Pulsed Microwave Irradiation of Graphite/Epoxy Composites

(To be published in Microwave Processing of Materials)

R. B. James, P. R. Bolton, R. A. Alvarez

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789
Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of the contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors or subcontractors.
PULSED MICROWAVE IRRADIATION OF
GRAPHITE/EPOXY COMPOSITES

R. B. James
Theoretical Division
Sandia National Laboratories, Livermore, CA 94550

P. R. Bolton, R. A. Alvarez
Lawrence Livermore National Laboratory, Livermore, CA 94550

ABSTRACT

We have measured the microwave-induced damage to the near-surface region of a
graphite/epoxy composite material for 1.1-μs pulses at a frequency of 2.865 GHz and
a pulse power of up to 8 MW. Rectangular samples were irradiated by single-pass
TE_10 traveling wave pulses inside a WR-284 waveguide, and in situ and post
irradiation studies were performed to characterize the material modifications induced
by the microwave pulses. The results of time-resolved optical measurements in
vacuo show that surface decomposition of the epoxy resin occurs for incident pulse
powers exceeding 1.1 MW, and that the surface damage is accompanied by a large
increase in the reflected microwave power. Simultaneous with the onset of surface
decomposition, we observe significant light emission from the sample and a large
enhancement of the gas pressure in the test cell. The large increments in the reflected
power and light emission are attributed to the formation of a plasma due to electrical
breakdown of the gas at (or near) the sample surface.
INTRODUCTION

Graphite/epoxy composite materials are rapidly replacing metals, especially in applications where high strength, weight and dimensional stability are important. Furthermore, it is common practice to design and produce graphite/resin composites that optimize particular selected properties, such as tensile, compressive and flexural strengths. The reinforcing graphite filaments in the composite are used to obtain the desired mechanical properties, and the epoxy is used to yield a finished part with stable, high strength laminates and low void contents. In this paper a study of the energy deposition and material damage of a graphite/epoxy composite due to excitation by high-power pulsed microwave radiation is presented. The primary goals are to determine the damage threshold as a function of the excitation conditions and to use the data in the design and materials selection of radiation-resistant composites.

EXPERIMENT

A high-power pulsed klystron was used to generate microwave pulses having a frequency of 2.856 GHz and a maximum peak power of 10 MW. By gating the rf drive, the pulse duration was varied between 135 ns and 2 μs with a risetime of approximately 70 ns. A schematic diagram of the experimental setup is shown in Fig. 1. The output of a highly stable cw master oscillator is gated by a PIN diode that provides a variable-length 500-mW drive pulse to a driver klystron, which in turn produces a 135–2000 ns drive pulse for the high-power klystron. The output pulse from the klystron passes through a high-power cir-
culator, which then feeds into a WR-284 copper waveguide. The waveguide is
terminated with an impedance-matched, water-cooled load to minimize reflections
and ensure that the sample is irradiated by a single-pass, TE_{10} traveling-wave
pulse.

The test cell consists of a copper waveguide section that allows insertion
of a sample into the microwave field without requiring the venting of the
waveguide system. The samples are inserted into the test cell with a linear
motion feedthrough and are suspended in the center of the WR-284 waveguide by
an alumina holder. An E-H tuner is used in the test section to reduce the
impedance mismatch associated with the presence of the sample in the waveguide
cavity. Using a cw low-power microwave source, the tuner is adjusted to mini-
mize the reflected signal when the sample is inserted into the waveguide. The
test cell was evacuated to a pressure of about 4×10^{-7} torr, and the wave-
guide assembly, not including the test cell, was pressurized to 30 psig with
Freon-12.

In this paper values of the incident microwave power are quoted rather
than the power density, because the presence of the sample may cause some local
modification of the field of the TE_{10} traveling wave pulse. If one assumes
that the presence of the sample does not significantly perturb the TE_{10} guided
mode in the test cell, then the power density incident on the sample can be
obtained by dividing the pulse power by 12.25 cm^2.

The graphite/epoxy samples used in the experiment were Thornel 300 graph-
ite filaments and Narmco 5208 epoxy, which is one of the most common graphite/
epoxy composites. The samples had a unidirectional layup and a thickness of
3.18 mm. Each sample was cut to a size of 5x5 mm, so that the cross-sectional
area of the sample ($\approx 0.25 \text{ cm}^2$) would be much smaller than the cross-sectional
area of the test cell (≈ 24.5 cm²). The Narmco 5208 epoxy was cured at a temperature of 450 K. The graphite filaments in the composite have a diameter of about 6 μm and comprise approximately 61% of the sample volume. The electrical resistivity of the graphite is about 20 μΩ-cm, from which a calculated linear absorption coefficient of about 230 cm⁻¹ is obtained for 2.856-GHz microwave radiation [1].

RESULTS AND DISCUSSION

Time-resolved measurements of the microwave reflectivity (R) from the graphite/epoxy samples were performed. Each sample was initially impedance-matched at low microwave powers (i.e., VSWR < 1.05), in order to minimize the reflected power. For incident microwave pulse powers exceeding about 1.1 MW, an abrupt increase in the microwave reflectivity was observed near the end of the 1.1-μs pulse. (When the sample was removed from the test cell, no change in R was observed over the same range of microwave powers.) For higher incident microwave pulses, the onset of the increased reflectivity occurred at earlier times during each pulse. Figure 2 shows the time required for the sudden increase in R as a function of the incident microwave power. Each data point was obtained by averaging 20 different shots at a fixed pulse power, and each error bar designates the standard deviation of the data from the different shots at a fixed (± 5%) incident pulse power.

The surface topography of the samples was studied with a scanning electron microscope (see Fig. 3). For incident microwave powers exceeding the threshold value (~ 1.1 MW) at which the high reflectivity is observed, the
samples show evidence for localized surface decomposition of the epoxy. Further increases in the pulse power beyond 1.1 MW cause more of the epoxy to be lost from the sample. After exposure to several shots at pulse powers above about 5 MW, only bare graphite filaments are visible on the surface. Figures 3b and 3c are SEM photographs of samples after excitation by twenty shots, each shot having an incident pulse power of 5.1 and 6.9 MW, respectively. Several graphite filaments are broken at pulse powers exceeding approximately 6 MW, which is most likely due the electrical discharge associated with the breakdown of the gas near the target surface [2].

The onset of depolymerization of the epoxy in a vacuum occurs at a temperature of about 600 K [3], whereas the melting point of graphite is approximately 4300 K [4]. Thus, the damage threshold for the epoxy is expected to be much lower than for the graphite filaments, which is consistent with the SEM results shown in Fig. 3.

A video camera was used to monitor each sample before and after excitation by the high-power microwave pulses. We found that the microwave irradiation caused the emission of visible light from the sample surface. When the sample and holder were removed from the waveguide, no light emission was detected from the empty waveguide. A Hamamatsu R2055 photomultiplier tube was employed to measure the light emission as a function of the incident microwave power. The results for the maximum photomultiplier output are displayed in Fig. 4 for 1.1-μs pulses and a photocathode voltage of 900 V. The light emission incident on the photocathode was attenuated by a 10%-transmission broadband neutral density filter and two fused silica windows. Each data point in the figure represents the average of twenty different shots at a fixed incident pulse power, and each error bar designates the standard deviation of the
data. The threshold for the light emission occurs at about 1 MW, which is approximately equal to the threshold for the sudden increase in the reflected microwave power.

The pressure of the gas in the test cell was continuously monitored by an ion gauge, which was located about 40 cm downstream from the sample. Figure 5 shows the maximum increase in the gas pressure as measured at the ion gauge for several different pulse powers. Each data point designates the average increase resulting from ten different 1.1-μs pulses. The initial base pressure of the gas at the ion gauge was in the range of 3-8 x 10^-7 torr.

Our interpretation of the experimental results is as follows: The small increase in the gas pressure at a pulse power near 1 MW is probably caused by microwave heating and a subsequent desorption of water, oxygen and other absorbed species from the sample. The electric field associated with the high-power microwave radiation accelerates the electrons and desorbed ionized species and causes further ionization via collisions with neutral particles. The additional electrons are also accelerated to high velocities by the pulse, leading to more charged species and subsequent electrical breakdown of the gas near the target surface.[4] The electrical discharge associated with the gas breakdown causes further heating and decomposition of the surface. The additional loss of material from the surface leads to much larger enhancements in the plasma density and gas pressure. The presence of the microwave-induced plasma is responsible for the abrupt increase in the reflectivity of the microwave pulse from the test cell, which reduces the duration of the exposure of the sample to the high-power microwave pulse. The emission of the visible light results from the relaxation of the plasma at (or near) the target surface.
SUMMARY AND CONCLUSIONS

Graphite/epoxy composite samples were irradiated in a waveguide by single-pass high-power microwave pulses, and post-irradiation studies show that the surfaces of the samples can be damaged by the microwaves. For pulses with a duration of 1.1-μs, surface damage is apparent for incident microwave powers exceeding about 1.1 MW. The onset of surface damage is accompanied by a large increase in reflected microwave radiation and significant emission of light from the target area. Examination of the irradiated samples shows that the epoxy at the surface decomposes, whereas the graphite filaments appear primarily undamaged. We believe that the increase in reflected microwave power, emission of visible light from the target area, and surface damage are attributed to the formation of a plasma due to electrical breakdown of the gas at (or near) the sample surface.

ACKNOWLEDGMENTS

This work was supported by the U. S. Department of Energy. The authors would like to acknowledge W. H. Christie, D. P. Byrne, J. R. Spingarn, W. R. Even, Jr., W. L. Hsu and J. B. Adams for many useful discussions.
REFERENCES

Fig. 1 Schematic diagram of the experimental setup.
Fig. 2 Time required for the abrupt increase in the reflectivity of the microwave radiation as a function of the incident pulse power.
Fig. 3 SEM micrographs of the sample surface. Fig. 3(a) shows an unirradiated sample, 3(b) shows a sample after irradiation by twenty 1.1-μs pulses at a power of 5.1 MW, and 3(c) shows a sample after irradiation by twenty 1.1-μs pulses at a power of 6.9 MW. The magnifications and scale markers are shown at the bottom of each photograph.
Fig. 4 Peak photomultiplier output as a function of the incident microwave power.
Fig. 5 Measured increase of the gas pressure in the test cell as a function of the incident microwave power.
<table>
<thead>
<tr>
<th>Commander (2)</th>
<th>Pacific Naval Missle Test Ctr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 1234, K. Knudson</td>
<td>Attn: Code 1132, P. Toly</td>
</tr>
<tr>
<td>Point Mugu, CA 93042</td>
<td></td>
</tr>
<tr>
<td>Department of the Air Force</td>
<td>Secretary of Air Force Space Systems</td>
</tr>
<tr>
<td>Attn: LTC M. Hodgenson</td>
<td>Pentagon Rm 4C1052</td>
</tr>
<tr>
<td>Washington, DC 20330</td>
<td></td>
</tr>
<tr>
<td>Department of the Air Force</td>
<td></td>
</tr>
<tr>
<td>Attn: INYX, Maj. C. Bose</td>
<td>Attn:</td>
</tr>
<tr>
<td>Washington, DC 20330</td>
<td></td>
</tr>
<tr>
<td>Air Force Armament Laboratory</td>
<td></td>
</tr>
<tr>
<td>Attn: AFATL-DLODL</td>
<td>Attn:</td>
</tr>
<tr>
<td>Elgin AFB, FL 32542-5000</td>
<td></td>
</tr>
<tr>
<td>Headquarters</td>
<td>Air Force Electronic Warfare Center</td>
</tr>
<tr>
<td>Attn: SAXA</td>
<td>Attn:</td>
</tr>
<tr>
<td>San Antonio, TX 78243</td>
<td></td>
</tr>
<tr>
<td>Headquarters</td>
<td>Air Force Systems Command/SDOA</td>
</tr>
<tr>
<td>Attn: DLWM, Cpt. J. Cook</td>
<td>Attn:</td>
</tr>
<tr>
<td>Andrews AFB, MD 20334</td>
<td></td>
</tr>
<tr>
<td>USAFSAM/RZP</td>
<td>RADC/OSCE</td>
</tr>
<tr>
<td>Attn: D. Erwin</td>
<td>Attn: Mr. R. Urtz</td>
</tr>
<tr>
<td>Brooks AFB, TX 78235</td>
<td>Griffiss AFB, NY 13441</td>
</tr>
<tr>
<td>MMWRBC</td>
<td>OOAFC/MMW</td>
</tr>
<tr>
<td>Attn: W. Ferguson</td>
<td>Attn: Maj. Roden</td>
</tr>
<tr>
<td>Hill AFB, UT 84406</td>
<td>Hill AFB, UT 84406</td>
</tr>
<tr>
<td>AAI Corporation</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 126</td>
<td>Attn:</td>
</tr>
<tr>
<td>Hunt Valley, MD 21030-0126</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>Attn</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Harry Diamond Laboratories (4)</td>
<td>S. Graybill</td>
</tr>
<tr>
<td></td>
<td>R. Kehs</td>
</tr>
<tr>
<td></td>
<td>L. Libello</td>
</tr>
<tr>
<td></td>
<td>D. Lokerson</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Harry Diamond Laboratories (4)</td>
<td>J. Michalowicz, HD-NW-RA</td>
</tr>
<tr>
<td></td>
<td>R. Oswald</td>
</tr>
<tr>
<td></td>
<td>J. Rosado, SLCHD-NW-R</td>
</tr>
<tr>
<td></td>
<td>S. Share, HD-NW-RA</td>
</tr>
<tr>
<td>Harry Diamond Laboratories (3)</td>
<td>A. Steward, HD-NW-P</td>
</tr>
<tr>
<td></td>
<td>A. Sindoris, SLCHD-NW-RE</td>
</tr>
<tr>
<td></td>
<td>J. Tatum, SLCHD-NW-RE</td>
</tr>
<tr>
<td>Industrial College of the Armed Forces</td>
<td>ICFA-MSM, R. Lewis</td>
</tr>
<tr>
<td>Institute for Defense Analysis</td>
<td>Dr. Deborah Levin</td>
</tr>
<tr>
<td>IRT Corporation (3)</td>
<td>H. Buscher</td>
</tr>
<tr>
<td></td>
<td>F. Chilton</td>
</tr>
<tr>
<td></td>
<td>C. Williams</td>
</tr>
<tr>
<td>JAYCOR (3)</td>
<td>R. Bonn</td>
</tr>
<tr>
<td></td>
<td>D. Higgins</td>
</tr>
<tr>
<td></td>
<td>E. Weenas</td>
</tr>
<tr>
<td>Kaman Sciences Corporation</td>
<td>J. Lamar Allen</td>
</tr>
<tr>
<td>Kaman Sciences, Inc. (3)</td>
<td>E. Conrad</td>
</tr>
<tr>
<td></td>
<td>T. Tumolillo</td>
</tr>
<tr>
<td></td>
<td>D. R. Smith</td>
</tr>
<tr>
<td>Los Alamos National Laboratory (4)</td>
<td>D. Bach</td>
</tr>
<tr>
<td></td>
<td>H. Davis, MS-E526</td>
</tr>
<tr>
<td></td>
<td>J. Dingus</td>
</tr>
<tr>
<td></td>
<td>R. Hoberling, MS-F866</td>
</tr>
<tr>
<td>Los Alamos National Laboratory (3)</td>
<td>T. Kwan</td>
</tr>
<tr>
<td></td>
<td>J. A. Landt</td>
</tr>
<tr>
<td></td>
<td>F. Morse</td>
</tr>
<tr>
<td></td>
<td>M. Reed</td>
</tr>
<tr>
<td>Los Alamos National Laboratory (4)</td>
<td>J. M. Schick, Group S6</td>
</tr>
<tr>
<td></td>
<td>L. E. Thode</td>
</tr>
<tr>
<td></td>
<td>L. Warner</td>
</tr>
<tr>
<td>Lockheed Missiles and Space Company, Inc.</td>
<td>Charles J. Triangali</td>
</tr>
<tr>
<td>Martin-Marietta Orlando Aerospace (3)</td>
<td>B. L. Clark</td>
</tr>
<tr>
<td></td>
<td>Mr. Charles R. Cranford</td>
</tr>
<tr>
<td></td>
<td>H. R. Fuehrer</td>
</tr>
<tr>
<td>Lockheed Missiles and Space Company, Inc.</td>
<td>Charles J. Triangali</td>
</tr>
<tr>
<td>Martin-Marietta Orlando Aerospace (3)</td>
<td>B. L. Clark</td>
</tr>
<tr>
<td></td>
<td>Mr. Charles R. Cranford</td>
</tr>
<tr>
<td></td>
<td>H. R. Fuehrer</td>
</tr>
</tbody>
</table>
TRW, Inc. (3)
Attn: P. Bhuta
 Z. Guiragossian
 M. Mostron
Space and Technology Group
1 Space Park
Mark Stop R1-1196
Redondo Beach, CA 90278

TRW, Inc.
Attn: L. Ferguson
 T. Romesser
Defense Systems Group
1 Space Park
Mark Stop R1-1196
Redondo Beach, CA 90278

Varian Associates (2)
Attn: C. Lob
 D. S. Stone
611 Hansen Way
Palo Alto, CA 94304

Wright Aeronautical Laboratory (2)
Attn: AFWAL/AAD, E. Champagne
 AAWW-1, R. Von Rohr
Wright-Patterson AFB, OH 45433

R. Alvarez, LLNL, L-280
Paul Bolton, LLNL, L-280
Harl S. Cabayan, LLNL, L-156
J. B. Chase, LLNL, L-35
Jay Davis, LLNL, L-405
G. A. Fuller, LLNL, L-317
Ray King, LLNL, L-156
H. Kruger, LLNL, L-10
R. Lundberg, LLNL, L-153
A. Poggio, LLNL, L-156
R. Scarpetti, LLNL, L-156
W. J. Shotts, LLNL, L-231
A. J. Spero, LLNL, L-022
H. Vantine, LLNL, L-38
B. W. Weinstein, LLNL, L-387
P. C. Wheeler, LLNL, L-23
R. Ziolkowski, LLNL, L-156

20 O. E. Jones
1000 V. Narayanamurti
1100 F. L. Vook
1110 S. T. Picraux
1111 B. L. Doyle
1111 J. A. Knapp
1111 H. J. Stein
1112 D. K. Brice

1112 D. M. Follstaedt
1112 S. M. Myers
1112 W. R. Wampler
1134 G. L. Kellogg
1150 J. E. Schirber
1151 D. Emin
1151 D. R. Jennison
1230 J. E. Powell
1230 M. Stablein
1234 W. Filter
1235 B. Ballard
1235 J. M. Hoffman
1240 K. Prestwich
1320 J. Renken
1800 R. L. Schwoebel
1823 J. A. Borders
1830 M. J. Davis
2000 J. K. Galt
2321 W. G. Perkins
2322 G. Scrivner
2336 C. Blaine
7400 J. C. King
7554 G. Maxam
7555 B. Boverie
8000 J. C. Crawford
8100 E. E. Ives
8200 R. J. Detry
8230 W. D. Wilson
8233 J. Harris
8240 C. W. Robinson
8300 P. L. Mattern
8310 R. W. Rohde
8340 W. Bauer
8341 M. I. Baskes
8341 J. B. Adams
8341 A. Antolak
8341 M. S. Daw
8341 S. M. Foiles
8341 R. B. James (25)
8341 J. S. Nelson
8341 C. M. Rohlfing
8341 G. J. Thomas
8341 W. G. Wolfer
8342 M. Lapp
8343 R. H. Stulen
8343 T. E. Felter
8343 S. E. Guthrie
8343 G. D. Kublak
8343 E. C. Sowa
8347 K. L. Wilson
8350 J. S. Binkley
8357 C. F. Melius
8360 W. J. McLean
8400 R. C. Wayne
8478 J. Hinton
8500 P. E. Brewer

8535 Publication Div./Technical
 Library Processes Div., 3141

3141 Technical Library Processes
 Div. (3)

8524-2 Central Technical Files (3)