Optically-Inscribed High Efficiency Diffraction Gratings in Azo Polymer Films

C. Barrett, A. Natansohn and P. Rochon

Department of Chemistry
Queen's University
Kingston, Ontario K7L 3N6 Canada

A series of amorphous azobenzene-containing polymers were cast as thin films and shown to produce both reversible volume diffraction gratings and high-efficiency surface gratings by laser irradiation at an absorbing wavelength. The latter process involves localized mass transport of the polymer chains to a high degree, as atomic force microscopy reveals surface profile depths near that of the original film thickness. A mechanism for this phenomenon is proposed which involves pressure gradients as a driving force, present due to different photochemical behaviors of the azo chromophores at different regions of the interference pattern. This mechanism of photoinduced viscoelastic flow agrees well with the results of experiments investigating the effect of the polarization state of the interfering writing beams and the photochemical behavior of the chromophore, the free volume requirements of the induced geometric changes, and the viscoelastic flow of the material.
TECHNICAL REPORT NO. 30

Optically-Inscribed High Efficiency Diffraction Gratings in Azo Polymer Films

by

C. Barrett, A. Natansohn and P. Rochon

Submitted for publication in

Polymer Materials: Science and Engineering Division Preprints (ACS)

Department of Chemistry
Queen's University
Kingston, On., Canada

March 28, 1996

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
OPTICALLY-INSERCED HIGH EFFICIENCY DIFFRACTION GRATINGS IN AZO POLYMER FILMS. Christopher J. Barrett and Almeria L. Natansohn*, Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6. Paul L. Rochon, Department of Physics, Royal Military College, Kingston, Ontario, Canada K7K 5L0.

A series of amorphous azobenzene-containing polymers were cast as thin films and shown to produce both reversible volume diffraction gratings and high-efficiency surface gratings by laser irradiation at an absorbing wavelength. The latter process involves localized mass transport of the polymer chains to a high degree, as atomic force microscopy reveals surface profile depths near that of the original film thickness. A mechanism for this phenomenon is proposed which involves pressure gradients as a driving force, present due to different photochemical behaviors of the azo chromophores at different regions of the interference pattern. This mechanism of photoinduced viscoelastic flow agrees well with the results of experiments investigating the effect of the polarization state of the interfering writing beams and the photochemical behavior of the chromophore, the free volume requirements of the induced geometric changes, and the viscoelastic flow of the material.

ABSTRACT. Please be BRIEF—150 words maximum if possible. Title of paper should be ALL CAPS; author(s) listed by first name, middle initial, last name; indicate address w/zip code. SINGLE SPACE, BLACK INK.