for example, Hale (198S). 

We end this section with some remarks about autonomous systems; that is, evolution- 
ary equations on a Banach space A' which generate a C°-semigroup T(t),t > 0. In this 
case, for any r > 0, the map TT = T(T) is a Poincare map. If we let Fix (Tr) be the set of 
fixed points of TT and we know that Ure(0,i] Fix(Tr) belong to a compact set, then it is 
not difficult to show that there is an equilibrium point for the semigroup; that is, a point 
x0 € X such that T(t)x0 = x0 for all t. 

To state a precise result, we use the concept of a global attractor. A set A in X is the 
global attractor for T(t) if A is compact, invariant and attracts bounded sets of X. The 
positive orbit j+(B) of a bounded set B in X is defined as the set {T(t)x : t > 0,x € B}. 
The following result is contained in Hale (1988). 



Theorem 1.7. Suppose that T(t) = S(t) + U(t) : X -* X is a C°-semigroup, U(t) 

is completely continuous and there is a continuous function k : R+ —* IEt+ such that 

k(t,r) -» 0 as t■-» oo and \\S(t)x\\ < k(t,r) if \\x\\ < r. If T(t) is point dissipative and 

7+(f?) is bounded if B is bounded, then the global attractor A exists and there is an 

equilibrium point ofT(t). 

We only remark about the equilibrium point. The conditions imply that we can change 

the norm in X so that Tr is an a-contraction and then Fix(TT) C A and we can use the 

remark preceding the theorem. 

For autonomous ordinary differential equations, the existence of a zero of vector field 

can be proved under weaker conditions as in (i) and (ii) of Theorem 1.1. 

An interesting example due to Jones and Yorke (1969) for autonomous ordinary dif- 

ferential equations in IR3 shows that there is a vector field for which all solutions are 

bounded and yet there is no zero of the vector field. The construction makes use of the 

fact that there are minimal sets in IR3 which do not separate R3 into two open sets with 

one bounded and the other unbounded (in particular, a torus can be a minimal set). 

2. Ejective Fixed Point Theorems. Let us first define what we mean by an ejective 

point of a map. 

Definition 2.1. Suppose that X is a Banach space, U is a subset of X and x is a given 

point in U. Given a map T :U\ {x} —> X, the point x € U is said to be an ejective point 

of T if there is an open neighborhood G C X of a- such that, for every y € G C\U, y ^ x, 

there is an integer m = m(y) such that Tmy £ Gf)U. 

To motivate a general ejective fixed point theorem, we consider first some simple 

examples. Consider the ODE 

(2-1) i = /(*), 

where iGE2 and / is a smooth function with /(0) = 0. Suppose that it is known that 

each solution oscillates about the origin; that is, if x = (x1,x2) and x(t) is a solution of 

(2.1) with initial data x0 on the positive xi-axis K = {(xi,0) : Xi € [0, oo)}, then there is 

a first time r for which x(r) € K. The set K is a cone and, if we define Tx0 — X{T), then 

T : K —» K. The map T has a fixed point on the boundary dK of K given by x = 0, which 

corresponds to the equilibrium point 0 of (2.1). A nontrivial fixed point of T corresponds 

to a periodic orbit of (2.1). Without some additional conditions on the map T, zero may 

be the only fixed point. If we suppose that the origin is unstable, then there exists an r > 0 

such that |Tx| > |x| for 0 < Jx| < r; that is, 0 is an ejective fixed point of T. Therefore, if, 

for 0 < |xj < r, we know that the set {T*x, k = 0,1,2,...} is bounded, then we will have 



a nontrivial fixed point of T. This will be true, for example, if we suppose that \Tx\ < |i| 

if |x| > R for R sufficiently large. This is a simple ejective fixed point theorem. 

These ideas are easily extended in principle to (2.1) where x € R3. In fact, sup- 

pose that the equilibrium point 0 is hyperbolic with one real negative eigenvalue and two 

complex eigenvalues with positive real parts. Then the linearization of (2.1) about zero 

has a one dimensional stable manifold W*(0) and a two dimensional unstable manifold 

Wu(0). Let us choose the coordinates x = (xux2,x3) so that Wa(0) = {(0,0,x3),x3 € R} 

and Wu(0) = {(xi,x2,0),(x1,i2) € R2}. From the fact that the origin is a saddle 

point, there is a cone A' with nonempty interior (and therefore of three dimensions) 

which contains Wu(0) \ {0} and is positively invariant under the flow for the lineariza- 

tion near 0. Also, becaues the eigenvalues with positive real parts are complex, the set 

K = {x € K : x = (x^O.O),!! > 0} has the property that, for any x0 € K, there is a first 

return point T0x0 to K under the linear flow. The set K is a cone with 0 being an ejective 
fixed point of To- 

If we now suppose that the cone K also is positively invariant under the flow defined 

by (2.1) and, for any x0 € A', there is a first return time Tx0 to K under the flow 

defined by (2.1), then we have T : K -* K and 0 is an ejective fixed point of T. If we 

suppose also that there is a R > 0 such that |rx| < |i| for |x| > R, then we can define 

KR = {X G K : |x| < R) and have T : KR -* KR with 0 being an ejective fixed point. 

Using a small amount of theory of Liapunov functions, it is possible "to deduce from the 

instability of zero that there is a r > 0 such that the set KRr = {x £ KR : |x| > r} has 

the property that T : KRr -» KRr. Brouwer's fixed point theorem imlies that there is a 

fixed point of T in KRr and, thus, a nontrivial periodic solution of (2.1). 

The method described in the previous paragraphs actually has been applied to a 

specific problem in circuit theory concerned with the quenching of undesirable oscillations 

(see Oldenburger and Boyer (1961), Hale (1963)). 

It is natural to attempt to carry the above procedure over to infinite dimensional 

systems by replacing the Brouwer theorem by the Schauder theorem for compact maps. 

Unfortunately, it is not so easy to exclude a small neighborhood of the origin using Li- 

apunov theory. Convexity (or being equivalent to a convex set) is not easy to verify. 

Motivated by an example to be discussed below, Browder (1965) gave an ejective fixed 

point theorem for compact maps, which was later extended by Nussbaum (1974) to the 
following result. 

Theorem 2.1. If K is a closed, bounded, convex, infinite dimenßional set in X, T : 
K \ {

X
Q} -» K is an a-contraction, and x0 is an ejective point ofT, then there b a fixed 

point ofT in K\ {x0}. If K is finite dimensional and x0 is an extreme point of K, then 
the same conslusion holds. 

By combining in a very interesting way the concept of eigenvalue for cone maps as 



in the work of Krasnoselskii (1964) and Grafton (1969), Nussbaum (1974) proved the 

following more global result. For any M > 0, let SM = {x € X : \x\ = M}, BM = {x 6 

A' : |i| < M). 

Theorem 2.2. If K is a closed convex set. in X, T : K \ {0} —* K is an a-contraction, 

0 € A' is an ejective point of K, and there is an M > 0 such that Tx = Ax, x £ K D SM, 

implies A < 1, then T has a fixed point in K D BM \ {0} if either K is inGnite dimensional 

or X is unite dimensional and 0 is an extreme point of K 

In specific application of these results to functional differential equations, it is possible 

to take advantage of some of the geometric properties of the flow in order to obtain the 

ejectivity of the special point in the statement of the above theorems. We state this 

precisely in the proper context. 

Let us now turn to a specific delay differential equation, referred to as Wright's equa- 

tion (Wright (1955), (1961)), which was studied in detail by Jones (1962) and was the 

motivation for the development of the above general ejective fixed point theorems. 

Suppose that a is a positive constant and consider the equation 

(2.2) i(0 = -«*(*-1)[1+ *(*)]• 

If C - C([-1,0],R), then, for any p € C, there is a unique solution x(t,<p,a) of (2.2) 

satisfying x(0,p,a) = tp(8),6 € [-1,0]. If we assume that <p(0) > -1, then it is easy to 

see that x(t,tp,a) exists for all t > 0 and x(t,<p,a) > -1 for all t > 0. In the following, 

we will always assume that <^(0) > -1 and still use the notation (p € C. If we define 

[Ta(t)<p](e) = x{i + 0,¥>,<*), 6 e [-1,0], then Ta(t),t > 0, is a C°-semigroup on C. 

Our objective is to determing periodic orbits of (2.2). Let us try to mimic the proce- 

dure outlined above for (2.1) for n = 3. To do this, we first must understand the behavior 

of the solutions of the linear variational equation about the origin: 

(2.3) x(t) = -ax(t - 1). 

The eigenvalues of this equation are those values of A for which there is a solution eXt; that 

is, those A which satisfy the characteristic equation 

(2.4) A + ae~x = 0. 

This equation has infinitely many solutions with Re A -+ oo as |A| —► oo. Other properties 

of these eigenvalues is given in the following result. 

Lemma 2.1. 

(i) If 0 < a < TT/2, every solution of (2.4) has negative real part. 
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(ii) If a > e ', there is a solution X(a) = 7(a) + *V(a) of (2.4) which is continuous 

together with its first derivative in a, j'(a) > 0, o~'(a) > 0, 0 < a(a) < n, cr(ir/2) = 7r/2, 

7(TT/2) = 0, and 7(0.) > 0 for a > ir/2. 

Lemma 2.1 implies that there is a Hopf bifurcation at a = 7r/2. It is possible to show 

that it is supercritical (that is, in a neighborhood of x = 0, a = 7r/2, there is a periodic 

orbit only if a > ir/2, it is unique, hyperbolic and stable) (see Chow and Mallet-Paret 

(1977)). Since cr(7r/2) = 7r/2, the bifurcating periodic solution has period approximately 4 

and is slowly oscillating; that is, the distance between zeros of the solution is greater than 

the delay (> 1). 

As a increases, there are more eigenvalues which cross the imaginary axis and lead 

to Hopf bifurcations. However, these periodic solutions are not slowly oscillating. This 

suggests that, if we attempt to carry out a program similar to the mentioned one for ODE, 

we must restrict attention to the set SO of slowly oscillation solutions of (2.2). 

For all values of a, the dominant unstable eigenvalues are the ones in part (ii) of 

Lemma 2.1. The corresponding eigenfunctions span a two dimensional subspace W of C 

and there is a cone A' in C with nonempty interior, W \ {0} belongs to the interior of K 

and K is positively invariant under the flow defined by the linear equation (2.3). Since the 

dominant eigenvalues are complex, solutions of (2.3) rotate around K. If we knew that the 

same properties hold for the nonlinear equation (2.2), then we would be close to situation 

in ODE. All of these remarks can be made more precise and we do this following the ideas 

in Jones (1962). However, we first state the main result for (2.2). 

Theorem 2.3.  If a > T/2, then (2.2) has a nontrivial periodic solution which is slowly 

oscillating. 

We only give the main steps in the proof and refer to Hale and Verduyn-Lunel (1993) 

for the details. We first need a result on the oscillatory properties of the solutions of (2.2). 

Lemma 2.2. 

(i) lfip(0) > —1 and the zeros ofx(-,tp,a) are bounded, then x(t,(p,a) —+ 0 as t —» 00. 

(ii) If v(0) > —1, then x(t,tp,a) is bounded. Furthermore, if the zeros ofx(-,(p,a) are 

unbounded, then any maximum of x(t,<p,a), t > 0 is less that ea — 1. 

(Hi) lf(p(0) > —1 and a > 1, then the zeros of x(-,(p,a) are unbounded, 

(iv) H<p(6) > —1, — 1 < 6 < 0, then the zeros ofx(t,<p,a) are simple and the distance 

from a zero of x(t,<p,a) to the next maximum or minimum is > 1. 

Let K be the class of all monotone increasing functions (p € C such that ip(6) > 0, 

-1< 6 < 0, y>(-l) = 0. Also, suppose that 0 € K. The set if is a cone. If o > 1, y? € K, 

V? ^ 0, let 

z(v?,a) = min{r : x(i,</>,<*) = 0,x(t,y,a) > 0}. 



This minimum exists from Lemma 2.2, Parts (iii) and (iv). Also z(p, a) > 2. Furthermore, 

Lemma 2.2(iv) implies that x(t,<p,a) is positive and increasing on (z(y?,a), z(ip,a) + 1]. 

As a consequence, if r(<^, a) = z(<p, a) + 1, then we can define the mapping A : K —► A' by 

i4(a)0 = 0 

A(a^ = Ttt(r»),    y>^0, 

where Ttt(<) is the semigroup defined by (2.2). 

Lemma 2.3. The map r :K\ {0} x (l,oo) -+ (0,oo) denned by r(<p,a) = z(<p,a) + 1 is 

completely continuous. 

From Parts (ii) and (iv) of Lemma 2.2, it follows that |ji(a)p| < e° - 1 for each <p € K 

and A(a) takes any bounded set B in K \ {0} into the set {<p E C : \<p\ < e° - 1}. Using 

Lemma 4.3 and the fact that ,4(0) = 0, it is possible to show that .4(a) is continuous at 0 
and that A(a) is completely continuous. 

If we let KQ = {ip e K : \<p\ < e° - 1}, then A : Ka -» KQ is completely continuous 

with the fixed point 0 an extreme point of KQ. Also, the set A'0 is a closed bounded convex 

subset of C. If the point 0 is ejective, then we can use Theorem 2.1 to complete the proof 

of Theorem 2.3. The proof of this is a little technical, but follows from the fact that the 

dominant part of the local unstable manifold of the origin is tangent at the origin to the 

two dimensional manifold W of the dominant part of the unstable manifold of the linear 
equation (2.3). We do not give the details. 

If, in (2.2), we let 1 + x(t) = eyit\ then we obtain the equation 

(2.5) i(t) = af(y(t - 1)), 

where /(y) = 1-6" which satisfies the property that /(y) has negative feedback; that is, 

yf(y) < 0 for y ^ 0 and /'(0) < 0. For equations of the form (2.5) with some additional 

conditions on. the function /, the above method has been applied to obtain the existence of 

nontrivial periodic solutions (see Hale and Verduyn-Lunel (1993), Supplementary Remarks 
to Chapter 11). 

Equations (2.5) and more general ones of the type 

(2-6) i(0+**(<) = /(*(*-!)) 

occur very often in the applications. The following interesting result is due to Hadeler and 
Tomiuk (1977). 

10 



Theorem 2.4. Suppose that o is a positive constant and f has negative feedback. If 

there is an interval I such that /(I) C I and the origin is linearly unstable, then there is 

a nontrivial periodic solution of (2.6) which is slowly oscillating. 

The above method will not yield directly a proof of this theorem since the slowly 

oscillating periodic solution need not be monotone increasing of an interval of length one 

of the form [z,z + 1], where z is a zero of the solution. The important new idea is to 

replace the cone K used for the proof of Theorem 2.3 by another consisting of functions 

which when weighted by a specific type of exponential function are monotone increasing. 

Let us condider the following generalization of (2.6) which has been used as a model 

for the transmission of light through a ring cavity (see Vallee, Dubois, Cote and Delisle 

(1987), Vallee and Marriott (19S9)) 

(2.7) (<5m± + i)...{61± + l)y(f) = f(y(t - 1)), 

where 6 = (6i,...,6m) €. (Q,oo)m. Hale and Ivanov (1993) have used the ideas of Hadeler 

and Tomiuk (1977) as well as the method above to obtain the following result. 

Theorem 2.5. Suppose that I is a bounded interval such that f(I) C I, f has negative 

feedback. Then there is a 80 > 0 such that, for each 8 G (0,60)
m, equation (2.7) has a 

slowly oscillating periodic solution. 

Theorem 2.5 is Theorem 2.4 if m = 0. For m = 2, an der Heiden (1979) has obtained 

the conclusion in Theorem 2.5 with any smallness restrictions on e but, of course, with the 

additional condition that the origin is linearly unstable. 
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Part 2. Large Delays and Oscillations 

1. Introduction. It is a well known fact that increasing the delay in a retarded delay 

differential equation (RDDE) often has a tendency to destabilize the motion. Also, the 

destabilization frequently occurs through a Hopf bifurcation; that is, as the delay is in- 

creased, a periodic orbit bifurcates from an equilibrium point. We have encountered this 

phenomenon in our study of Wright's equation (2.2) of Parti, Section 2. By a rescaling in 

time, the parameter a in (2.2) plays the same role as a delay. We now want to discuss sit- 

uations where the destabilization occurs through a Hopf bifurcation and try to understand 

the nature of the profile of the resulting periodic orbits as the delay approaches infinity. 

We begin with a simple example of a linear system to see how the eigenvalues behave 
as a function of the delay. 

Example 1.1. For a, b constants, consider the RDDE 

(1-1) x(t) = -ax(t)-bx(t-l). 

As in Part 1, the initial data for solutions is taken in the space C = C([-1,0];R). Also, 

if x(t,i?) is the solution of (1.1) with initial data y> £ C at t = 0, then we define the C°- 

semigroup T{t) : C -+ C by the relation T{t)i?(6) = x(t + 0,y>),0 € [-1,0]. The operator 

T(t) is compact for t > 1, the spectrum of T(t) consists only of point spectrum and it is 

given by {eA'}, where A is a solution of the characteristic equation 

(1-2) A + a + be~x = 0. 

In the (a,6)-plane, the stability diagram is show in Figure 1.1. 

Figure 1.1. Stability region for i(t) — -ax(t) - bx(t - 1). 

In the region between the line b = — a and the curve asymptotic to the line a = b 

which contains the wedge \a\ < \b\,a > 0, each solution of (1.2) has negative real part and 

the zero solution of (1.1) is exponentially stable. On the line b = -a, (a,b) ^ (-1,1), 

there is a simple zero of (1.2). On the curve asymptotic to the line a = 6, (a, 6) ^ (-1,1), 

there are two purely imaginary roots ±iu>(a,b) with w(a,fc) -♦ n as (a, b) -* (oo,oo). At 
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the point (a, b) = ( — 1,1), there is a double zero root with nonsimple elementary divisors 

(see, for example, the Appendix of Hale and Verduyn-Lunel (1993)). 

For T > 0, ä, 6 constants, consider the equation 

(1.3) x{t) = -äx(t)-lx{t-T), 

which by a change of time scale is equivalent to the equation (1.1) with a = or, 6 = IT. 

If we suppose that (a, b) is in the stability region for (1.1), then we can destabilize the 

origin by increasing the delay if and only if b > \ä\. The destabilization occurs by having 

two eigenvalues cross transversally the imaginary axis at a critical value r(ä,6) > 0. If 

we subject (1.1) to nonlinear perturbations which are second order near the origin, then 

the Hopf bifurcation theorem implies there must be periodic orbits in a neighborhood of 

(x,T) = (0,r(ä,6). » 

Figure 1.2. Stability of the origin of (1.3) for (ä, b) = (1,1 + A)). 

To be more specific, let us assume that ä = 1, 1 = 1 + A, where A is a real parameter. 

In this case, we can destabilize the origin by increasing r if A > 0 and cannot if A < 0. 

Also, if A > 0 and if we define T(A) = r(l, 1 + A), then r(A) —> oo as A —► 0 and the purely 

imaginary solutions ±zu>(A,r(A)) of (1.2) are such that U>(A,T(A)) —► n as A —» 0. Note 

that the corresponding eigenfunction is periodic of period ,A
2^,A„ which approaches 2 as 

A^O. 

If we keep 5 = 1, 6 = 1 + A and formally put r = oo in the rescaled version of (1.3), 

we obtain the mapping on R: IM —(1 + A)x. The fixed point zero of this map is stable 

for A < 0 and unstable for A > 0. Furthermore, if nonlinear terms were included, then 

there will be a period doubling at A = 0. 

Let us now consider the nonlinear equation 

(1.4) ei(0 + x(0 = A(*(t-l)), 

where 

(1-5) /A(X) = -(1 + A)X + <?(X),    <7(x) = O(x2)asx-+0. 
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Recall that t — i/r, where r is the delay. 

Let (A, e( A)) be the curve in the (A, e)-plane along which there are two purely imaginary 

solutions of (1.2) and the remaining ones have negative real parts. For a fixed small value 

of A. the point e(A) is a point of Hopf bifurcation with respect to e for (1.4). In the 

(A.c)-plane. the Hopf bifurcation curve divides the upper half plane intersected with a 

neighborhood of the origin into two regions 5 and U with the property that the origin 

is hyperbolic stable in S and hyperbolic unstable in U (see Figure 1.3) provided that we 

restrict our discussion to initial data from the subspace SO of C which corresponds to 

slowly oscillating solutions. Recall that a slowly oscillating solution is one for which the 

distance between zeros is at least as large as the delay, which in our equation is 1. In the 

subspace SO. the dimension of the unstable manifold of the origin in U is 2. 

We restrict our attention to SO because, for a fixed value of A, there are a countable 

number of values of c at which two eigenvalues cross the imaginary axis from left to right 
with increasing e. 

Hopf curve 

Figure 1.3. The stable and unstable regions of the origin. 

Let xiX be a slowly oscillating periodic orbit of (1.4) in a small neighborhood of x = 0 

for e. A small, e > 0. The problem that we want to discuss is the following: 

For a fixed value of A, what is the limiting profile of this solution as e-*0? 

From our remarks above, we know that the period is approximately 2 since the eigen- 

values ±iu(\, r(A)) on the Hopf curve have the property that w(A, r(A)) -» T as A -» 0. 

For e = 0 in (1.4), we obtain the map x -» fx(x). It is natural to conjecture that 

there should be some relationship between the dynamics of (1.4) near the origin and the 

map fx near the origin. In particular, we might expect the periodic orbits to be related to 
period two points of the map. 

The point A = 0 is a point of bifurcation to period two points of the map fx. Let us 

suppose that, in a small neighborhood of z = 0, A = 0, there are only a finite number of 

period two points (o), ßf), aj > 0, J = 1,2,..., N, all hyperbolic, and ordered as a$ < a* 

if j < k. Define (a£,/?0
A) = (0,0). The period two points of fx will alternate their stability 

properties; that is, if (a$J}) is stable, then (a^,/?^,) and (a}+l,ß}+l) are unstable. 

To each (at$,ß}), we can define a square wave 2-periodic function s$(t) by the relation 
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f>(0 = <*j  (resp.   ß}) if 0 < t < 1 (resp.   1 < * < 2) (see Figure 1.4a).   This function 
is stable (resp. unstable) for the map fx if the period two point (a.\#) is stable (resp 
unstable) for the map fx. 

When the period two point (a*,/?/), j > 1, is unstable, the square wave 2-periodic 

function s$ has an infinite dimensional unstable manifold. Therefore, we do not expect it 

to be related to any periodic orbit that begins near a Hopf curve. Because of the nature of 

the solutions of the characteristic equation (1.2), there is a two dimensional center manifold 

of (1.4) for each (A, e) near (A0, e(A0)). If (A, e) is small, we also expect that there should be 

some two dimensional invariant manifold that contains all slowly oscillating periodic orbits 

near the origin with each periodic orbit on this manifold encircling the origin. If each such 

periodic orbit is hyperbolic, then they alternate between being stable and unstable; that 

is, the index of the corresponding Poincare map is either zero or 1. It is to be expected 

under reasonable conditions that the limiting periodic orbits as t -> 0 should be related to 
the period two points of the map fx. 

of, 

oi,: 

■«• 

Figure 1.4a. Square wave sf Figure 1.4b. Pulse wave p) 

As a consequence of the above intuitive remarks, when the period two point (a\ ßx), 

J > 1, is unstable, we define a puke 2-periodic function p^t) bv the relation px(t)L 'J 

(resp. ßf) if t = 0 (resp. t = 1), pfr) = a}., (resp. ßf_l} if 0 < t < 1 (resp. 

Kt<2) (see Figure 1.4b). The pulse 2-periodic function is unstable for the map fx and 

the djmension of the unstable manifold is 1 (if we exclude translations in t by a constant) 

Following our intuition that, for e small, we expect that the orbits of (1.4) near the 

origin should behave in some way as the orbits of the map /A/ we make the following 
conjecture. 

Conjecture.  For e, A small and in a sufficiency small neighborhood of the origin for each 

J > 1, there exists a periodic solution xf of (1.4) of period approximately 2 such that 

(V Xj   -sf^0ase-*0 uniformly on compact subsets of El \ Z if (o^,^) is stable 

(2) xf - p) - 0 as € -> 0 uniformiy on compact subsets ofR\Z X(af,ß}) is unstable, 

where Z = {n : n = 0, ±1, ±2,...}. 

If the intuitive remarks made before the statement of the conjecture could be made 
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precise, one could probably prove the conjecture. Unfortunately, we do not know at this 
time how to do this. 

Another possible approach to a proof could be the following. At each point (A0, e(A0)) 

on the Hopf bifurcation curve, it is possible to use the method of Liapunov-Schmidt to ob- 

tain the bifurcation function G(A, e,c) for (A, e) in a neighborhood of (A0, c(A0)) and for the 

approximate amplitude c of the periodic solutions of period approximately 2n/u>(\0, c(A0)), 

where iu.<(A0,e(A0)) is the purely imaginary eigenvalue on the Hopf bifurcation curve. We 

know that w(A0,c(A0)) -» - as A0 -» 0. The zeros of G(A,e,c) correspond to periodic 

solutions of (1.4) with period close to 2. Therefore, it is to be expected that these zeros 

should be related to the periodic points of period 2 of the map fx; that is, to the fixed 

points of the map f\. If this could be proved, we would be very close to a proof of the 
conjecture. 

For the case in which there is a generic period doubling for the map /A, the above 

conjecture is known to be true. Let us state the result more precisely. Suppose that 

(1-6) fx(x) = -(l+X)x + ax2 + bx\     ß = a2 + b^0. 

We remark that it is not necessary to assume that fx is a polynomial in x or that the 

dependence upon A is as simple as in (1.6). In fact, it is enough to assume that fx has the 
property that 

/A(0) = 0 for all A, 

9,70(0) = -1,     a^/0(0) = -1, 

3z/o(0) = a,     c^/o(0) = b. 

We assume (1.6) only for some simplicity in notation. 

Under the assumption (1.6) on /A, the map fx undergoes a generic period doulbling 

at A = 0. In fact, there is a neighborhood V x W C R2 x IR of (0,0) G IR x /R such that, 

for each value of A € W for which \ß > 0, there is a unique period two point (OA,/?A) of 

/A with ax,ßx € V. We say that the bifurcation is supercritical if ß > 0 (the fixed point 

0 is stable for /„) and subcritical if ß < 0 (the fixed point 0 is unstable for /0) (see Figure 

1.5). This implies that the period two point is hyperbolic stable (resp. unstable) if ß > 0 
(resp. ß <0): 

»>0 p<o 

Figure 1.5. Bifurcation diagram for f\ 
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Theorem 1.1. Suppose that S, U are the stable and unstable regions of the origin as- 

sociated with the Hopf bifurcation curve and that f\ satisfies (1.6). Then there is a 

neighborhood V of (0, 0) in the (A, e)-plane and a neighborhood W of x - 0 such that, if 

ß > 0 (resp. ß < 0) and (A, e) e V, then there is a periodic solution xX'« of (1.4) in W with 

period 2r(A, e) = 2 + 2e + 0(|e|(|A| + |c|)) as (A, c) - (0, 0) if and only if (A, e)eVMJ 

(resp. (A, e) € V n S). Furthermore, this solution is unique and 

(1) xx'( - sx -+ 0 as t -* 0 uniformly on compact subsets ofU\JLifß>0, 

(2) xx'( is pulse-like and xXtt -px-*0ase-*0 uniformly on compact subsets of 

R \ JL if ß<0, 

where sx, px are respectively the square and pulse 2-periodic functions defined above. If, 

in addition, fx{z) = -fx(-z), then xX'<(t + r(A, e)) = -xx<((t). 

In the case ß < 0, the meaning of pulse-like is that the solution xA,< limits to constants 

on the integers. However, the values of these constants exceed the values of the correspond- 

ing period two points of the map. Theorem 1.1 is due to Chow, Hale and Huang (1992) in 

the supercritical case and to Hale and Huang (1992a) for the subcritical case. 

It is possible to make further reasonable conjectures about the relationship between 

the map f\ and equation (1.4) for e, A small. More specifically, we should consider the 

parameter A as a vector and obtain a generic unfolding of a codimension q singularity 

for period 2 points of the map fx and then obtain a relationship between the bifurcation 

surfaces in A-space for period two points and the bifurcation surfaces in (e, A)-space for 

periodic solutions of (1.4) of period approximately 2. 

In the next section, we outline the proof of Theorem 1.1. In Section 3, we given some 

extensions to matrix equations and, in Section 4, we given further extensions to the case 

where we have differential equations coupled with difference equations. 

There are results concerning the existence of periodic solutions which are not neces- 

sarily small. In fx(x) represents a negative feedback, xfx(x) <, 0 for x ^ 0 and leaves 

an interval invariant (Theorem 2.4, Part 1), there exist a nontrivial periodic solution for 

every c > 0, A > 0. Under some additional conditions, the limiting profile as e -» 0 is 

a square wave (see Mallet-Paret and Nussbaum (1986a)). When related to Theorem 1.1, 

these conditions correspond to the case ß > 0; that is, the orbit is stable. No global results 

which correspond to the case ß < 0 are known. 

The conjecture above relating the periodic solutions of (1.4) to the period two points 

of the map fx is known not to hold in general if the solutions are not required to remain in 

a small neighborhood of the origin. Furthermore, in this global setting, it is generally not 

possible to associate period k points of the map with solutions of (1.4) (see Mallet-Paret 
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and Nussbaum (1986b), (1994)). On the other hand, these global results do not rule out 
the possibility of the validity of the conjecture. 

2. Proof of Theorem 1.1. We now give an outline of the ideas of the proof of Theorem 
1.1, omitting the nontrivial technical details although they have independent interest. 

At a point (Ao,co) on the Hopf bifurcation curve, there are two purely imaginary 
solutions ±iu>o of (1.2) and the remaining solutions have negative real parts. It is possible to 
extend the classical transformation theory (theory of normal forms) in ODE for determining 
the approximate flow on the center manifold of (1.4) at (A, e) = (Ao,eo) corresponding to 
these purely imaginary eigenvalues. If we assume that the function f\ is given by (1.6) 
with ß 7^ 0 and these computations are performed, then the stability properties of the 

origin under the mapping f\ are determined by ß and the origin is stable (resp. unstable) 
if ß > 0 (resp. ß < 0), which corresponds to the generic supercritical (resp. subcritical) 
bifurcation of the map f\ at A = 0. Once this normal form has been obtained, then the 
fact that the solutions of (1.3) close to ±üJ0 cross the imaginary axis from right to left as 

e decreases implies that there is a generic supercritical (resp. subcritical) Hopf bifurcation 

with respect to e at (A0,eo). Therefore, in a neighborhood of any point (Ao,e0) on the 
Hopf bifurcation curve, there is a unique periodic orbit in the region S (resp. U) if ß > 0 
(resp. ß < 0) which is stable (resp. unstable). Of course, we do not know if this orbit 
exists and is unique in all of S (resp. U); of course, in a small neighborhood of the origin. 
It will be one of tasks to show that this is the case. 

Normal form theory for retarded functional differential equations is an interesting and 
nontrivial subject in itself and we refer the reader to the papers of Faria and Magalhäes 

(1991), (1992) for the theory as well as applications. 

We remark that we could have obtained the same information about the generic Hopf 
bifurcation by using the method of Liapunov-Schmidt to obtain the bifurcation function 
for the periodic orbits in a neighborhood of the origin. For a discussion of this approach, 
see, for example, Stech (1979), (1985). 

Returning to our proof, we next show the existence of the periodic orbit in S (resp. 
U) and then determine the limiting profile of the periodic solution as e —♦ 0. Since we 

expect to have some fast changes in the shape of the periodic solution near the integers, we 
enlarge the system by introducing new variables which represent separately the solution 
on the interval [0,1 + re) and [1 + re, 2 + 2re). Our tranformation also will change the 
bifurcation problem in the 'bad' parameters (A, e) (bad because we" must consider e > 0 
and cannot consider it in a neighborhood of zero) into a bifurcation problem with 'good' 
parameters (A, r) (good in the sense that (A, r) can be considered in a full neighborhood 
of some point). To accomplish this, we introduce some scalings which were originally 

proposed by S.-N. Chow several years ago. We suppose that (1.4) has a periodic solution 
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z{t) with period 2 + 2re and we let 

(2.1) u>i{t) = z(-ert),     w2(t) = z(-crt + 1 + er). 

Since z(t) has period 2 + 2re, we see that 

t02(t) = *(-«r(< + l)-l) 

w2(f-l) = z(-«rf-l). 

If we use (2.1) and (2.2) in (1.4), we deduce that 

w1(t) = rw1(t)-rfx(w2(t-l)) 

Mt) = rw2(t)-rfx(w1(t-l)). 
(2.3) 

This equation is now independent of e. We remark that, if (w1,w2) is a solution of (2.3), 
then (tu2,u>i) also is a solution of (2.3). 

We next determine the approximate value of the constant r in the period 2 + 2re. This 
is obtained by considering the linear variational equation around the zero solution of (2.3) 
for A = 0, 

(2.4) 
w1(t) = rw1(t) + rw2(t-l) 

w2(t) = rw2(t) + rw^t - 1). 

The eigenvalues of (2.4) are the roots of the characteristic equation, 

(2.5) det(/z/ - rLe""/) = (jz - r)2 - r2e~2" = 0 , 

where 

(2.6) L<P = v(0) + 
0 1 
1 0 ¥>(-!)• 

The left hand side of Equation (2.5) always has /i = 0 as a zero. It is a simple zero if r ^ 1 
and it is a double zero if r = 1. Bifurcation from a simple zero can never lead to any periodic 
orbits. Therefore, we are forced to take r = 1 in the first approximation. For r = 1, the 
remaining eigenvalues of (2.4) have negative real parts. If we let r = 1 + 8, w = (wt, w2), 
where 6 is a small parameter, then (2.3) can be written as 

w(t) = Lwt + 6Lwt - F\tt(wt), (2.7) w(t) 

where 

(2.8) FA.«(9) = (l + 5) ¥>2(-1) + /A(Y>2(-1)) 

LV>I(-1) + /AGPI(-1)) H> = 
¥>2 
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and wt(6) = w(t + 6) for -1 < 6 < 0. 

We now consider Equation (2.7) as a perturbation of the linear equation 

(2.9) v(t) = Lvt. 

Of course, we will consider (2.7) with initial data in the space C = C([-l, 0], R2). Since 

the characteristic equation for the linear part of (2.7) for (A, 6) — (0, 0) has a zero as a 

root of multiplicity two, we know that the small periodic orbits of (2.7) will he on a two 
dimensional center manifold which is tangent to the subspace generated by generalized 
eigenvectors Q, (2 associated with the eigenvalue zero of (2.8). 

To obtain a center manifold, we use the usual decomposition theory for linear systems 
(see Hale and Verduyn-Lunel (1993)) writing C = P @ Q, where P is the generalized 
eigenspace of 0 and Q is a subspace complementary to P and invariant under the semigroup 
defined by (2.9). If we let wt = ziCi + Z2C2 + üt, where wt £ Q, then a center manifold is 
given by a function h(d,(7) which vanishes at (0,0) and is defined by an integral equation 

which is obtained from the variation of constants formula. To solve our problem, we need 

to know the specific form of the vector field on the center manifold. This is a nontrivial 
computation very similar in spirit to those that are involved in nomal form theory. If we 
perform these computations, we see that the approximate flow on the center manifold is 
given by the system of ordinary differential equations 

(2.10)       Zl = 26zi+2KtZi + Z2) ~ 2/3{h+Z2)3 ~ a^lZi+z^z* 
z2 = -zi 

up through terms of order (S + A)2|z| + |z|4. 

Because of the symmetry in (2.3), it can be shown that the periodic orbits of (2.10) 
which encircle the origin and have period > 2 are in one-to-one correspondence with the 
periodic solutions of (1.4) of period 2 + 2re. Of course, in this statement, we assume that 

€ is small as well as the periodic orbits that are being considered. With this observation, 
it is sufficient to look for these types of periodic solutions of (2.10) in a neighborhood of 
the origin regarding (A, 8) as the bifurcation parameters. We remark that this problem 
is different from the usual bifurcation problem for periodic orbits since we are concerned 
only with those periodic orbits that encircle the origin. 

We can apply the theory of normal forms to (2.10) to make a nonlinear change of 
variables in (2.10) which is close to the identity and arrive at an equivalent equation 

(2 n) h = (2S + A-)zi + 2Az2 - 2ßz\ - 4ßZlzl 

Z2 = -Zi 

21 



up through terms of order (6 + \)7\z\ + |z|4. 

The complete unfolding of the singularity in (2.11) is known (see Takens (1974a), 

(1974b), Carr (19S1)). The case ß > 0 has a simple structure for the periodic orbits (they 

all encircle the origin) whereas the case 0 < 0 is very complicated (periodic orbits for some 

values of the parameters encircle points other than the origin). As remarked earlier, we 

are interested only in those that encircle the origin. This means that the unfolding theory 

does not help in this problem. However, the techniques used in this theory can be adapted 

to discuss the above problem and to complete the proof of Theorem 1.1. As we will see, 

the computations are very complicated since the expression e, which determines the period 

of the solutions of (1.4), involves Abelian integrals. 

Let us be a little more specific about how this is done. We consider only the case 

where ß < 0 since this is by far the most complicated. To analyze the periodic solutions 

of (2.11), it is convenient to rescale variables 

A = —ajj,'. h = (i5, ui(t) = 
r=ß 

2(- 
t 

■),   "2(0 = 
r=ß t 

*i(—vsr). 

(2.12) 

P '    y/2fi"  ~*v"'       \/2fi2"iK    v/2/i' 

in (2.11) to obtain the equivalent system 

ill = Uo 

ü, = aui + fu2 -u\- 2\f2nu2u\ + 0(^2[tiX + u2]3), 

where 7 = -\/2(<5 - f a/i). For \i = 0, 6 = 0, we obtain the conservative system 

(2.13) Ül 

ii2 

with the first integral 

U9 

Q'Ui — Uj 

(2.14) 
9 

QW-, 
H(a, uu uo) = -r- - —-i + -L , 

2 2 4 

Equation (2.12) has the same form as Equation (4.4.1) in Carr (1981, p.64) and so we can 

use his technique with the first integral (2.14) to find conditions on p,6 to ensure that 
there are periodic solutions. 

Figure 2.1. Phase portrait for the conservative system for a > 0. 
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The phase portrait for the Hamiltonian system (2.13) is shown in Figure 2.1 for a > 0. 
There are periodic orbits encircling the equilibrium points (±y/a,0) However, these are of 
no interest to us since they do not encircle the origin. There are two homoclinic orbits to 
the origin which form a figure eight. There also are periodic orbits encircling the figure 
eight and these are of interest to us. 

If a < 0 there is only one equilibrium point of (2.13) and all orbits are periodic and 
encircle the origin. We are interested in all of these. 

To understand the effect of the perturbation terms in (2.12), we compute the derivative 
of the function H(a,u1,u2) along the solutions of (2.12) to obtain 

(2.15) #(a,tx1,u2) = 7u*-2v/2/Ju^ + ..., 

where ... represents higher order terms. We want to find a periodic solution near to the 
periodic solution of the conservative system that passes through the point (c, 0), c > 0 or 
equivalently through the point Q = (Q,(Y - ac7)1'2) on the u2-axis (see Figure 2.1). If 

"(*,<?) = (ui(t,Q),u2(Q)) is the solution of (2.12) through the point Q, then, for /i and 8 
sufficiently small, there are constants t*_ < 0 < t+ such that u2(tl,Q) = 0,u2(*+,Q) = 0. 
It is now possible to show that the symmetry in (2.3) implies that u(t, Q) is periodic if and 

only if %«i(C,(?),0) = if(a,Ui(^, Q),0). If we perform an integration in (2.15), we 
deduce from this remark that 

(2-16) -V2(6 - lap) = 2V2P(a, c)/x + ..., 

where ... denotes higher order terms and 

PK c) = ^ifl 
Jo{a, c) 

(2.17) ^(a, c) =  T w2(aw2 - ^- + £■ - ac2)1'2 dw 
Jo *■        - 

Jo(<x,c) = j   (a-^-^ + y-ac2)1/2^, 

where c > y/2a if a > 0 and c> 0 if a < 0. 

For ä > 0, c > y/2ä, let 

J(ä, c) = {(a, c): a € [-ä, ä],c>c> y/2a ifa>0, c>c>0ifa<0}. 

We can now apply the Implicit Function Theorem to (2.16) to obtain the following 
result. 
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Lemma 2.1.  For each fixed ä > 0, c > >/§ä, there are a constant ß > 0 and a function 

r(o, c, /i) = 2\/2P(a, c)/x + 0(/x2), 

defeed for 0 < /x < ß, (a,c) G /(ä,c), such that f2.J2; has a unique periodic solution 
passing through Uj = 0, u2 = [c

4/2 - ac2]1/2 if and on/y if 

9 
(2.18) -v^(Ä-^) = r(o,c,/i) = 2N/2P(o,c)/i + 0(Az2). 

Furthermore, if a > 0, then the periodic solution tends to the pair of homochnic orbits 

(the figure eight) of (2.12) as c -» v^ and, if a < 0, the periodic solution tends to zero 
as c —♦ 0. 

Formula (2.18) determines * as a function <5(/x) of /z so that there is a periodic solution 

of (2.12) with initial data Q = Q(c) = (0, [c4/2 - oc2]1/2). Let 6 = 6(p) and let u(t) = 

(u,(<, /x, a, c), u2(t, zx, a, c)) (resp., u0(t) = (tx10(t, a, c), u20(t, o, c))) be the periodic 

solution of (2.12) (resp., of (2.13)) of period T(/x, a, c) (resp., T0(o, c)) passing through 

Q = (0, [c4/2 - ac2]1/2). Since u(t, /x, a, c) -> u0(t, a, c) as /x - 0, we have T(/x, a, c) - 
T0(a, c) as fi —> 0. Furthermore, 

(2-19) T(fx,a,c) = T0(a,c) + O(n). 

From the above scaling, this periodic solution leads to a periodic solution of (2.11) of 

period T((i, Q, c)/y/2fi, which in turn gives a periodic solution of (2.4) of period 2 + 2re 

if and only if 2 + 2r6 = er(T(/z, o, c)/^), A = -xx2 and r = 1 + tf, where Ä is given by 
(2.18). Therefore, 

(2.20) e = e(zx, a, c) =  ^  
[T(fx, a, c) - 2V5/z][l + fCf - 2P(a, c))] ' 

Here, we omit the terms of order 0(/x3) since they play no essential role. 

Lemma 2.2. Let c > ^2ä be given, let ß be defined as in Lemma 2.1 and let e(/x a c) 

be given by (2.20). Then, for each fixed xx € (0, fi] and a € [0, a], the function e(*x,' a, c) 

is monotone increasing for c € (v/2~o", c] provided that e(/x, a, c) > 0. In addition, 

(2-21) Hm   e(/x, a, c) = 0. 
c—*y/2o 

We remark that the periodic orbit { u(t, p, a, c), t € R } tends to a pair of homoclinic 

orbits (the figure eight of (2.12)) as c - yfö. Therefore, T(/x, a, c)-, oo as c-, ^, 
which implies the relation (2.21). 
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The proof of this lemma is the most difficult part of the proof because of the difficulties 
in understanding how ratios of the Abelian integrals in (2.17) depend upon the parameter 
c. We refer to Hale and Huang (1992a) for the details. 

Lemma 2.2 completes the proof of Theorem 3.1. 

3. Hybrid systems. In applications, we often encounter equations which are gener- 

alizations of (3.1) and consist of differential difference equations coupled with difference 
equations.  We refer to such systems as hybrid systems and the form that we consider is 
the following: 

«(*) = /*(*(*), v(0) 
y(0 = 9x{x(t)Mt)Mt -1), v(< -1)), 

where e > 0, A are small real parameters, i € Rm, y e En are vectors and the functions 
h(x-,y) — f(x,y,X) and gx(x,y,z,w) = g(x,y,z,w, A) are smooth vector valued functions 
which vanish for all variables equal to zero. 

This system includes (1.4) by letting the function gx be x(t - 1) and the function fx 

be replaced by -x{t) + f\(y(t)). System (3.1) includes also 

(3-2) «(0 + x(t) = fx(x(t - l),x(t - 2)) 

by letting y be a two vector yi(t) = x(t - l),y2(t) = yi(t - 1) = x(t - 2). In this way, 

we are able to consider situations in which the map defined by e — 0 is a two dimensional 
map; for example, the Henon map. 

In models of transmitted light through ring cavities with several chambers, Vallee, 
Dubois, Cote and Delisle (1987), Vallee and Marriott (1989), have proposed the following 
model: 

(3-3) {Smjt +l)...(S1jt+ l)z(0 = hx(z(t - 1)), 

where each Sj > 0 is a small parameter and 2 is a scalar. 
We can transform this to an equivalent matrix system 

*iii(t) + Xl(t) = x7(t) 

(3.4) 
Sm-ixm-i(t) + xm_x(<) = xm(t) 

6mXm(t) + Xm{t) = hX(Xl(t - 1)) . 

If we assume that Sj as 6j = ea~l, j = 1, 2, ..., m, where each a, > 0,; = 1,2,... ,m, 
then we obtain the matrix equation ' 

(3-5) ex(t) + Ax(t) = A'fx(x(t - 1)), 
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where A and f\ are given by 

(3.6) A = 

*1 

0 
-ax 
a2 

0 
-a2    . 

0 
0 

o   • 
0 

"Mxi) 
/lA(Xj) 

• • • . • /*(*) = • 

0 
0 

0 
0 

0 
0      . 

•      <*m-l 

0 
-Om-1 

-h\(xi) 

System (3.5) is a special case of (3.1) if we put y(t) = x(* - 1). 

It is of interest to consider (3.5) for a general function f\ and a general matrix A, 
assuming only that A~l exists. Such a system is a special case of the system 

(3.7) 
ei(t) + Ax(t) = Afx(y(t)) 

y(t) = gx(x(t-l),y(t-l)), 

where x € lRm, y G IR" are vectors, the m x in matrix A has an inverse and the functions 
fx{y) and gx{x, y) are smooth vector valued functions. Equation (3.7) has been used by 
Ikeda (1979), Ikeda, Daido and Akimoto (1980) as a model of a ring cavity containing a 
nonlinear dielectric medium for which a part of the transmitted light is fed back into the 
medium. 

The equation (3.1) arises also in the theory of transmission lines. If the lines are 
lossless and described by the telegraph equations with the boundary conditions for the 
circuitry between the lines reflecting Kirchoff's laws, it has been known for a long time 
that the flow can be described by an equivalent set of neutral delay differential equations 
(see, for example, Hale and Verduyn-Lunel (1993) for a discussion and references). Many of 
these same problems also can be written in the form (3.1). For example, by an appropriate 
change of coordinates, the equation studied by Shimura (1967) for a transmission line with 
a tunnel diode and a lumped parallel capacitance can be rewritten as 

(3.8) 
ex(t) = y(t)-g(x(t)) 

y(t) = a + Ky{t - 1) - x(t) - Lx(t - 1) , 

where (x(<), y(t)) represent the voltage and current at one end of the line, all constants are 
positive and represent physical parameters. Under reasonable assumptions in the model, 
the parameter e can be considered to be very small. In the paper of Shimura (1967), several 

wave forms were observed numerically which compared reasonably well with experimental 
results. Some of these wave forms were very similar to square waves. 

As remarked before, in many situations, for fixed c0 > 0, there is a A*(c0) (which we 
assume to be positive for definiteness) such that (3.1) undergoes a generic Hopf bifurcation 
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at (e,A,x,y) = (e0, A*(eo),0,0) to a periodic solution (x*A,y*A). Let us assume that there 

is a neighborhood U of (e,A) = (0,0) such that (x*x,y*x) exists for all (c > 0,A) in U. 

Our objective remains to understand the behavior of the profile of (i*A, y*x) as e -+ 0. We 

are not able to do this in the general context described, but we can say something if we 

impose more conditions on the functions f\,g\- 

It is to be expected that the limiting profile is in some way related to the equation 

obtained by putting e = 0 in (3.1). For e = 0, we suppose that the resulting equation (3.1) 

defines a map on IR"' x R": 

(3-9) (x, y) € IT x R" ~ TA(x, y) € fftm x Rn 

for which the origin is stable for A < 0 and unstable for A > 0. Let us also suppose that 

T\(x,y) undergoes a generic period doubling bifurcation at (x,y,A) = (0,0,0) with the 

period two points being dj\ € Rm x IR", j = 1,2. If the bifurcation is supercritical, we 

can define the square wave 2-periodic function and, if the bifurcation is subcritical, we can 

define the pulse wave 2-periodic function as in Section 1. 

Under some conditions on the functions f\,g\, the generic period doubling bifurcation 

of T\(x,y) leads to a generic Hopf bifurcation in (3.1) which is supercritical (resp. sub- 

critical) if the period doubling bifurcation is supercritical (resp. subcritical). The natural 
question as before is the following: 

Is it possible that the limiting profile of the periodic solution (x*A,y*A) obtained through 

the Hopf bifurcation is either the square wave or pulse wave? 

In a later section, we present general results of Hale and Huang (1994) for which this 

is true for equation (3.7). Preliminary computations indicate that similar results also hold 

for systems of the form (3.8). 

4. Hopf bifurcation in a special hybrid system. In this section, we give conditions 

under which there will be a generic first Hopf bifurcation for the hybrid system 

(41) *i(t) + Ax(t) = Afx(y(t)) 

y(') = <?A(x(*-l),y(*-l)), 

where z € IRm, y € IR" are vectors, the m x m matrix A has an inverse and the functions 

fx(y) and g\(x, y) are smooth vector valued functions. 

We make the following hypothesis: 

(HI) A"1 exists,    /A(0) = 0,    <7A(0,0) = 0. 

(Hi) is natural since we want to consider bifurcation from the origin and we also want a 

map to be defined for e = 0. 

27 



If we introduce the notation, 

(4 2) A2(\) = Dyfx(0),    Bi(A) = Z>x0A(O,O),    B2{\) = D,gx{0,0) 

C(A) = B1(A).42(A) + B2(A), 

then the linear variational equation of (4.1) about the origin is 

«(0 + ^(0 = AA2(X)y(t) 

y(t) = B1(\)x(t-l) + B2(\)y(t-l), 

for which the characteristic matrix is 

(4.4) A(A,e,p) = 
€fiIm+A -AA2(X) 

-B1(A)e-^    Jn-B2(A)e-" 

We let <r(C) denote the spectrum of a square matrix C and let Bp = {z € <E: \z\ < p}. 

Our next hypothesis is 

(H2) *(£2(0)) CB„    p < 1. 

Without hypothesis (H2), it is not too difficult to show that there would be solutions of 

(4.4) which either accumulate or lie on a line in the complex plane with real part > 0. If 

this were the case, we would not be able to find a simple Hopf bifurcation. 

It is convenient to introduce the following definition. We say that a curve T in the 

(A, e)-plane, e > 0, is a Hopf Bifurcation Curve of (4.3) if there is an e* > 0 and a 

continuous function A = A(e),0 < e < e*, A(e) -* 0 as e —+ 0 such that, if Tt- — {(A, e) : 

A = A(e), e G (0, €*]}, then, for any (A0, eo) £ IV, there are two purely imaginary solutions 

dzißo of the characteristic equation det A(A0,€o,p) = 0 and the remaining solutions p 

satisfy Rep ^ 0. We say that a Hopf Bifurcation Curve is a Generic Hopf Bifurcation 

Curve wWi respect to e if, for fixed A0, the two eigenvalues p(A0, e), p(A0, e), p(A0, e0) = iß0, 

satisfy Re3p(A0,eo)/de < 0. This type of transversal crossing of the imaginary axis of 

the eigenvalue p(A0,e) implies that there will be a Hopf bifurcation with respect to e at 

c0. We say that a Hopf Bifurcation Curve is the First Hopf Bifurcation Curve if, for 

each (A0,eo) € IVj, all eigenvalues p corresponding to the parameters e > €$, A = A0, 

have Re < 0. The Generic First Hopf Bifurcation Curve with respect to e is a Generic 

Hopf Bifurcation Curve and also a First Hopf Bifurcation Curve. The Generic First Hopf 

Bifurcation Curve with respect to e is the most interesting because there is a transfer of 

stability of the origin at e = to; that is, the origin is stable for e > e0 and unstable for 

e < Co- From the physical origins of the problem, this is natural because we expect that the 

origin is stable for large e (by a change of time scale, this is small delay) and to eventually 

become unstable for small e (large delay). The Generic First Hopf Bifurcation Curve with 

respect to e represents the first change in the stability properties of the origin. 
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Huang and Hale (1994a) have given conditions on the coefficients in (4.2) for the 
existence of the Generic First Hopf Bifurcation Curve. 

In addition to (H2), assume that 

(H3) 
—(1 + A) € a(C(A)) is a simple eigenvalue, 

o(C(\)) \ {-(1 + A)} C Bp with p < 1. 

If (H3) is satisfied, then we can introduce a change of variables in y to obtain 

(4.5) C(A) = 

We also introduce the notation 

(4.6) -Bl(0)A-1A2(0) = S = 

-(1 + A)        0 
0 J70(A) 

,    cr(H0{\) C Bp, p<\. 

S21    S22 
,    -B1(0)A-2A2(0) = W = 

Wn    W12 

W21    W22 

The remaining hypotheses that we impose are 

(H4) i2o=-51
2
1+2[T^1+512(J + ^o(0))-1521]^0,    5„ ^ 0. 

(H5) min{Rez : z € o{A)} > 0, 

(H6)      Det ieim + A -AA2(0) 
-B1(0)e-,t'    In - B2(0)e~iv ^ 0, for 6 > 0,0 < v < 2TT,(6,V) ^ (0,TT) 

(H7) Det Lilm + A     -AA2(0) 
-BxiO)    In-B2(0) #0, for all/xGC, Re/i>0. 

One of the main results of this section is 

Theorem 4.1. Under the assumptions (Hl>(H5j, the hypotheses (H6J and (H7j are 
necessary and.sufficient for the existence of the Generic First Hopf Bifurcation Curve with 

respect to e. Furthermore, if these hypotheses are satisfied, then there is an e* > 0 such 

that this curve is given as IV = {((A(e), e), e € (0, e*}, where A(e) is a C2-function having 
the property that A(e) —» 0 and is given approximately by 

(4.7) A(C)=^r2J2o62 + o(62) 

as e —♦ zero. 

Formula (4.7) implies that the Generic First Hopf Bifurcation Curve with respect to 
€ in the (A, c)-plane is the graph over the positive (resp. negative) A-axis if FLQ > 0 (resp. 
Ro<0). 
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We do not prove this theorem and refer the reader to Hale and Huang (1994b). 

Let us see if the hypotheses of Theorem 4.1 are satisfied for some of our examples. 
We have remarked before that (1.4) is a special case of (4.1) when it is written as 

(48) «*(0 + *(0 = A(v(0) 
y(t) = x(t-l). 

Let us assume that 

(4-9) fx(x) = -(1 + X)x + ax7 + 6x3, 

where ß = ar + b ^ 0. The linear variational equation about x = 0 for (4.8) is a special case 
of (4.3) with A = 1, A2{\) = -(1 + A), Bi(X) = 1, B2(X) = 0. It is now obvious that the 
hypotheses (Hl)-(H5) are satisfied. A simple computation shows that hypotheses (H6) 
is equivalent to i(8 - sin v) + 1 + cos v ^ 0 for 6 > 0, 0 < v < 2TT, V ^ -n. This is clearly 
satisfied. Also, (H7) is equivalent to \i + 2 ^ 0 for Re p, > 0, which is true. Therefore, 
there is a Generic First Hopf Bifurcation Curve with respect to e. 

Let us next discuss equation (3.5), (3.6). We show that all of the hypotheses are 
satisfied by analyzing directly the characteristic equation. The proof is not difficult. The 
characteristic equation for the linearization about x = 0 is given by 

(4.10) E(e, A,/x) = (eamfjL + 1) • • • {ealti + 1) + (1 + X)e~>1 = 0. 

In this particular situation, the determinant in (H6) is given by 

8 m 

£i(ö,v) = E(-,0,iv) = Hiidaj + 1) + e-\ 
.7=1 

If 6 > 0,0 < v < 2TT, are such that Ex(8,v) = 0, then we have | NjLfiSctj + 1)| = 1; that 
is> UT=i(e2aj + 1) = 1. Since acj > 0, we must have Ö = 0 and hence 1 + e~iv = 0; that 
is, v = 7T. Therefore, the condition (H6) is satisfied. 

Next, the function in (H7) has the form 

m 

C2((i) = Hifiaj + 1) + 1. 
y=i 

* 

K there is a /x = tx + iv,u > 0, such that C2(u + iv) = 0, then it follows that 1 = 

UT=i((uai + 1)2 + v7)- Therefore, we must have u = v = 0, which leads to the assertion 
that 0 = C2(0) = 1 + 1, which is a contradiction. As a consequence, C2(fi) ^ 0 for all 
H € C with Re/i > 0; that is, (H7) is satisfied. 
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We can now show that, for fixed e0 > 0, there is a unique A*(eo) > 0 such that (4.10) 
has exactly two purely imaginary roots and the remaining ones have negative real parts for 
(A, c) = (A(eo)> Co)- For c > Co, the origin is asymptotically stable and, for 0 < e < e0, the 
origin is unstable. In this way, we obtain the existence of a Generic First Hopf Bifurcation 
Curve with respect to e. 

After we know that a Generic First Hopf Bifurcation Curve with respect to e exists, 
the next step is to determine the direction of bifurcation for the nonlinear equation. To 

describe the result, we need some additional notation. It turns out that the direction of 
bifurcation is related to the map 

(4.12) y € En ~ Tx(y) = gx(fx(y),y) € R" 

obtained from (4.1) for e = 0. If we assume that C(\) is given as in (4.5) and let y = col 

(yi,y2) € R1 x HT-1, Tx = col (J"aA,^2A) € R1 x ET-1, then we can write 

(4 ii) TUy) = "(1+A)yi+*l(A)y*+yik2^lj2 + *3(A)yi+ °(W+rfiMi+rf) 
?2x{y) = H0(\)y2 + y?ffi(A) + y,H2{\)y2 + 0(||y2||

2 + y\\\y2\\ + ||y||3) 

as(y,A)-»(0,0). 
We assume that 

(H8) R, = k^lI-HoiO)}-1^^) + kj(0) + k3(0) ^ 0. 

The following result is due to Hale and Huang (1994b). 

Theorem 4.2. Suppose that (Hl)-(K8) axe satisßed and T(- is the Generic First Hopf 

Bifurcation Curve with respect to e given in Theorem 4.1. If, in addition, Ro > 0, then, 

for each fixed A0 = A(e0), Co sufficiently small, system (4.4) has a generic Hopf bifurcation 
from the origin with respect to e at e* which is supercritical (resp. subcritical) if Rx > 0 
(resp. Ri < 0). 

The proof of this is very long and uses results from a ,very general Hopf bifurcation 
theorem of Hale and Huang (1994a). The idea for the proof is simple and standard. It 
is first observed that RQ > 0 implies that the origin is stable for e > e* and unstable for 

e < e*. From the physical point of view, this is to be expected and therefore the assumption 
that RQ > 0 is natural. Also, there is a bifurcation function G(a, e) for periodic solutions 
near the origin, where a is approximately the amplitude of the periodic solution. There is a 
periodic solution of (4.1) near the origin if and only if there are (a, e) such that G(a, e) = 0. 

This function is odd in a and it is shown that the linear term in a has the same sign as 

—RQ. Furthermore, the cubic term in a has the same sign as tR\. Therefore, there is at 
most one periodic solution and it satisfies the properties stated in the theorem. 

The following result is in Hale and Huang (1994b) and is a standard application of 
the method of Liapunov-Schmidt. 
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Theorem 4.3. If (HlJ, (H3) and (H8) are satisfied, then there is a generic period two 

doubling bifurcation of Tx at (y,A) = (0,0). More precisely, if f^A > 0, then there are 

period two points dix,d2\ of Fx such that ^A(^IA) = d2\,J
r\(d2\) = <*IA, which is stable 

for Ri > 0 (supercritical bifurcation) and unstable for i?i < 0 (subcritical bifurcation). 

This is a very interesting result because it says that, if we have RQ > 0 and the 

conditions in Theorem 4.2 for Generic First Hopf Bifurcation with respect to c to occur, 

then also there is generic period doubling of the map with respect to A and the direction 

of bifurcation of the Hopf bifurcation with respect to c is the same as the direction of 

bifurcation of the period doubling bifurcation of the map with respect to A. 

We remark that the converse of this statement may not be true. More precisely, 

it is possible for the map in (4.12) to generically period double at A = 0 and yet the 

linearization about the origin in the differential euation may not possess a Generic First 

Hopf Bifurcation Curve with respect to e. 

5. Square and pulse waves for hybrid systems. It remains to show that the periodic 

orbit obtained from the Hopf bifurcation can be extended away form the Hopf bifurcation 

curve, is unique and has limiting values related to either the square or pulse periodic 

functions related to the period two points of the map. We want to apply a method similar 

to the one used in the proof of Theorem 1.1; namely scaling, center manifolds, etc. 

As in Section 2, we seek periodic solutons of (4.1) with a period 2 + 2(r0 + h)e, where 

r0 is a fixed parameter (to be determined later) which depends only upon the matrices 

A,.42(0),ßi(0),ß2(0) and h will be determined as a function of e. As in Section 2, if 

(x(t),y(t)) is such a solution of (4.1), we introduce the transformation 

,ElX ui{t) = x{-e(r0 + h)t),     u2(t) = x(-e(r0 + h)t + 1 + e(r0 + h)) 
(5.1) 

vi (0 = y(~e(rQ + h)t),    v2(t) = y(-e(r0 + h)t + 1 + e(r0 + h)). 

Since x(t) and y(t) have period 2 + 2(r0 + h)e, we see that 

u(t-l) = x(-e(r0+h)t-l) 

v(t-l) = y(-e(r0 + h)t-l). 

If we use (5.1) and (5.2) in (4.1), we deduce that 

ui(0 = (ro + h)AUl(t) - (r0 + ä)A/A(üI(0) 

(5 3) Mt) = (ro + h)Au2{t) - (r0 + h)Afx(v2(t)) ' 

vi(t) = 9x(u2(t-l),v2(t-l)) 

t>2(0 = <7A(«i(*-lW*-l))- 
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We consider h, A as the new bifurcation parameters. We must determine the constant 
r0 and the procedure, as for the simpler case in Section 2, will be to insist that the 
linear variational equation of (5.3) about zero has a double eigenvalue zero with no other 
eigenvalues on the imaginary axis. 

If we use the notation of Section 4 and let u = col (iti,u2), w = col (vi,v2). 

(5.4) 
A = 

Bj = 

A    0 
0    .4 ,    A2 = 

A2(0)       0 
0       A2(0) 

0 
Bj(0) 

Bj(oy 
0 ) i = l,2, 

then the linear variational equation of (5.3) for (h, A) = (0,0) is given by 

u(t) = r0Äu(t) - r0ÄÄ2v(t) 
(5-5). . 

v(t) = BlU(t - 1) + B2v{t - 1). 

The eigenvalues of (5.5) are the solutions of the characteristic equation 

(5.6) detA(/z,r0) = 0,     A(^,r0) = H - r0A        r0AA2 

-£1e-'x    I-B^-» 

Because of (2.3), (2.4) and the symmetry in (5.5), zero always is an eigenvalue. We impose 
conditions on the coefficients to ensure that 0 is an eigenvalue of multiplicity two and there 
are no other eigenvalues on the imaginary axis. To do this, we will need hypotheses (Hi), 
(H2), (H4) of Section 4 as well as the following one: 

(H9) det ivl2m- SUA        SnAA2 

-J5ie-""        hn-B2c- 7^0    for w€lR\{0}, 

where S\\ is given in (4.6). 

The follwoing results are due to Hale and Huang (1994b). 

Lemma 5.1. If (Hi), (H2J, (H4) and (H9) are satisfied and r0 = Sn, then y. = 0 is 
an eigenvalue of (5.5) of multiplicity two and there is a 6 > 0 such that the remaining 

eigenvalues satisfy |Re^| > S > 0 and there are only a finite number of eigenvalues with 
positive real parts. 

Theorem 5.2. If (Hl>(H4j, (H8)and (H9) are satisfied, then there is a a neighborhood 
U of (0, 0) in the (A, £) plane and a sectorial region S in U such that, if (A, c) € U, then 

there is a periodic solution xx,( of (2.4) with period 2r(A, «) = 2 + 2Sne + 0(|e|(|A| + \e\)) 
as (A, e) —► (0, 0) if and oniy if (A, e) € S. Furthermore, this solution is unique. 

We do not give a proof of these results, but simply refer the readed to Hale and Huang 
(1994b). We only make a few remarks explaining in some detail other properties of the 
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solutions in the sector S. Of course, the sector 5 must belong to the set e > 0 in the (A, e) 

plane. It actually is shown that, if Ä, > 0 (the supercritical case of period doubling of the 

map) and ft > 0, then the sector S C {(A, e) : e > 0, A > 0 } and, for A = A0 > 0, fixed, 
the set { e : (e, A0) € S } is an interval (0, e0(A0)),'where 

,.    . 1 2xAn 5 
€o(A0)= -°   +O(A0) 

as A0 - 0. For any e G (0,eo(A0)), the periodic solution £w(r) approaches a square wave 
2-periodic function as e —> 0. 

If fii < 0 (the subcritical case of period doubling of the map), the sector S is com- 

pletely different (as was the case in Theorem 1.1) and the periodic orbits have a different 

structure as e -> 0. The sector 5 contains points (e, A) with A both negative and positive 

More precisely, for A0 > 0, the set { e : (e, A0) € S } is an interval (60(A0), /?0(A0)). For 

A0 < 0, the set {e : (£, A0) € S} is an interval (0, a0(A0)). For any e € (0,o0(A0)), 

the unique periodic solution xXoit(t) becomes pulse like as e -* 0 in the following sense: 

the periodic solution xAo,«(<) has the property that xX(tit(t) -» 0 as e -> 0 uniformly on 

compact sets of (0, 1) U (1, 2). In the pulse like solution, the pulses in the solution occur 

near the integers and are opposite in direction. However, the magnitude of the pulse near 

the integers exceeds the magnitude of the corresponding period two point of the map. 

Notice that Theorem 5.2 and Theorem 4.2 use different hypotheses. We can obtain 

generic first Hopf bifurcation with respect to e (which imply the generic period doubling 

of the map) with different assumptions than for the existence of the square and pulse like 

solutions related to the period 2 points of the map. The differences arise in the discussion 

of the eigenvalues of the linear variational equation for (4.1) and the one for the scaled 

equations (5.3). It is possible to give an example for which the zero solution of (4 3) is 

stable and the zero solution of (5.5) is unstable. Naturally, this leaves open some questions 
as to whether we have obtained the best possible results. 
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Part 3. Small Delays Can Make a Difference 

1. Difference Equations. In Part 2, we have discussed in some detail the effects of 

large delays on the dynamics of retarded delay differential equations. For the problems 

considered, we have seen that, under reasonable assumptions, the limiting dynamics as 

the delay approached infinity presented no surprises, at least locally near an equilibrium 

point. The limiting dynamics was determined by the local dynamics of a map. 

If we consider a retarded delay differential equation (or even more generally a func- 

tional differential equation) for which the delays are small, then it is possible to prove 

that the limiting dynamics is determined by the ordinary differential equation obtained 

by putting all of the delays equal to zero (see Kurzweil (1970), (1971) and a more com- 

plete discussion in Hale, Magalhäes and Oliva (1984)). In such a situation, it is fair to 

say that small delays are unimportant. For retarded functional differential equations, the 

same general remarks are valid if we make small changes in the delays with the change not 
necessarily occuring around zero. 

In this section, we devote our attention to similar problems for neutral differential 

difference equations. These are equations for which the derivative of the solution also 

occurs with a delay. Special cases of such equations of course would by difference equatons 

since we can differentiate to obtain a neutral differential difference equation. In the next 

section, we will see also that these problems are very closely related to the control of 

hyperbolic PDE when the control function is applied on the boundary with a time delay. 

For any operator T on a Banach space, we let a(T) denote the spectrum of T, r(a(r)) 

denote the radius of the spectrum and re(a(T)) denote the radius of the essential spectrum. 
We begin with an example of a difference equation. 

Example 1.1 (Uniform asymptotic stability may be destroyed by small changes in the 

delay). The observations in this example are essentially due to Melvin (1974). Suppose 

that Co > 0, 0 < rj < r2 < c0, are constants and consider the difference equation 

(1J) *(0 + \x(t - n) + i*(* - r2) = 0. 

Let C = C([-c0,0];R) and let 

C° = ^.(n.ra) = {<P € C : v>(0) + -p(-r,) + -y>(-r2) = 0}. 

For any v € C0, there is a unique solution x(f,y>) of (1.1) which is defined for all t G R. 

If we define [Siritri)(t)ip](0) = x{t + 0tV)t $ € [-^,0], then S{ruri){t), t > 0, is a C°- 
semigroup on C0,(ri,r2). 

We need the following well known result (see, for example, Hale and Verduyn-Lunel 

(1993)). The proof is nontrivial and makes extensive use of properties of the Laplace 
transform. 
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Theorem 1.1.  r(c(S(rirj)(l)) = e°, where a is defined by 

(I-2) a = a(r,,r2) = sup{ReA:A0>(r1,r2)(A) = 0}, 

We now compute r(a(S(riiT.2)(l)) for some particular values of (rur2). For (ri,r2) = 

(1,2), A0(i2)(A) is a quadratic function in e-A and it is easy to show that the solutions 

of (1.2) satisfy e2ReA = 1/2 and so Re A = -0n2)/2. Thus, r(a(S(1)2)(l)) = \/y/2 < 1, 

which implies that the zero solution of (1.1) is uniformly exponentially stable. 

Now, let us consider (rur2) - (1 - 5FFi",2), where k > 0 is an odd integer. For k 

large, this represents a small perturbation of the delays. For this value of the delays, it is 

easy to verify that the equation (1.2) has a solution At = i(k + \)ir. The corresponding 

eigenfunction is a solution of (1.1) which is periodic of period 2n/\k. In partiuclar, this 

implies that r(cr(S(1__i_2)(l)) > 1. There is a general result which we will mention later 

which shows that this quantity actually is equal to 1. For this simple case, this fact also is 

easy to verify directly. In any case, we have demonstrated the following rather surprising 

result:   Uniform exponential stability can be destroyed by a small change in the delays. 

It is easy to modify the example (1.1) in such a way that, for the delays (rx, r2) = (1,2) 

the solution x = 0 is uniformly exponentially stable and, for the delays (ri,r2) = (1 - 

2^y,2), there is a solution which becomes unbounded at an exponential rate. It is only 

necessary to replace the coefficients (|, |) by (\ß, \ß), where ß > 1, but sufficiently close 

to 1. 

We can obtain the same type of results for the case when we consider only small delays 

since this is a matter of rescaling time. 

Example 1.2 (Small delays in neutral equations can be bad). Consider the equation 

(1-3) jt[x{t) + \x(t - ri) + \x{t - r2)] = -<yx(t). 

where 7 > 0 is a constant. If we choose initial data <p € C, there is a unique solution 

x(t,(p) of (1.3) which is defined for all t G EL If we define [Tiri,r3)(t)<p}(6) = x(t + 6,ip), 

0 € [-co,0], then T{riyri)(t), t > 0, is a C°-semigroup on C. 

We make use of the following result (see Hale and Verduyn-Lunel (1993)), which can 
be proved using the Laplace Transform. 

* 

Theorem 1.2. 

(i) r(a(r(ri)r,)(l)) = eß, where ß is deßned by 

(L4) ß s ß(ri,r2) = sup{Re A : ATj(rijrj)(A) = 0}, 
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(ii) re(a(T(riir2)(l)) = r(a(5(ri,ra)(l)), where 5(ri,ra)(0 is the semigroup for (1.1). 

Let us apply this result for different values of (n, rj). If we choose the delays (rj, r2) = 

(1,2), then, from Example 1.1, we know that re(a(T(riirj)(l)) = l/\/2 < 1. Also, it is 

possible to choose 7 so that there is a solution Ao of A7>(r,iT.2)(A) = 0 with ReA0 > 

—(ln2)/2. From Theorem 1.2, this means that the exponential decay rate of the semigroup 

T(i,2)(t) is determined by an element of the point spectrum and not from the essential 

spectrum. 

Now, let us choose (ri,r2)  =  (1 — jk+i^)-    From Example 1.1, we know that 

ria^S^ s_i2)(l)) = I-  From Theorem 1.2, this implies that re(a(T(riir2)(l)) = 1.   The 

uniform exponential stability of the origin is destroyed by a small change in (ri,r2) and it 

has nothing to do with the constant 7. 

As in Example 1.1, we can obtain exponential growth by changing slightly the coeffi- 

cients in the difference equation. 

We can also achieve the same effect with the delays being small if we simply rescale 

time t *-* t/t and changing the constant 7 *-* €7, where e is a small parameter. The 

resulting equation for e = 0 is the ordinary differential equation x = —(7/2)2, which 

is uniformly exponentially stable. Changes in the delays as above destroy this type of 

stability. 

Why is it to be expected that such drastic changes in the dynamics as exhibited in 

Examples 1.1 and 1.2 can result from small changes in the delay? General results on 

continuous dependence of the spectrum of bounded operators on a Banach space assume 

that the perturbations are bounded . Even the radius of the essential spectrum cannot 

increase drastically under such perturbations. If we consider the operator D(ri)T.2) : C —► C 

defined by 

then it is not bounded as a function of (ri,r2). 

We now put the conclusions from these examples in a more general context. First, we 

consider the system of neutral differential difference equations 

(1-5) Jt[<t) - ££,«;*(* - rj)] = VJUbjxOt - TV),  • 

where 7*0 = 1, 0 < r, < co,aj,bj,j = 1,...,M are constants. Without loss of generality, 

we can assume that rx < r2 < ... < rM. Let r = (ru... ,r^), a = (ax,... ,0«), b = 

(60, h,..., bM), and let Tr(t) = T(r)a,6)(f) be the C°-semigroup on C defined by (1.5). Also, 
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let 5(r,a)(<) be the C°-semigroup on C0 = C0t(r,a) = {<P € C : *?(0) - E^1aJ<^(-rJ) = 0} 
defined by the difference equation 

(1.6) z(<)-EJ
AI1GJx(<-ri) = 0. 

Theorem 1.2 holds in this more general situation (see Hale and Verduyn-Lunel (1993)). 

Theorem 1.3. 

(i) r(a(T(ria>6)(l))) = eß, where ß is defined by 

(1-7) ß = ß{r, a, b) = sup{ Re A : A(r,a,6)(A) = 0}, 

A(r,a,6)(A) = A[l - ^aje-^} - E^e"^. 

(ii) r€(a(5(rja)(l))) = eQ, where a is deßned by 

(1.8) a = a(r, a) = sup{ Re A : A(r,a)(A) = 0}, 

A(r,a)(A) = [l-E^lflie-^]. 

(Hi) r.(a(T(r,.i6)(l))) = r(a(5(r,a)(l))). 

From this result, it is clear that the eigenvalues of the difference equation (1.6); that 

is, the zeros of A(r)(1)(A) = 0, play a fundamental role in the discussion of the asymp- 

totic behavior of the solutions of (1.5) when we subject the equation to perturbations in 

the delays. We now discuss some properties of these eigenvalues and relate them to the 

semigroup 5(ri0)(l). The presentation follows Avellar and Hale (19S0) and includes some 

results obtained previously by Moreno (1973), Henry (1974), Melvin (1974), Hale (1975) 

and Silkowski (1976). 

Theorem 1.4. 

(i) r(<7(5(r)a)(l))) is continuous in a. 

(ii) r(cr(S(rta)(l))) is lower semicontinuous in r. 

(Hi) r(cr(S(r)a)(l))) is continuous inrifthe components ofr axe rationally independent. 

(iv) If the components of r axe rationally independent, then ^(o"(5(r)0)(l))) = ePo, 

where 

(v) Rea(S'(rifl)(l)) C [pM,<*], where a is defined in (1.8) and pM satisfies 

\aM\t-puru = 1 + E^KIe-'*"-'. 
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Furthermore, if the components of r are rationally independent, then [pM,Po] is the 
smallest closed interval containing Recr(S(ra)(l)). 

Corollary 1.1.  Exponential stability of the difference equation (1.6) is preserved under 
small pertubations in the delays if and only if 

(L9) s&l«;l<i- 

The proof is an easy consequence of Theorem 1.4. In fact, from Theorem 1.4 (iv), 

if the components of r are rationally independent, then exponential stability of (1.6) is 

equivalent to having p0 < 0. Also, from the definition of pQ, we see that p0 < 0 if and only 

if (1.9) is satisfied. Since the rationals are dense in R, we obtain the result. 

Corollary 1.2. If exponentially stability of (1.5) is to be preserved under small pertur- 

bations in the delays, then it is necessary and sufficient that (1.9) is satisßed. 

The proof is a direct consequence of Theorem 1.3 (i), (iii), Corollary 1.1 and Rouche's 
Theorem. 

Example 1.1 (Revisited) In Example 1.1, we considered in some detail the behavior of 
the zeros of the function 

l + ^e-^+ie-^. 

In this case, it is easy to see that p0(r) = 0 for all r. Also, if the components of r are 

rationally independent, Theorem 1.4 implies that [/>2(r),0] is the smallest closed interval 

containing Reo-(S(ria)(l)). A simple computation shows that />2(1,2) = -In2. Since p2(r) 

is continuous in r, it follows that the smallest closed interval containing Rea(5(l-ia)(l)) is 

[- In 2,0] for any r close to (1,2) which has rationally independent coefficients. 

Example 1.3 (Delays approaching zero). Let us consider the equation 

h(X, c,e) = l- 2arA<» + c2e~A^ = 0, 

where 0 < ea < e2, and investigate the behavior of the solutions as e = fo, e2) -► 0. Avellar 

and Hale (1980) prove the following result: // -2|c| < 1 - c2 < 2|c|, then p2(e) - -oo, 

MO -+OOOJC-.0. From Theorem 1.4, if the components of e are rationally indepen- 

dent, then (MO. MO] is the smallest closed interval containing Re<r(S(l.i0)(l)). Thus, if c 

satisfies the above restrictions then the smallest closed interval containing Re<r(S'(ra)'(l)) 
approaches the interval (-oo, oo) as e-* 0. 

It also is possible to show that, if we choose \c\ < 1 and |c|e2/2e1 = 1, then the closure 
of the set Rea(5(r>a)(l)) is equal to the interval [p2(e),p0(e)]. 

On the other hand, if we choose £2 = 2tx and \c\ < 1, we see that h(X, c, c) = 0 if and 

only if Re A = (1/Cl)ln|c|, which approaches -co as £l - 0. These remarks show that, 
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if we change the slope of the line along which £-»0, then the structure of Recr(5(r(0)(l)) 
changes drastically. 

In the applications, it is not always the case that the delays vary in an independent 

manner. To be precise, we need some notation. Let 7,- = (7,1,... ,7JM), Ijk nonnegative 
integers for all ; = l,...,iV, k = 1,...,M, 7o = (0,...,0) € (E+)M, 7i • r = ^=1-rjkrk, 
a = (au...,aN) € UN, b = (bu... ,bN) 6 RN, and assume that 

r. (1-10) 0 < 7! T <72 -r < ... < 7Ar 

We consider the NDDE 

(1-U) Jt[v(t) + E£,«;V(* - 7i • r)) = ^0bjy(t - 7i • r). 

The characteristic equation for (1.11) is 

(!-12) A(r,a,4)(A) = AA(r,a)(A) + g(\,b,r) = 0, 

where 

(1-13) A(r,a)(A) = l + Ef=1aie-^'-r, 

(1-14) 5(A,6,r) = EJ
N

=06Je-^-r. 

Along with (1.12), we consider also the difference equation 

(1-15) y(0 + SJLi«iy(t - 7i • r) = 0. 

As before, let T{r^b)(t) be the C°-semigroup on C defined by (1.11) and let %,<,)(*) 

be the C°-semigroup on C0 = C0,(r,a) = {s? € C : y?(0) + Eji^j^C-Tj • rj) = 0} defined 
by (1.15). 

For (1.11) and (1.15), the Theorem 1.3 is valid as well as Theorem 1.4, Parts (i), (ii) 
and (iii). The other statements in Theorem 1.4 are not true unless N = M since the delays 

are not varying in an independent way. The computation of r{a{S^a){\))) in the general 

case is much more difficult. To understand how to find this, we introduce some additional 
notation. 

Let 

(1-16) Z(a,r) = {ReA:A(r,a)(A) = 0}, 

and Z(a,r) = ClZ(a,r), the closure of Z(a,r). 
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We first remark that, if the equation A(r>a)(/i + iu) = 0 for some real numbers /x, i/, 
then we must have, for 0 < j < N, 

(1.17) \aj\e-»*r<Z»¥j\ak\e-^r. 

We define the numbers pj = Pj(a,r), 0 < j < N, if they exist, by the relations 

(1-18) \aj\c-wr = E^-k-le-*^, 

where aQ = 1. It is easy to verify that pN and p0 are uniquely defined and have the 
property that p/v = />o if N = 1 and ptj < p0 if N > 2. Furthermore, both />jv(a,r) and 
Po(a,r) are continuous in a,r. Also, from (1.17), it is clear that we have the following 
relation: 

(1-19) Z(a,r)c[PN(a,rlPo(a,r)}. 

Relation (1.19) gives an estimate on r(<7(S(ra)(l))), but it may be very inaccurate. 

The following result gives a a more explicit characterization of the set Z(a,r). The 
proof is an easy consequence of Kronecker's Theorem. 

Theorem 1.5.  If 6 = (0i,...,0M), 0 < 0j < 2TT, j = 1,2,... ,M, and 

(1-20) H(p,6,a,r) = 1 + E^e-'^V^0, 

and the components of r are rationally independent, then p £ Z(a,r) if and only if there 
is a 6 such that H(p, 6, a, r) = 0. 

Corollary 2.1.  For any r € QKQ)
M

 , Z(a,r) is the union of a finite number of intervals. 

Proof. If the components of r are rationally independent, then Z(a, r) is characterized by 

the solutions of H(p,8,a,r) = 0, where H is defined in (1.20). Since these solutions are 
analytic varieties, it is impossible to have the following property: there exists a p E Z{a, r), 
{Pj} € Z(a,r), pj -► p as j -+ oo, (pj+i,pj) fl Z(a,r) = 0. This proves the result when 
the components of r are rationally independent. 

For any r € (R^")M, there exists a ß 6 Q&o)9 for some integer q such that the 
components of ß are rationally independent. Apply the previous result to ß to complete 
the proof. 

Example 1.4. Let us consider the characteristic equation 

(1.21) A0(/i, h) = 1 + fee""* - Jbe-2ae-"(2+fc) + e^e"2*, 
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where a > 0, k > 0 are constants. From Theorem 1.5, p € 2(h) = Cl {Re/i: A0(fi, h) = 0} 

if an only if there exist 6U62 € [0, 2TT] such that 

(1.22) c2'*2 = c2(p+a) l + ke~f,ke*ei 

-1 + ke-"heiei' 

If we define 

(1-23) k0(p) =        e 

and, if there is a p such that 

1 + e-2(P+<0' 

ke-'h = k0(p), 

then the right hand side of (1.22) has modulus 1, which implies that p € 2(h). As a 

consequence, for any p > 0, if k > k0(p), then we can find an h = h(p,k) > 0 such that 

ke~ph = k0(p); that is, we have p € Z(/i) and the radius of the essential spectrum of the 

semigroup at t = 1 is larger than 1. If k > 1, then this implies that we can choose a p as 

large as we want and then choose an h sufficiently small so that p e 2(h). If Jfc > k0(0), 

then there exist small p and small h such that p e 2(h). 

If we take the delay h - 0 in (1.21), then the solutions of (1.21) must have negative 

real parts for any k > 0; that is, we have exponential stability for the semigroup of the 

corresponding difference equation. On the other hand, if k > 1, we can choose a p as large 

as we want and then choose an h sufficiently small so that p E 2(h); that is, there is a 

solution of the difference equation becoming unbounded at a very large exponential rate. 

In the next section, we show that this example occurs also in the characteristic equa- 

tion arising from the control of a wave equation with delayed boundary control. 

For other examples, see Avellar and Hale (19S0), where they also discuss similar 

problems for matrix equations. Further discussion is contained in Hale and Verduyn-Lunel 
(1993). 

2. Delayed Boundary Control. In recent years, there has been considerable effort 

devoted to the problem of stabilization and control of PDE through the application of forces 

on the boundary. The mathematical theory is very complete in the situation when the 

boundary forces are applied with no delays in time (see, for example, Lions (1988)). It has 

been pointed out recently that a small time delay in the application of the boundary forces 

can lead to a destabilization of the system (see Datko, Lagnese and Polis (1986), Datko 

(1988), (1991), (1994), Desch and Wheeler (1989), Hannsgen, Renardy and Wheeler (1988), 

Logemann, Rebarber and Weiss (1993), and the references therein). In this section, we give 

such an example for the wave equation, showing that the drastic changes in the stability 
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i«   '■ •   <>, 

properties occur essentially for the same reason that we have noticed in the previous section 
for difference equations. 

Consider the linear wave equation 

(2-1) u>it + 2awt-wxz + bw = 0,    0 < x < 1,    <>0, 

with the boundary conditions 

(2-2) w(0, t) = 0,    wx(l, 0 = -Jbu;,(l, t - A), 

where a > 0, k > 0, A > 0,6 are constants. System (2.1), (2.2) corresponds to a boundary 
stabilization problem where the control function is kwt(l,t- A). It is not difficult to show 
that this system generates a C°-semigroup Sh,k(t) on the space H^O, l)xL2(0,1). We want 
to determine how re(SM(l)) depends upon k,h. If we replace w(x,t) by e~atw(x,t) and 
use the fact that, for any constant c, a term cw corresponds to a compact perturbation of 
the differential operator wzx, then we see that re(5M(l)) = e-are(SM(l)), where Sh<k(t) 
is the semigroup generated by the equation 

(2-3) wu - Wzx = 0,    0 < x < 1,    t > 0, 

with the boundary conditions 

(2.4) w(0,0 = 0,    wz(l,t) = -keah[-aw(l,t-h) + wt(l,t-h)]. 

These equations can be written in an equivalent form 

(2-5) Ut = -vx,    vt = -ur, 

with the boundary conditions 

(2.6) <(M)=0,    ut(l,t) = -keah[-av(l,t-h) + vt(l,t-h)). 

Let us show that (2.5), (2.6) is equivalent to a NDDE with three delays. The general 
solution of the partial differential equation is 

v(x,t) = <p(x-t) + tj>(x + t), 

*(*.<) = <p(x ~ t) - rp(x +1). 

This implies that 
2<p(x-t) = v{x,t) + u(x,t) 

2V>(x + f) = v(i,f)-u(x,<). 
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From these expressions, we deduce that 

2<p(-t) = v(l,t + l) + u{l,t + l) 
(2'?) 2xP(t) = v(l,t-l)-u(l,t-\). 

Using (2.7) and the first boundary condition at t — 1, we deduce that 

u(l,f) - u(l,t - 2) = -v(M) - v(l,< - 2). 

Differentiating this expression with respect to t, using the second boundary condition and 

letting y(t) = v(l, f), we conclude that 

-^-[y(t) + keahy(t - h) + y(i - 2) - fceafey(* - 2 - h)] = akeahy(t - h) - akeahy(t -2-h). 
at 

From this equation, we see that the essential spectral radius re(Sh,k(^)) of 5^,^(1) is 
determined by the supremum of the real parts of the solutions of the equation 

1 + keahe-xh - keahe~*2+h) + e~2A = 0. 

From our derivations above, re(Sh,k(l)) of 5^(1), is determined by the supremum of the 
real parts of the solutions of the equation (let A — a = yi) 

(2.8) 1 + ke-»h - ke--ae-^2+h) + e^e"2" = 0. 

If this supremum is negative (positive), then solutions approach zero exponentially (there 
are solutions which are exponentially unbounded) as t —» oo. 

Equation (2.8) is the same as Equation (1.21) in Example 1.4. As a consequence of 
our discussion in that example, we conclude that 

(i) h = 0, k > 0 implies exponential approach to zero. 

(ii) /i>0, 0<fc<(l — e-2a)/(l + e-2a) implies exponential approach to zero. 
(iii) k > (1 — e-2a)/(l + e_2a) implies that there is a dense set of h > 0 such that 

there are solutions which are exponentially unbounded. 

(iv) If jfc > 1, then we can choose a p as large as we want and then choose an h 

sufficiently small so that there is a solution of (2.1), (2.2) which is becomes unbounded at 

the rate ept as t —► oo. 
As a consequence of this observation, it follows that the system could have been 

stabilized with a control which involves no delay and then there are arbitrarily small 
delays in the control which lead to destabilization. These remarks are contained in Datko 
(1991), (1994), but his proof is somewhat different. 
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The fact that the above linear wave equation is equivalent to a NDDE is a consequence 

of a much more general theory (see, for example, Hale and Verduyn-Lunel (1993) and the 
references therein). 
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