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1. INTRODUCTION 

The aim of testing is to determine whether a circuit is faulty. This is necessary for ensuring 

the correct operation of digital systems. Once a circuit is found to be faulty, fault location or 

diagnosis is performed on the faulty system to locate the physical failure. Diagnosis may be 

intended for identification and replacement of a faulty subcircuit or may be performed with a 

view to improving the manufacturing process. 

1.1    Diagnosis 

1.1.1    Problem 

The input to a diagnostic routine is a defective integrated circuit chip and it aims to obtain a 

subset of faults that can explain all the errors observed while testing the chip. The motivation 

behind this process is to minimize the number of probes that is required to identify the faults in 

the defective chip. 



1.1.2   Classification 

Diagnosis has been considered in previous work [2], [3]. Diagnostic techniques can be broadly 

classified into two groups. The first group uses methods that depend on pre-computed informa- 

tion using fault dictionaries [9], [10], [13]. The second group uses methods that dynamically 

diagnose the faulty behavior of the circuit, while the test set is applied [4]. 

In the first approach, a dictionary is first computed, such that for every modeled fault, the re- 

sponse of the circuit in the presence of the fault is given in sufficient detail to allow the fault 

location process to determine whether or not that fault explains the faulty behavior of the cir- 

cuit. In the second approach (dynamic diagnosis), the response of the circuit to a test is analyzed 

through fault simulation to determine the fault that matches the observed test results. 

The two approaches can also be combined to create a pre-computed dictionary to eliminate some 

faults followed by dynamic fault diagnosis which is used to increase the resolution of the di- 

agnostic process [11]. Diagnosis is usually performed under a specific fault model. Unmod- 

eled faults cannot be located with 100% confidence. When the response cannot be explained 

by modeled faults, the fault best matching the response is selected. Another approach involves 

observing the internal lines of the circuit [12]. This has the advantage of being independent of 

the fault model, but is may not be cost-effective. 



1.2   Motivation for This Work 

For repeated diagnosis of different copies of the same circuit, the fault dictionary is typically 

better than dynamic diagnosis, because it requires substantially less time. However, there are 

problems associated with the dictionary approach. One of the most significant problems with 

the use of dictionaries for diagnosis is the size problem.The sizes of the dictionaries that have to 

be stored are large and impractical for even reasonably large circuits. Hence, there is a necessity 

for compact fault dictionaries that are feasible to be constructed for large circuits in reasonable 

time. 

There exist several known file compaction techniques such as gzip or compress, but they are 

not applicable to this specific problem because of two reasons. First, the compaction offered by 

these techniques is not enough to bring the sizes of the dictionaries to be manageable and second, 

they require the entire dictionary to be created before compaction and uncompacted before use. 

Image and video compression techniques provide another possible alternative, but lossy tech- 

niques are generally not useful. This creates the need for compaction techniques specifically 

targeting fault dictionaries. 

Previous fault dictionary compaction techniques address the size problem, but have the follow- 

ing problems: 

1. It is not feasible to use any previous compaction technique yielding dictionaries of rea- 

sonable diagnostic capability for large practical circuits, as they are severely limited by 

memory and run-time considerations. 



2. Even in applications when it is possible to apply a compaction technique, the diagnostic 

performance of the resulting dictionary is unclear because the information discarded by 

the compaction technique could be vital in the presence of un-modeled faults. 

1.3    Work Done in the Thesis 

In this thesis, solution techniques are proposed for the above identified problems of dictionary 

compaction. Chapters 3 and 4 present solutions to the first problem. The first technique iden- 

tifies output pin information that does not have to be stored with respect to modeled faults in 

the circuit. This technique, unlike previous techniques, uses structural analysis to identify the 

information to be discarded. This makes it faster thaix previous compaction techniques. Next 

presented is a technique to identify and eliminate output sequences from dictionaries resulting 

in little or no loss of diagnostic resolution with respect to modeled faults. This provides a re- 

duction in both the space required to store the dictionaries and the time required to compute 

the dictionaries as compared with previous techniques. For each of the schemes, experimental 

results are presented on benchmark circuits to demonstrate their efficiency. Chapter 5 presents 

a solution to the second problem. The proposed storage scheme uses unlabeled tree encoding 

to provide all the information in a conventional dictionary. This technique provides a storage 

alternative in applications where elimination of any diagnostic information may be undesirable. 



2. DEFINITIONS AND PREVIOUS WORK 

2.1    Definitions 

Fault dictionaries are introduced in this chapter. A full fault dictionary is first explained fol- 

lowed by the introduction of the diagnostic experiment tree, which represents the entire diag- 

nostic experiment. Several previous compaction techniques are then reviewed. 

2.1.1    Full fault dictionary 

The full fault dictionary is a record of the errors a circuit's modeled faults are expected to cause 

on each output after each test vector. It is generated through fault simulation without fault drop- 

ping; defects are located by comparing the errors observed on a faulty chip to those recorded in 

the dictionary, to find the faults causing errors most like those observed. 

Full fault dictionaries consider each output separately for each vector. For a circuit with V vec- 

tors, O outputs and F faults, a full fault dictionary is conventionally stored as a matrix contain- 

ing VO columns and F rows. Each matrix element indicates whether some fault is detected, not 
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Figure 2.1: Diagnostic experiment tree. 

detected or potentially detected. The potentially detected entry is required only for sequential 

circuits. As an example, consider the full fault dictionary for the diagnostic experiment of Fig- 

ure 2.1, shown in Figure 2.2. The circuit has seven faults and two primary outputs. The number 

of test vectors used for this example is four. 

It would be ideal to store the full fault dictionary and use it in the diagnostic process because 

compaction techniques may lose some diagnostic resolution, but their sizes tend to be prohibitively 

large for even moderately large circuits. As an example, the full fault dictionary for the circuit 

.s35932 from the ISCAS89 benchmark circuits requires about 9532 Mb of storage. Hence there 

is a need for smaller dictionaries that can perform reasonably well diagnostically. 
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Figure 2.2: Full fault dictionary showing types of redundancies. 

2.1.2    Representation of the diagnostic experiment 

Definition 1 (Diagnostic Experiment Tree T(V,E)) The diagnostic experiment tree consists 

of a set of vertices V(T) and a set of directed edges E(T), i.e., each edge e is of the form 

(u, v), u, v G V(T) with the direction of the edge being from u to v. Each vertex v G V(T) of 

the tree is associated with a set of faults F(v), which is a subset of the list of all modeled faults 

F, and each edge e G E(T) is associated with a list of outputs 0(e), which is a subset of all 

the primary outputs of the circuit. 

The root of the tree defines the start of the diagnostic experiment. 



Definition 2 (Root of the Diagnostic Experiment Tree r(T)) The unique noder(T) e V(T) 

such that there is no edge of the form (u, r{T)), Vu e V{T) is the root of the tree T. 

The fault list associated with such a node is the entire list of modeled faults of the circuit, i.e., 

the set F. The application of various test vectors in the experiment can be represented by using 

the levels of the tree. 

Definition 3 (Level of a node L(v)) For each node v € V{T) of the tree, the level L(v) is de- 

fined as the length of the path between r(T) and v. 

Definition 4 (Parent of a node v P{v)) For each node in a tree T except the root r(T), there 

is a unique node P(V) such that the edge (P(v),v) e E(T). 

With the above definitions, it is trivial to represent the diagnostic experiment by the diagnostic 

experiment tree. Let T(V, E) be the tree representing the diagnostic experiment. The start of 

the experiment is represented by the root r(T) with the entire fault list F being associated with 

it. A test vector is applied as part of the experiment at each level of the tree. At a given level i 

of the circuit, for each node v, the node P(v) at level i - 1 represents the node containing all 

the faults in F(v). The output response associated with the edge (P{v), v) is the unique output 

response produced by each of the faults in F(v). The don't care value is treated as a special 

symbol of the alphabet. 

Example: In Figure 2.1, the diagnostic experiment tree is shown representing information from 

the full fault dictionary shown in Figure 2.2, represented in the conventional matrix format. 



2.2   Previous Fault Dictionary Compaction Techniques 

Pass/Fail [14] : This type of fault dictionary records the faults detected, potentially detected 

and not detected for each vector. It does not record detections separately by output. It is created 

by a single full fault simulation and is much smaller than a full fault dictionary. But, as might 

be expected, this dictionary loses some diagnostic capability when compared with the full fault 

dictionary. 

Compact [14] : One method of enhancing the diagnostic capability of the pass/fail dictionary 

is to add output information. Such an approach is used in the creation of the compact fault dic- 

tionary. This dictionary is created by adding columns for specific outputs and vectors to the 

pass/fail dictionary. To select the additional columns, the faults not completely distinguished 

by the vector dictionary are re-simulated, counting for each vector and output the number of 

new pairs distinguished. A separate column is added to the dictionary for the vector and out- 

put pair distinguishing between the most new fault pairs, repeating for the still undistinguished 

faults, until no new pairs can be distinguished. 

The compact algorithm is computation intensive, requiring multiple simulations of all vectors 

against some faults, plus a full fault simulation to produce the vector dictionary and another to 

produce the final dictionary after extra columns are added. The dictionary produced is known 

to be considerably compressed, with no loss of resolution [15]. Since the algorithm chooses 

columns by selecting the output that distinguished between most fault pairs, the algorithm is es- 

sentially a greedy algorithm and does not necessarily result in the optimal number of columns. 
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Sequential [15]: In this technique, a pass/fail dictionary is enhanced by a single full fault sim- 

ulation. An entry is added to the dictionary for any vector and output that distinguishes between 

any pair of faults not previously distinguished. This is computationally cheaper that the Com- 

pact algorithm. Each vector and output are considered once, sequentially, and two entries may 

be included where one later entry would distinguish between the same faults. There is no loss 

of resolution. 

List Splitting [15]: This dictionary is created by using efficient list splitting. However, it is not 

accurate for sequential circuits; hence, the diagnostic resolution suffers. 

Drop on K [15] : While creating this dictionary, the fault simulator drops each fault after its 

Kth detection and creates an otherwise standard dictionary, including possible detections until 

each fault's Kth definite detection. This technique assumes that K detections distinguish be- 

tween most fault pairs and that some faults cause errors for many vectors, filling dictionaries 

with unneeded data. Simulation costs here are less than for a full fault dictionary. 

First Failing Pattern [15]: This is a special case of the Drop on K dictionary for K equal to 1. 

Detection Frequencies [15] : A full fault simulation is performed, and for each fault /, the 

number of vectors definitely (df) and potentially producing errors (pf) are counted. Each fault 

can cause errors numbering between dj and df +pf. The list of faults that causes each possible 

number of errors forms an indistinguishability class for this dictionary. The resolution of this 

dictionary is poor in comparision with other schemes. 

In this work, small dictionaries are proposed to overcome the drawbacks of the previous meth- 

ods.  Structural analysis of the circuit is exploited to identify redundant output information. 
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Next, redundant output sequences are identified and eliminated to generate dictionaries of small 

sizes even while retaining high diagnostic resolution with respect to modeled faults. 

It must be noted at this point that none of the above compaction algorithms provide for any 

compaction when it is not possible to discard any information from the full fault dictionary. A 

solution to this problem is proposed in Chapter 5, where full fault dictionaries are stored using 

unlabeled tree-based tree encoding rather than the conventional matrix-based approach. 
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3. OUTPUT PIN REMOVAL 

3.1    Introduction 

It has already been observed that fault dictionaries are prohibitively large even for reasonably 

large circuits. A brief review of the expended research effort in generating fault dictionaries 

of reasonable size without compromising their diagnostic resolution greatly has also been pre- 

sented. One of the main problems with such techniques was the considerable computational 

effort necessary to generate these dictionaries. In this chapter, a method based on structural 

analysis for identifying output pin information not requiring storage in combinational circuits 

is presented. It is also proposed that the use of this information can result in a decrease in the 

dictionary size without excessive computation. This is demonstrated by a simple dictionary 

generation scheme. Experimental results on the ISCAS 85 benchmark circuits are presented 

in support of the above claims. 
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3.2    Identification of Removable Output Pins 

3.2.1    Removable output pins 

In this section, a method for structurally identifying removable output pin information is pre- 

sented. The essential idea that governs this process is that each fault in the circuit affects only 

a subset of the primary outputs; hence, there is no need to store information for the rest of the 

primary outputs for that fault in any fault dictionary. 

Let us consider a circuit C. Let the total number of lines in the circuit be equal to L and let them 

be numbered from 1,..., L. Let the set of inputs of C be denoted by / and the set of outputs 

be denoted by O. Structural dependency for a pair of lines (i, j), 1 < i < L, 1 < j < L in the 

circuit is first defined. 

Definition 5 (Structural Dependency SD(i,j) ) Line j, 1 < j < L is structurally depen- 

dent on line i, 1 < i < L, if there can be a path for a signal 0 or a 1 to propagate from the line 

i to j. We define in such a case SD(i, j) = 1, otherwise, SD(i, j) = 0. 

Therefore, we see that the structural dependency gives information as to whether a value at a 

line can potentially influence the value at another line in the circuit. We can extend the concept 

of structural dependency and define cones of influence which can be used to identify the output 

redundancy in the circuit. There exists a cone of influence for each line i, 1 < i < L , in the 

circuit. 

Definition 6 (Cone of Influence COI(i)) 

COI(i) = {j|l <] <L and SD(i,j) = 1} 
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The cone of influence of a line is the set of all those lines that are structurally dependent on that 

line. We can now go one step further and say that a cone of influence exists for each fault in 

the circuit, because each line in the circuit can have two faults as per our fault model: s-a-0 and 

s-a-1. 

We note that each line i, 1 < i < L, has a subset of outputs included in its cone of influence. 

Let us define this subset of outputs called the Necessary Outputs for the node i. 

Definition 7 (Necessary Outputs NO(i)) 

NO{i) = {j\j eOandSD(i,j) = 1} 

We see that the set NO{i) of a line i, 1 < i < L, gives the set of outputs of the circuit that are 

potentially affected by a fault in the circuit. 

The following theorem proves that for any line i, 1 < i < L, no other output apart from the ones 

in the set NO(i) will be affected under the influence of a fault in line i. Let the set of output 

lines of C be denoted by O = (Oi,..., On) and the values of the output lines of C under the 

influence of no fault be (d = ou ..., On = on). Let the values of the output lines of C under 

the influence of a fault / be denoted by {Oi — ofu...,On = ofn). 

Theorem 1 Let the line i have a fault f in it. Then, the values at the output lines ofC are given 

by 

03   =   ofj,jeOJeNO{i) 

=  oitjeO,jtNO(i) 
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Proof 1 There are two cases to prove in this theorem. The first case corresponds to output lines 

in the set NO(i) and the second case corresponds to the lines not in the set NO(i). 

Case 1 

This case is trivially true from the definition of the set (o/i,..., ofn). 

Case 2 

Let us assume if possible, that a line Oj,j g NO(i), takes the value ofj ^ Oj. This implies that 

the line j is being structurally affected by a fault in the line i. This implies that SD(i, j) = 1, 

which implies that j G NO(i). Hence, we have reached a contradiction. Therefore, we must 

have ofj = Oj, which proves Case 2. 

From the above theorem, we can conclude for any line i in the circuit that the values at the output 

lines that do not lie in the cone of influence of line i, do not change under the influence of a fault 

at line i. 

In Figure 3.1, we have iVO(Lx) = (01,02), whereas NO(Ly) = (02). Hence, we see that we 

need not store values of both 01,02 for faults at all lines. In conclusion, we have seen in this 

subsection, that no fault dictionary has to store more output information than what is identified 

as necessary by this scheme. We shall next see how to construct the sets NO(i) for each line i 

in the circuit. A simple fault dictionary that uses this information to eliminate structural output 

redundancy is presented later. 
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II 

Lx 

Ly 02 

Figure 3.1: Example of necessary outputs. 

3.2.2    Computing NO information 

The algorithm used for computing the necessary output information is presented here. To effi- 

ciently implement this algorithm, we immediately note that there it is not necessary to consider 

the lines that are inputs to logic gates, because of the simple fact that the set of circuit outputs 

that have to be observed for each input of the gate will be the same as that required for the out- 

put of that gate. Hence, only lines that are outputs of gates are considered. We call them nodes. 

Once, the NO information for all the nodes is computed, then, information for all the lines can 

be updated in a single pass. The following definitions are required before an algorithm can be 

presented. 

Definition 8 (Successors S(i) ) This is defined for each node i. The outputs of all gates to 

which the node i is fanning out to are included in the set S(i). 

It should be noted that the set S(i) - </> for each output line. 
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Definition 9 (Predecessors P(i)) This is also defined for each node i. The outputs of all gates 

that are fanning in as input lines of the gate of which i is the output line are included in the set 

P(i). 

It should be noted that the set S(i) = </> for each input line (also included as a node). 

Definition 10 (Level L(i) ) The level of a node is defined as the maximum number of gates 

needed to be traversed for reaching the node. 

Another improvement in the algorithm is obtained by the topological sorting procedure, which 

orders the circuit by grouping sets of nodes with the same level. As can be easily seen, each 

input node will have a level of 0. 

ComputeNO 

1. Set NO (i) for each node tobe (f>; 

2. Sort the circuit topologically and arrange the circuit in the topologically leveled order; 

3. Enter each output node into a queue and mark it solved; 

4. If queue is empty, then go to 10; 

5. i = removequeue(); 

6. If all elements in S(i) are not solved, enterqueue(i); go to 4; 

7. Add to NO{i) the set NO(j) for each j G S(i) without adding repetitions; 

8. enterqueue(j),for each j e P{i); 
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9. Mark i solved; go to 4; 

10. Assign NO(i) for each line that is an input to a gate by copying the NO(j) set where j 

is the output node of the gate to which i is an input; 

11. Done. 

The above algorithm gives the set NO{i) for each line in the circuit. As we can readily see, this 

is a polynomial time algorithm, because each node can enter the queue a maximum number of 

times p, which is upper bounded by the maximum fanout of a node in the circuit. Hence, if there 

are n nodes in the circuit, then the complexity of Steps 3 to 9 is 0(n * p). Steps 2 and 10 also 

take polynomial time, each taking 0(L) time. Each line of the circuit has to be examined a con- 

stant number of times. A simple fault dictionary construction scheme that eliminates redundant 

output information is next presented. 

3.3    Computing Small Fault Dictionaries 

In the previous section, a scheme that can identify structural output redundancy in the circuit was 

presented. This information can be efficiently used in the construction of a small fault dictionary 

called the Structurally Output Irredundant Fault Dictionary, SOIFD. The organization of this 

dictionary is in the form of a two-dimensional matrix. The rows correspond to the test vectors. 

Each column corresponds to a unique (fault,output) pair. The outputs to be stored for a particular 

fault are decided by the algorithm ComputeNO described earlier. The faults are elements of the 

set of all equivalent faults and cover the whole set. 



19 

The following scheme is used for generating the fault dictionary. 

GenerateSOIFD 

1. Generate diagnostic test vectors for the given circuit description using any standard pack- 

age. The scheme does not change with different test vectors; i.e., given any set of test 

vectors, we can compute our dictionary using that set of vectors. 

2. Compute the set of equivalent faults using any standard package. 

3. Determine the NO information for the set of equivalent faults using ComputeNO. 

4. Perform full fault simulation with the given set of test vectors and the given set of equiva- 

lent faults and generate the information for each fault as indicated by the corresponding 

NO. 

This simple scheme has been implemented and experimental results are compared with other 

schemes in the next section. 

3.4   Experimental Results 

Experiments were performed on the ISCAS 85 benchmark circuits to demonstrate the effective- 

ness of the scheme. The sizes of the fault dictionaries obtained using SOIFD were compared 

with those obtained using compact [COMR] [14] and also with the full fault dictionary FFD. 

COMP. was chosen as the basis for comparision with a small fault dictionary, because it report- 

edly gives very small dictionary sizes when compared with other schemes [15] and has the same 
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diagnostic capability as the full fault dictionary. 

The benchmark circuits were first levelized. The NO information is generated for each line in 

the circuit. SOIFD, as explained earlier, is applicable to any given test set. In order to make a 

fair comparison between SOIFD and COMP. the same test set is used as in COMP. The SOIFD 

is generated by fault simulating with the given test set and the set of equivalent faults and by 

obtaining output information for only outputs in the set NO(i) for each fault / and line i. The 

results on the sizes of dictionaries are summarized in Table 3.1. 

In Table 3.1, A^ is the number of test vectors in the test set. NF is the number of faults in the 

reduced fault list F. Nc is the number of columns added by COMP. to enhance the resolution 

of a vector dictionary to that of a full fault dictionary. Thus, (NF * (NT + Nc)) gives the size 

of the COMP. dictionary. The column SO gives the sum total of all outputs that need to be ob- 

served for each test vector in the test set, i.e., SO = Ev/i£F NO(i) where / is a fault in line i. 

Hence, the size of the SOIFD is given by (JVT*SO). The size of the full fault dictionary (FFD) 

is given by NF * NT * N0, where Nö is the number of outputs in the circuit. The sizes of the 

dictionaries computed are in terms of number of bits. 

From Table 3.1 it can be observed that the full fault dictionary contains a considerable amount 

of redundant information. For example, about 99% of the information in c2670 is redundant. 

This is due to the fact that the circuit has a large number of outputs and lines and not all of the 

outputs need to be observed for most of the faults. It has also been seen that the SOIFD gives 

smaller sizes than COMP. for five out of the ten cases. This shows the potential that SOIFD has 

in obtaining small fault dictionaries. 
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Table 3.1: Experimental Results on ISCAS 85 circuits. 

Cir. NT NF Nc No SO SOIFD COMP. SOIFD/ 
COMP. 

SOIFD/ 

FFD 

1. c432 44 524 53 7 2523 111012 52574 2.184 0.687 

2. c499 60 758 35 32 11552 693120 72010 9.652 0.476 

3. c880 30 942 92 26 3179 95370 114924 0.828 0.129 

4. cl355 95 1574 25 32 24412 2319140 188880 12.278 0.484 

5. cl908 142 1877 106 25 19912 2110672 465496 6.074 0.316 

6. c2670 167 2748 153 139 9917 664439 879360 0.755 0.0104 

7.c3540 111 3422 332 22 24678 2740257 1515946 1.807 0.327 

8. c5315 56 5354 461 123 34582 1936592 2768018 0.699 0.0525 

9. c6288 16 7744 216 32 92084 1473344 1796608 0.820 0.371 

10. c7552 87 7550 525 108 40007 3480609 4620600 0.754 0.049 

It is clear from the above data that the information required to be stored in both SOIFD and 

COMP. is far less than that required for FFD for many large circuits. We can also see that the 

sizes of both SOIFD and COMP. are similar. It should be noted again here that SOIFD requires 

far less computational overhead than COMP. This implies that the SOIFD technique can obtain 

similar sizes of fault dictionaries with far less computation. 

3.5    Conclusions 

In this chapter, a scheme for the identification of structural output redundancy has been pre- 

sented. A simple scheme for generating a fault dictionary by eliminating the identified redun- 

dancy has also been presented. Experimental results on the ISCAS 85 benchmark circuits show 

that the sizes of the dictionaries obtained are comparable to the COMP. dictionaries. However, 
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the computational effort required is considerably lower, because the COMP. fault dictionary re- 

quires multiple fault simulations in contrast to the single one required by our scheme. The prob- 

lem with this technique is that it is only applicable to combinational circuits. Experiments per- 

formed for extending this idea to sequential circuits were not encouraging. Hence, in the next 

chapter, we propose a solution based on the use of the diagnostic experiment tree that solves 

this problem efficiently for sequential circuits. 
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4. OUTPUT SEQUENCE REMOVAL 

4.1 Introduction 

In the previous chapter, we discussed a technique for generating dictionaries of small clze, but 

was only applicable to combinational circuits. In this chapter, techniques for eliminating entire 

sequences of outputs and for efficiently storing the remaining output sequences are presented. 

Experimental results on the ISCAS 85 and ISCAS 89 benchmark circuits show that the sizes 

of dictionaries proposed are substantially smaller than for the full fault dictionary, while the 

dictionaries retain most or all of the diagnostic capability of the full fault dictionary (we are 

concerned with modeled faults in this chapter also). 

4.2 Output Sequence Removal 

There are three types of output sequences that we can potentially remove from the dictionary. 
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4.2.1 Type 1 

If a node i at level p of the diagnostic tree has only one fault in the list of faults, then we need 

not continue the diagnostic experiment for combinational circuits as we have already found the 

required fault. Hence, it is unnecessary to store the output sequence produced by the fault in 

the list at node i for all vectors p,...,(/-1). It has been noted in our experiments that such se- 

quences can also be dropped for sequential circuits, even if the node i is not fully distinguished, 

without any significant loss in the resolution. In this implementation for sequential circuits, 

partially specified output responses are handled by treating X as a separate alphabet and having 

pointers whenever necessary from other nodes in the tree. 

4.2.2 Type 2 

For a node i at level p the full fault dictionary stores the output responses produced by each of 

the faults in the list of faults at i for all vectors 0,... ,p - 1 . Each of these output responses 

is the same; otherwise, the faults would not be members of the same list at node i. Hence, the 

same output sequence is replicated in the full fault dictionary. It is shown in Section 4.3 that 

this information can be stored without replication. 

4.2.3    Type 3 

If the application of the test sequence pTll,..., pnk to a node i at level p results in a single node 

j, then all the faults in the lists at both nodes i and j are the same for combinational circuits. 



25 

Hence, this test sequence is not useful for distinguishing between any pair of faults in the list 

at node i. This implies that during diagnosis, if we are at node i, then the observation of output 

responses produced by each of the tests in this sequence is unnecessary. This can be utilized to 

reduce the size of the dictionary as well as to reduce the number of test responses needed to be 

observed and will result in a reduction in the number of tests to be applied to diagnosis if the 

circuit is combinational. It has also been observed during out experiments that such sequences 

can also be dropped for sequential circuits, without any significant loss of resolution. 

4.2.4    Example 

The following example illustrates the three types of removable output sequences identified above. 

Figure 2.1 shows the diagnostic experiment tree for a fault dictionary with seven faults, four vec- 

tors and two output bits. The full fault dictionary with all the types of output sequences is shown 

in Figure 2.2. 

Type 1:  In Figure 2.1, fault 2 has been distinguished from all other faults after the application 

of test 0. Hence , the output responses for fault 2 for test vectors 1,2 and 3 can be eliminated. 

Type 2:  In Figure 2.1, the output sequence 00 01 can be stored only once for all the faults 1, 3 

and 6. 

Type 3:  In Figure 2.1, tests 1 and 2 do not have any effect on the node (4,5) and, hence, do not 

provide useful output information for distinguishing between faults 4 and 5. 
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4.3    Small Dictionaries 

4.3.1 Common subsequence CSS(?) 

The common subsequence of a node i at level p in the diagnostic experiment tree is defined as 

the sequence of output responses due to vectors 0 ... (p - 1), say S, iff there is no subsequence 

Si ofS that is of type 1. 

In Figure 2.1, the CSS of the node with the list of faults (1 3 6) is 00 01. Every Common Subse- 

quence inherits another common subsequence called the Inherited Common Subsequence de- 

fined below. 

4.3.2 Inherited CSS ICSS(i) 

Let the node whose CSS number is i be n. Then, the inherited common subsequence of the com- 

mon subsequence i is defined as the sequence of output responses due to vectors 0...J, where 

j + 1 is the least level where a node m can be found with a fault list exactly identical to the list 

at node n. 

In Figure 2.1, the CSS 01 01 00 of the node with the fault list (4 5) inherits the ICSS 01, be- 

cause j as defined above equals 0. Let us now introduce two dictionaries DC1 and DC2, with 

DC I eliminating sequences of types 1 and 2 and DC2 eliminating sequences of types 1, 2 and 

3. DC2 is smaller than DC1 in most but not all cases. 
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4.3.3   Dictionary DC1 

This dictionary is comprised of a vector and a table. The vector is called the FVector and the 

table is the CS ST able. Each of these can be represented in the compact bit packed representa- 

tion below. 

FVector 

This vector has F entries, where F is the total number of collapsed single stuck-at faults in the 

circuit. The entry FVector [i] in this vector gives the common subsequence associated with the 

fault i when it is at a leaf of the diagnostic experiment tree. For example, in DCl constructed 

for the diagnostic experiment of Figure 2.1 shown in Figure 4.1, we have CSS number 7 stored 

for fault 3. 

CSSTable 

Each entry in this table is indexed by the common subsequence number. Each entry in this table 

has three fields. The first field in the entry CSSTable[i] has the inherited subsequence number 

ICCS(i). The second field has the number of vectors whose output response sequence when con- 

catenated with the output sequence obtained from the the inherited common subsequence gives 

the common subsequence i. The third field is a bit stream comprised of the actual output re- 

sponses that when concatenated with the output sequence obtained from the inherited common 

subsequence gives the common subsequence i. This is a variable length field in the dictionary, 

but the storage can still be in a bit packed manner, because we know exactly how many bits are 
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FVector CSSTable 

\ 
CSS 

0 4 

1 6 

2 3 

3 7 

4 9 

5 10 

6 8 

\ 
ICSS #ops op responses 

1 0 1 00 

2 0 3 01 01 00 

3 0 10 

4 1 00 

5 1 01 

6 5 00 

7 5 01 

8 5 10 

9 2 00 

10 2 01 

Figure 4.1: DC1 for the tree in Figure 2.1. 



29 

present in this field from the second field in the same entry. 

As an example, in Figure 4.1, the entry for CSS 4 has ICSS=1, the number of vectors whose 

output responses are stored in this entry is 1 and the output response is 00. Hence, to construct 

the CSS 4, we go to the entry for CSS 1, given by the inherited CSS field, and find that the in- 

herited CSS is 0 (which means that there is no inherited CSS). Hence the output sequence of 

CSS 1 is 00, which implies that the output sequence of CSS 4 is 00 00. 

4.3.4   Dictionary DC2 

This dictionary is comprised of a vector and two tables. The vector is called the FVector and 

the two tables are called DTable and the CS ST able. Again, each of these can be represented 

in a compact bit packed representation. 

FVector 

This vector is identical to the FVector constructed in DCl. 

DTable 

The rows of the DTable are indexed by fault numbers and the columns are indexed by test num- 

bers. One bit is maintained for each fault, test vector pair. The entry DTable[i][j] is 0, iff the 

fault lists that include the fault i before and after the application of the test j are the same. It 

is through the use of this table that we can decide at diagnosis time, whether the application of 

a test vector is essential. In Figure 4.2, the entries, DTa,ble[A][l] - 0 and DTa,ble.[5][l] = 0, 
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FVector CSSTable DTable 

N CSS 

0 4 

1 6 

2 3 

3 7 

4 9 

5 10 

6 8 

\ 
ICSS opseq 

1 0 00 

2 0 01 

3 0 10 

4 1 00 

5 1 01 

6 5 00 

7 5 01 

8 5 10 

9 2 00 

10 2 01 

\ 
0  1 2 3 

0 1  1 0 1 

1 1  1 1 0 

2 1  0 0 0 

3 1  1 1 0 

4 1  0 0 1 

5 1  0 0 1 

6 1  1 1 0 

Figure 4.2: DC2 for the tree in Figure 2.1. 
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imply that the fault list containing 4,5 (i.e., (4 5)) does not change after the application of test 

vector 1. 

CSSTable 

There are only two fields for each entry CSSTable[i]. The first and third fields of DCl are 

present, but the second field is absent, because a single output response is stored in the third field 

instead of the multiple output responses, since information on useful tests is already available 

from DTable. This is how the dictionary DC2 eliminates sequences of Type 3. 

As an example, the entry for CSS 2 in DC2 has just 01 in contrast to the 01 01 00 stored by 

DCl. But, we see that the only two CSSs that inherit CSS 2 are 9 and 10, and from FVector 

we see that they correspond to faults 4 and 5. Now, from DTable[4][l] = 0, DTable[5][l] = 

0, DTable[4}{2] = 0 and DTable[5}[2] = 0, we can conclude that the sequence 01 00 is not 

needed for the diagnostic experiment as are the tests 1 and 2 for distinguishing between faults 

in the list (4 5). 

4.3.5    Diagnostic capabilities 

In both of the dictionaries introduced above, the information eliminated is redundant if the cir- 

cuit is combinational. For sequential circuits, DC2 has been constructed by dropping sequences, 

even if the node under consideration in the diagnostic tree has not been fully distinguished. It 

has been noted in our experiments that this does not cause any significant change in the reso- 

lution of the dictionary. Hence, DCl and DC2 have the same diagnostic capability of the full 
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fault dictionary for combinational circuits, whereas DCl alone retains this capability for se- 

quential circuits. It should be noted that the output responses eliminated may be important for 

the identification of some non-modeled faults. 

4.3.6   Generation of DCl and DC2 

DCl and DC2 have been generated through a traversal of the diagnostic experiment tree. A 

single full fault simulation without fault dropping is performed to dynamically construct the 

diagnostic experiment tree. The process of constructing the tree and the dictionaries can be done 

dynamically, one level at a time. This removes the need for excessive storage when generating 

the dictionaries. 

4.4   Experimental Results 

Experiments were performed on the ISCAS 85 and ISCAS 89 benchmark circuits to study the 

sizes and performances of the dictionaries DCl and DC2. A measure for estimating the amount 

of reduction in the number of test responses that have to be observed during diagnosis for combi- 

national circuits is also presented. This measure also gives an estimate on the average number of 

tests that have to be applied for diagnosis. The useful test ratio is defined as : useful test ratio = 

1 - (no of type-3 seq. - no of type-1 seq)/(no of seq - no of type-1 seq). For the example 

of Figure 2.1, we have the useful test ratio = 10/12. 

Table 4.1 presents the results for ISCAS 85 circuits whereas the results for ISCAS 89 circuits are 
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Table 4.1: Experimental results on ISCAS 85 circuits. 

Cir. FF 

(Kb) 
PF/ 

FF% 

DCl/ 

FF% 
DC2/ 

FF% 

UT RAT. 

% 

c432 201 14.3 19.4 23.6 26.2 

c499 1334 3.1 9.5 7.7 40.3 

c880 1836 3.9 11.9 7.3 20.5 

cl355 4432 3.1 27.9 5.1 3.6 
cl908 13132 4.0 14.3 4.9 3.8 
c2670 85126 0.7 5.3 1.1 10.9 

c3540 21739 4.5 9.2 5.5 5.6 
c5315 173725 0.8 9.2 1.5 6.2 
c6288 11399 3.1 18.9 8.9 20.9 

c7552 366930 0.9 11.9 1.3 2.8 

given in Table 4.2. In Tables 4.1 and 4.2, the first column (FF) gives the size of the full fault dic- 

tionary. The test set used in the creation of the dictionaries was from the HITEC test generator. 

Experiments were performed only on circuits whose test sets have reasonable diagnostic reso- 

lution. The column PF/FF gives the percentage ratio of the size of the Pass/Fail dictionary to the 

full fault dictionary. The next two columns give the percentage ratios of the sizes of DCl and 

DC2 with respect to the full fault dictionary. The next column in Table 4.1 gives the percentage 

useful test ratio, whereas the next two columns in Table 4.2 give the diagnostic resolutions of 

the full dictionary and DC2. Although not shown, the diagnostic expectations [15] of DC2 and 

the full fault dictionary are very similar except for cases with low diagnostic resolution. 

From Tables 4.1 and 4.2, we can make several observations. The sizes of the dictionaries DCl 

and DC2 are significantly smaller than for the full fault dictionary. The size of DC2 is almost 

always smaller than that of DCl. The sizes of the dictionaries presented are less than even the 
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Table 4.2: Experimental results on ISCAS 89 circuits. 

Cir. FF 
(Mb) 

PF/ 
FF% 

DCl/ 
FF% 

DC2/ 
FF% 

Res 
FF% 

Res 
DC% 

s298 0.9 16.7 55.0 9.2 94.522 94.520 
s344 0.8 9.1 66.1 6.5 96.771 96.764 
s641 4.7 4.2 62.4 2.9 97.764 97.640 
s713 4.7 4.4 51.2 2.9 96.275 96.081 
s820 31.2 5.2 65.1 2.8 99.571 99.571 
s832 31.9 5.2 64.9 2.8 99.388 99.388 

S1238 18.1 7.1 59.5 4.1 99.710 99.710 
sl423 1.3 20.0 11.4 11.5 59.440 59.140 

s5378 405.9 2.0 46.3 1.2 89.993 89.709 
s35932 9532.6 0.3 41.4 0.4 98.025 98.025 

Pass/Fail dictionary size for many cases. This is significant because the sizes of both the Com- 

pact [14] and the Sequential [15] dictionaries are 'ower bounded by the size of the Pass/Fail 

dictionary. However, both Compact and Sequential achieve the resolution of the full fault dic- 

tionary when compared to the small loss suffered by DC2. 

4.5    Conclusions 

Three kinds of sequences that can be eliminated from fault dictionaries were identified. Two 

dictionary schemes that eliminate these redundancies were presented along with experimental 

results on the ISCAS bench mark circuits that show that these dictionaries give a substantial 

reduction in the size of the dictionary with little or no loss of resolution. It has also been shown 

that the number of tests whose outputs have to be observed is far less than the full test set size 

for a large number of diagnosis experiments as indicated by the low useful test ratios. These 
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ratios also indicate that the number of tests that have to be applied for diagnosing combinational 

circuits may be very small. 
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5. UNLABELED TREE ENCODING 

5.1    Introduction 

Previous chapters have developed techniques for identifying diagnostically useful information 

based on modeled faults. However, the process of compaction can remove information that is 

potentially useful in locating unmodeled failures [8]. The focus of this chapter is on developing 

a storage structure that can efficiently represent full fault dictionaries without discarding any 

output information. While developing this technique, care has been taken to ensure that the di- 

agnostic information stored can be easily accessed as opposed to known techniques that store 

the same information. 

In this approach, the labeled tree associated with the diagnostic experiment is represented by 

storing the label information and the unlabeled tree in disjoint data-structures. The unlabeled 

tree is represented by a binary string code and the node ordering obtained by the unlabeled tree 

encoding is used to store the label information efficiently. The unique knowledge of the diagnos- 

tic tree that is embedded into the storage structure is fully utilized to aid in the efficient matching 
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Table 5.1: Matrix representation of a full fault dictionary. 

faults output values 
0 00 11 
1 00 11 
2 01 01 
3 00 10 
4 01 00 
5 10 11 
good 11 00 

of the faulty symptoms exhibited by defective circuits. Analysis is presented demonstrating the 

efficiency of the tree-based representation. Experimental results on the ISCAS 85 and ISCAS 

89 circuits present the storage requirements of the proposed structure compared to techniques 

for storing the full fault dictionary and verify the theoretical predictions for its performance. 

5.2    The Storage Structure 

The diagnostic experiment tree, introduced earlier, serves as the motivation for the storage struc- 

ture described in this section. We shall use the same representation of the diagnostic experiment 

as presented in Chapter 2. 

Example : In this chapter, the following example will be used to explain the storage structure. 

In Figure 5.1, a diagnostic experiment tree is shown representing information from the full fault 

dictionary shown in Table 5.1, represented in the conventional matrix format. 
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Code 
Faults 

\Jy   Node number 

00/ 01\ 10 

Figure 5.1: Diagnostic experiment tree for the dictionary in Table 5.1. 

5.2.1    Dictionary representation 

It is clear that the tree T(V, E) represents a labeled tree and can be represented using standard 

graph-theoretic techniques for storing labeled trees such as Prüfer sequences [6], but the storage 

required is not necessarily optimal, due to the inherent redundancy in the natural labeling of 

the tree. Hence, the storage representation used here represents the label information and the 

underlying unlabeled tree information disjointly. 

Let the tree G(V, E) represent the tree corresponding to the diagnostic tree T(V, E), but 

with its nodes and edges not associated with any information. In T(V, E), each node has a set 

of faults that is associated with it and each edge has a set of faults associated with it.  Let a 
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canonical numbering Number(v) be associated with each node v G G(V, E). The same num- 

bering is used both in T(V, E) and G(V, E). This numbering is obtained from the scheme used 

to encode the tree G(V, E). The information in the tree T(V, E) is represented by encoding the 

tree G(V, E) using a binary code [1]. 

The tree G(V, E) lacks two pieces of information that are present in T(V, E). First, there is no 

output information present, and second, there is no information as to the faults present at each 

internal node of the circuit. The output information is obtained from the tables called the DER- 

RTABLE, storing the distinct error responses produced by the circuit and the INDEXTABLE 

storing for each node in the tree. The index leading into the DERRTABLE indicates the unique 

error response associated with that edge of the tree. It has been noted [7] that this technique of 

storing the output responses as opposed to storing the exact output responses is typically more 

economical. The second piece of information that has to be maintained in the storage structure 

in order that the original information is preserved is the set of faults associated with each node 

of the circuit. It can be shown that with the structure of the unlabeled tree already available (in 

the form of the binary string), it suffices to store the canonical labeling number of the node in 

the diagnostic tree at the highest level for each fault. This is exactly the information maintained 

in the table FARRAY. 

The following results prove that the information present in the storage structure is indeed com- 

plete. 

Lemma 1 There exists a unique sequence of node numbers from any node at the highest level 

to the root r(T). 
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Proof: This result follows from the fact that there is a unique path from r(T) to any node in the 

tree. 

Property 1 The information in the tree T(V, E) can be represented by the given storage scheme. 

Proof: It suffices to prove that all the output responses associated with each fault in the tree 

(T(V, E) can be decoded from the present form of storage. From Lemma 1, the path from r(T) 

to any node at the highest level is decipherable; and for each fault, there is a scheme for storing 

the number of the highest level node containing it. These numbers can then be used to obtain the 

actual output sequences because they are also stored in the canonical numbering order. Hence 

the proof. 

5.2.2    Binary code for G{V, E) 

This section presents the critical unlabeled tree encoding algorithm. 

Encoding Algorithm 

The encoding is defined inductively over the number of levels in the tree. The encoding of a 

tree with one vertex and no edges is given by the binary code 01. The encoding of every tree 

G(V, E) with root r(G) is defined as follows: LetCuC2, ■ ■ ■ ,Ck represent the codes of the sub- 

trees rooted at all the nodes in the tree G(V, E) such that r(G) is their parent. Let these codes 

be written in some preferred order, to be defined, given by a permutation (i{, i2,. ■ •, 4) of the 

integers 1,2,...,/:. Then the code of the tree is defined to be 0, Cil, Ci2,..., Clk, 1. A straight- 

forward choice for the preferred order in this application is the order obtained from diagnostic 
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Table 5.2: INDEXTABLE. 

3    3    2   4    10    13 

Table 5.3: DERRTABLE. 

0 00 
1 01 
2 10 
3 11 

fault simulation. 

Example : The binary encoding of each node in the tree in Figure 5.1 is shown adjacent to each 

node. The INDEXTABLE, DERRTABLE and the array FARRAY are shown in Tables 5.2, 

5.3, and 5.4, respectively. To illustrate, consider the retrieval of primary outputs produced by 

fault 0 at test vector 2. FARRAY is used to indicate the distinct error produced by the fault on 

the last test vector. Then, unlabeled tree encoding is used to obtain the canonical number of the 

node containing the fault 0 at the required test vector. The canonical number here is 2. This 

is used to index into INDEXTABLE, which, in turn, implies that the distinct error produced 

is contained in location 3 of the DERRTABLE. The error is identified as 11 and knowing the 

good circuit response to be 00, the outputs produced are identified to be 11. 

The following decoding algorithm is presented to prove that the canonical labelling informa- 

tion that has been used in proving that the information stored in this storage structure is complete 

can indeed be obtained. 
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Table 5.4: FARRAY. 

fault number node number 
0 2 
1 2 
2 5 
3 3 
4 6 
5 8 

A Decoding Algorithm 

1. Associate a label with each 0 occurring in the code, by numbering them in order left to 

right. 

2. Scan the code from left to right until the configuration 001 is found. Note the pair of labels 

associated with the two 0s in this configuration, and then delete the second 0 and the 1. 

The two labels will define an edge of the tree. 

3. If the resulting string has more than two symbols, repeat Step 2, otherwise, the string is 

just 01, the label associated with this 0 is that of the root r(T) and the algorithm termi- 

nates. 

The amount of storage required for the storage representation presented above is 2n bits, where 

n is the number of nodes in the tree. 
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5.3   Performance Analysis of the Storage Structure 

The analysis presented in this section establishes the utility of the tree-based storage structure 

compared to the known techniques to store the full fault dictionary. First, the tree-based tech- 

nique is shown to perform well with respect to the storage requirements for the full fault dictio- 

nary in the matrix format. The analysis of the variation of the size of the list representation [15] 

versus the matrix representation has been presented in an earlier work [16]. Then, the advan- 

tages of the method over the list of faults representation and the matrix representation during 

faulty symptom matching are presented. 

5.3.1    Size performance 

For analyzing the space performance of the tree representation, extremal cases are isolated for 

analysis. It is assumed, for the purpose of analysis, that the output information is represented 

using the actual primary output responses and not the error responses. Let the number of out- 

puts, faults and test vectors of the circuit be o, f, t, respectively. Also, assume that the circuits 

in consideration are combinational. This is just to avoid case analysis and the appropriate ratios 

can be obtained for sequential circuits by multiplying by a factor of 2 to account for the don't 

care outputs in the appropriate terms. 

Upper bound on the ratio 

Consider a hypothetical scenario in which the diagnostic experiment tree T(V, E) is just a path. 

The matrix representation of the full fault dictionary requires oft bits. As opposed to this, the 



44 

tree-based representation requires no more than ot + 2t bits. Thus, the ratio of their sizes is 

bounded by fo/(o+2), i.e., 0(f). It is clear that over all trees, this ratio forms a bound because 

the tree-based representation stores more information than in any other case. 

Towards a lower bound on the ratio 

It is not immediately obvious how to obtain a lower bound as in the upper bound case, but the 

following scenario is informative. Consider the case in which the forest obtained by deleting the 

root r(T) from T(V, E) is a collection of / paths, with the root of each of these paths having 

exactly one fault associated with it in T(V, E). This would require a storage of oft bits in the 

matrix based scheme, whereas ft(\og{ft)) + 2ft + f(log(ft)) with the first term representing 

the space requirement for the output responses (because the number of distinct output responses 

is bounded by log(/i)), the second term representing the storage required for the binary encod- 

ing and the last term measuring the storage requirement for the array FARRAY. This assumes 

that log(/i) < o. Although it may not be easy to show that this scenario indeed gives a lower 

bound, it is clear that tree-based representations in such cases give storage of the same order as 

matrix representations. 

The above analysis demonstrates that the storage required by the tree-based representation as 

opposed to other representations decreases with an increase in the average number of faults as- 

sociated with each node of the tree. This prediction is verified by performing experiments for 

computing the size of the tree-based representation on benchmark circuits with a subset of the 
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vector set generated. The performance of the list-based fault dictionary versus the tree-based 

fault dictionary for the benchmark circuits is also presented. 

5.3.2   Matching performance 

The storage representations are analyzed here to prove that the tree-based representations re- 

quires fewer matching operations than both the list representation and the matrix representa- 

tions. 

Consider any stage of the diagnostic process, i.e., after the application of a number of diagnostic 

vectors. Let the node corresponding to this stage of the diagnosis be p. Let the number of faults 

associated with p be equal to fp. Let the number of children of p be cp. Then, the number of 

output comparisions required by the list representation and the matrix representation is equal to 

fp and the number of output comparisions required by the tree-based representation is equal to 

cp, because the tree-based representation alone has the unique knowledge of the indistinguisha- 

bility classes at each level of the diagnostic experiment tree. The proof follows because cp < fp 

independent of p and the node p in this argument is an arbitrary node in the diagnostic experi- 

ment tree. 

5.4   Experimental Results 

Experiments were performed on the ISCAS 85 and ISCAS 89 benchmark circuits to study the 

space requirements of the tree-based encoding scheme compared with the matrix and the list 

schemes. The tree-based encoding scheme has been integrated into the fault simulator and a 
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Table 5.5: ISCAS 85 circuits studied. 

Cir. / 0 t 
c499 758 32 55 
c880 942 26 75 

cl355 1574 32 88 
cl908 1876 25 280 
c2670 2595 64 236 
c3540 3126 22 316 
c5315 5350 123 264 
c6288 7744 64 46 
c7552 7550 108 450 

level-by-level processing of faults is used to generate the new tree-based dictionary. Tables 5.5 

and 5.6 represent the circuit characteristics of the ISCAS 85 and ISCAS 89 circuits, respectively. 

The columns indicate the circuit name, number of equivalent faults, number of primary outputs 

and the number of test vectors. In Tables 5.7 and 5.8, the sizes of the representations of the full 

fault dictionary using the tree-based, matrix and list representations are presented for ISCAS 85 

and ISCAS 89 circuits, respectively. The columns in these tables indicate the circuit name, total 

number of nodes in the diagnostic tree, errbits( = \log(number of distinct errors produced))), 

size of the matrix representation, size of the list representation and the size of the tree-based 

representation. Tables 5.9 and 5.10 represent the results on a few of the circuits with 10 and 

20 test vectors, respectively. The columns for the ratios show that the tree-based representation 

performs significantly better than the matrix representation with fewer test vectors. 
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Table 5.6: ISCAS 89 circuits studied. 

Cir. / 0 t 
s344 342 11 108 
s420 455 1 166 
s526 555 6 192 
s641 467 24 211 
s713 581 23 175 
s820 850 19 968 
s832 870 19 967 
s953 1079 23 14 

sl238 1355 14 478 
si 423 1515 5 88 
s5378 4603 49 900 

s35932 39094 320 381 

5.5    Conclusions 

The experimental results for the ISCAS 85 and ISCAS 89 circuits illustrate that full fault dictionaries 

can be efficiently stored without discarding any information. In the approach presented, a la- 

beled tree was associated with the diagnostic experiment. The labeled tree is represented by 

disjointly storing the label information and the underlying unlabeled tree. The unlabeled tree 

is represented by a binary string code, and the node ordering obtained by the unlabeled tree en- 

coding is used to store the label information. Analysis was used to establish the efficiency of the 

tree-based storage scheme both with respect to the space required and the performance during 

a matching algorithm. 
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Table 5.7: Performance of tree-based representation on ISCAS 85 circuits. 

Cir. no. nodes errbits matrix list tree tree/matrix 

c499 31954 10 1334080 264176 384993 0.2886 

c880 49664 9 1836900 247424 539307 0.2936 

cl355 63240 10 4432384 650672 747025 0.1685 

cl908 364793 10 13132000 3051984 4353787 0.3315 

c2670 329169 11 39194880 2759488 4078749 0.1041 

c3540 749774 12 21731952 5109232 10133869 0.4663 

c5315 1089879 13 173725200 5572720 16687241 0.0961 

c6288 239464 11 22798336 4340230 3303826 0.1449 

c7552 2523546 13 366930000 14888048 35978193 0.0981 

Table 5.8: Performance of tree-based representation on ISCAS 89 circuits. 

Cir. no. nodes errbits matrix list tree tree/matrix 

s420 9698 2 75530 8000 44824 0.5935 

s526 12958 6 639360 403984 99254 0.1552 

s641 61205 10 2364888 394928 744137 0.3147 

s713 51743 10 2338525 377184 612669 0.2620 

s820 535546 10 15633200 2453088 5986269 0.3829 

s832 544824 10 15984510 2471584 6122696 0.3830 

s953 3747 9 347438 8624 75977 0.2187 

sl238 384998 10 9067660 867664 4335675 0.4781 

sl423 13270 6 666600 84096 125599 0.1884 

s5378 1917705 13 202992300 15187840 27439247 0.1352 

s35932 6161291 18 2147483647 280043344 212342918 0.0988 



49 

Table 5.9: Performance of tree-based representation with 10 vectors. 

Cir. no. nodes errbits matrix list tree tree/matrix 

c2670 4652 9 1660800 142016 96120 0.0579 

c5315 9909 10 6580500 196320 281118 0.0427 

c6288 18443 9 4956160 904288 339922 0.0686 

c7552 12271 10 8154000 307360 314375 0.0386 

sl238 1083 7 189700 18288 24665 0.1300 

si 423 322 5 75750 7312 14947 0.1973 

s5378 4623 9 2255470 98640 139932 0.0620 

S35932 19534 11 125100800 520288 1919516 0.0153 

Table 5.10: Performance of tree-based representation with 20 vectors. 

Cir. no. nodes errbits matrix list tree tree/matrix 

c2670 13665 9 3321600 288272 204515 0.0616 

c5315 31141 11 13161000 409456 613702 0.0466 

c6288 71394 10 9912320 1756336 1008889 0.1018 

c7552 39142 10 16308000 621600 678362 0.0416 

sl238 3168 7 189700 35536 46298 0.2441 

sl423 1142 6 75750 17920 23758 0.3136 

s5378 14644 9 2255470 24032 263665 0.1169 

S35932 75473 13 125100800 3413760 5478154 0.0438 
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6. CONCLUSIONS 

In this work, fault dictionary compaction has been addressed from the point of view of two 

relatively (but not entirely) orthogonal tasks. The first of these tasks has been identified as iden- 

tifying diagnostically useful information. Previous techniques attempting to solve this problem 

had several limitations, thus limiting their applicability to large practical circuits. Efficient tech- 

niques were proposed to identify diagnostically useful information, thus resulting in dictionaries 

with satisfactory resolution and are feasible to be generated on large practical circuits. 

The second task is one of representing identified information efficiently. This task is espe- 

cially significant in applications where the first task cannot be performed. This is true in many 

faulty chips where the fault modeling process is not accurate, i.e., to say that the presence of 

unmodeled faults could have caused the observed errors. A novel approach to storing all the 

information in the full fault dictionary based on the use of unlabeled tree encoding has been 

proposed as an alternative to reducing the size of storage considerably. The proposed storage 
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structure uniquely captures the indistinguishability class information at various stages of the di- 

agnosis process and, hence, is shown to exhibit better behavior than currently known techniques 

for the purpose of matching the faulty symptoms with the stored data. 

However, in spite of the proposed advances, it may be still possible to find applications 

where it is impossible to maintain any kind of dictionary. This is true in cases when no infor- 

mation may be discarded from the full fault dictionary. In such cases, it may be interesting to 

investigate the possible use of a combination of multiple stage diagnosis [11] and compact fault 

dictionaries to provide an effective solution to the diagnosis problem. An important consid- 

eration when using fault dictionaries is their applicability in the presence of unmodeled faults. 

This necessitates the development and use of sophisticated matching algorithms. Currently fault 

dictionaries store diagnostic output information to guide the fault diagnosis process. It may be 

fruitful to study the effect of storing information on internal lines of the circuit with the hope 

of guiding and speeding up the diagnostic reasoning process. Such efforts may lead to new 

challenges in the compaction of fault dictionaries, but the techniques developed for compact- 

ing output information alone may prove to be valuable tools in coping with the problems of the 

future. 
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