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Abstract

The nature of the nonequilibrium flow of dissociating gases over spheres was inves-

tigated experimentally, numerically and theoretically. A series of experiments with three

different gases, nitrogen, air and carbon dioxide, was performed in the shock tunnel T5

at GALCIT. Five spheres of different radii equipped with thermocouples for surface heat

flux measurements were used. The state-of-the-art numerical method by Candler (1988)

was used to conduct a parallel study which strongly complemented the experimental and

theoretical efforts.

Experimental heat flux measurements are presented. Good agreement was observed

among the measured stagnation point heat transfer rates, computational results and Fay and

Riddell's theoretical predictions. For nitrogen and air, the measured heat flux distributions

were also in good agreement with numerical computation results and Lees' theory. For

carbon dioxide, large deviations were observed. Early transition tripped by surface rough-

ness is a possible cause for the deviation of heat flux distribution from the theory. The

experimental differential interferograms were compared with the images constructed from

computational flowfields. Good agreement of fringe pattern and shock shape was observed.

An analytical solution is obtained for inviscid hypervelocity dissociating flow over

spheres. The solution explains the correlation between the dimensionless stand-off distance

and the dimensionless reaction rate parameter previously observed by Hornung (1972) for

nitrogen. The physics of the correlation can be shown as the binary scaling. Based on the

solution, a new dimensionless reaction rate parameter is defined to generalize Hornung's

correlation for more complex gases than nitrogen. Experimental and numerical results con-

firm the new correlation.

The effect of nonequilibrium recombination downstream of a curved two-dimensional

shock was also addressed. An analytical solution for an ideal dissociating gas was obtained,

giving an expression for dissociation fraction as a function of temperature on a streamline.
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The solution agrees well with the numerical result and provides a rule of thumb to check the

validity of binary scaling for the experimental conditions. The effects upon the binary scal-

ing of the large difference in freestream temperature between flight and free-piston shock

tunnel conditions are discussed.
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CHAPTER 1

Introduction

The recent human endeavor to build vehicles to traverse the atmosphere of the planets of

the solar system in the hypervelocity regime, such as NASP in the United States, HERMES

in Europe, and HOPE in Japan, has revived the research activities in chemical nonequil-

ibrium flow. The term "hypervelocity" is used in distinction from the term "hypersonic".

In hypervelocity flows, the stagnation enthalpy can be large enough to cause dissociation

of the gas after the bow shock ahead of a blunt body. The term "hypervelocity" implies

not only high Mach number but also very high freestream velocity. The term "hypersonic"

flow is used to describe situations in which the flow speed is several times higher than the

freestream speed of sound. It can, of course, be generated by lowering the speed of sound

without increasing the flow speed. In such "cold" hypersonic flow, the flow still behaves

as a perfect gas and the important dissociative and other real-gas effects of a hypervelocity

flow will not occur.

The nature of chemical nonequilibrium flows about blunt bodies is important in the

aerodynamic design of orbital vehicles. Stalker (1989) has pointed out that models using

frozen or equilibrium chemistry are unable to predict the nonequilibrium flow field. One

important difference was found when the shuttle Orbiter experienced a pitching moment sig-

nificantly different from the pre-flight predictions (Maus, Griffith & Szema, 1984). These

predictions were obtained from extensive cold hypersonic wind-tunnel testing in facilities

which could not produce the real gas effects.

In the present study, some aspects of hypervelocity flow over spheres with nonequil-

ibrium chemical reactions are investigated through theoretical derivations and a series of

computations and experiments using nitrogen, air, and carbon dioxide as test gases. The

latter gas is of interest in Martian atmospheric entry, where the atmosphere is composed



-2-

primarily of carbon dioxide. It also exhibits more dramatic real-gas effects than air or ni-

trogen because of the large fraction of energy that goes into vibration and dissociation.

1.1 A Review of Previous Work and Motivation

It is clear that very substantial chemical activity will take place in hypervelocity blunt

body flow. Because of the complex idiosyncrasies of air or carbon dioxide at such high

specific energy, it is not possible to simulate them with other gases, and we are necessarily

forced to reproduce the actual flow speed that the body sees.

A second feature of the problem is that in many parts of the flow field around a body,

the chemical reactions occur at speeds which are comparable to the local flow speed, so

that it is necessary to study not only equilibrium high-enthalpy effects but also those that

arise because of the finiteness of the chemical reaction rates. These, by virtue of the flow

speed, introduce characteristic lengths into the problem, which depend on the properties of

the gases as well as on the flow variables. Two kinds of chemical reactions may broadly

be distinguished: binary and ternary reactions, for which the characteristic lengths vary

as the inverse of the freestream density and as the inverse of the square of the freestream

density, respectively. In a simulation where one wishes to reproduce the ratio of body size

to characteristic chemical length, it is therefore necessary to reproduce

2

p0 ,a or p~ a

depending on whether binary or ternary reactions are dominant in the phenomenon of in-

terest. It is not possible to simulate situations involving both types correctly except at full

scale.

The features of hypervelocity blunt body flow have been studied extensively both theo-

retically and numerically. Hall et al. (1962) have shown that binary reactions dominate the

features of blunt body flows at high altitudes where the density is low and the atom con-

centrations are effectively frozen in the nose region after a short distance behind the curved

shock wave. "Binary scaling" then provides an important scaling for the ground testing of
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nonequilibrium flow fields. Gibson and Marrone (1964) concluded that for two different

flows with the same freestream velocity, temperature, and dissociation fraction, but differ-

ent values of the freestream density and radius, the chemical nonequilibrium flowfields with

the coordinate system scaled by the radius a will be the same if the binary scaling pa is the

same between the two flows. Since the above considerations formed the core of the simula-

tion principle of the ground testing facilities, the validity of binary scaling in experimental

environments needs to be checked.

In an earlier numerical and experimental investigation of the effect of chemical non-

equilibrium effects on blunt-body flows, Hornung (1972) has shown that the stand-off dis-

tance and flow pattern of nonequilibrium dissociating flow of nitrogen over the front part

of a blunt body can be correlated in terms of a single reaction rate parameter Q, which is

an effective Damkohler number and is the ratio of the chemical reaction rate to the flow

rate, taking account of parameters describing the speed, density, dissociation, and temper-

ature of the freestream. In Hornung's experimental results using optical interferometry in

a free piston shock tunnel, T3 , the density was too low to get good resolution of the fringe

shift of flows over spheres. For that reason the investigation was made using cylinders,

where the path length of light was significantly larger. Unfortunately, the end expansion

effects involved in such flows manifest themselves in just the same manner as the nonequil-

ibrium effect and therefore obscure it. Macrossan (1990) also suggested that the driver gas

contamination is a further limitation on the accuracy in the stand-off distance for high en-

thalpy conditions in T3. With the new shock tunnel at GALCIT, T5, much higher density

can be achieved, and sphere-flow interferograms produce as many as 15 fringes, see Hor-

nung et al. (1994), giving excellent resolution. The size and density achievable in T5 has

now extended the available parameter range sufficiently to avoid the end-effect problem by

studying the axisymmetric situation, i.e., by using spheres as models. It is also interesting

to try to explain the physics of the correlation.

Hornung (1976) performed an approximate analysis of the nonequilibrium flow be-

hind a curved shock wave, under the assumption that binary reactions are dominant. He

concluded that the flow could be conveniently divided into a region of intense dissociation
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close to the shock followed by a large region of chemically frozen flow, which confirmed the

numerical results mentioned earlier in this section by Hall et al. (1962). Macrossan (1990)

has shown that the recombination reaction is not negligible at the higher values of the den-

sity in the test section of the free piston shock tunnel, although, further downstream the

flow is frozen again. Macrossan's results motivate us to relax Hornung's binary reaction

assumption and to understand the mechanism which 'freezes' the recombination.

Aerodynamic heating in hypersonics is another major problem for hypersonic cruise.

Lees (1956) outlined the pioneering theoretical study of the laminar heat transfer rate to a

blunted cone and a sphere based on the self-similar solution of the hypersonic boundary

layer. Fay and Riddell (1958) obtained the most well-known correlation of the stagnation

point heat transfer rate for a diatomic dissociating gas. Sutton and Graves (1971) have gen-

eralized Fay and Riddell's analyses to arbitrary gas mixtures, including polyatomic disso-

ciating gases. Koppenwallner (1984) correlated several investigators' experimental data of

the stagnation point heat transfer rate over the hemisphere-cylinder in hypersonic flows. He

also provided the heat flux distribution downstream of the stagnation point. Most of these

experimental results on heat transfer rates through highly cooled boundary layers have been

obtained from measurements made in shock tubes. These experiments correctly simulate

the stagnation enthalpy which is the parameter of major interest in heat transfer measure-

ments. However, the Reynolds number is always low. The free piston shock tunnel T5 can

operate at Reynolds numbers based on the diameter of the model up to one million and stag-

nation enthalpies up to 25 MJ/kg. The size of the model is also much larger than those used

in the shock tube, so that nonequilibrium effects can be studied without the size constraint

of the model.

At the same time, the development of numerical methods for the computation of blunt

body flow fields has become very much quicker since the 1970's, so that even interferograms

of three-dimensional chemically reacting flows can be computed with reasonable speeds,

see e.g., Rock et al. (1992) and Hornung et al. (1994). For laminar flow, the viscous case

is also accessible, so that heating rates too may be compared with theoretical models, see

e.g. Candler (1988). Since the shock values of temperature, vibrational temperatures and
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density are not accessible during the experiment, the computational method provides a good

way to obtain partial information about them.

The following chapters present an investigation in T5 of the blunt body problem and

the limits of binary scaling, and the accompanying computational and theoretical works.

1.2 The Scope of the Current Work

The thesis is divided into eight chapters, including this introduction. A short description

of the experimental facility - the free piston shock tunnel T5, models, the instrumentation

and flow visualization techniques is presented in chapter 2. Chapter 3 describes the numeri-

cal code, the computational interferometry, and the program to extract solutions on a stream-

line from the computed flow field. The results of heat transfer measurements and examples

of experimental interferograms are compared with their computational counterparts in chap-

ter 4. An analytic solution of the correlation between the dimensionless stand-off distance

and the dimensionless reaction rate parameter, Q2, for nitrogen found by Homung (1972) is

first derived in chapter 5, using the Lighthill-Freeman gas model. The analytic solution is

then compared with the numerical and experimental results. To generalize Hornung's corre-

lation for more complex gases than nitrogen, a new dimensionless reaction rate parameter,

Q, is defined. Numerical and experimental results of the correlation between the dimen-

sionless stand-off distance and F for air and carbon dioxide are also presented. In chapter

6, the effect of nonequilibrium recombination after a curved shock wave in a hyperveloc-

ity dissociating flow of an inviscid Lighthill-Freeman gas is considered. A rule of thumb

to check the validity of binary scaling is also derived. Numerical examples are presented

and the results are compared with solutions obtained with two-dimensional Euler equations

using Candler's code (1988). One of the interesting features of hypervelocity blunt-body

flows, namely the vorticity concentration associated with the edge of the high-entropy layer

generated in the nose region by the curved shock, will be touched upon in chapter 7. Also

included is the first attempt at the experimental and computational verification of various

vibrational energy relaxation models. Chapter 8 is a conclusion of the research.
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CHAPTER 2

Experimental Method

This chapter presents a description of the experimental facility, the instrumentation of

the facility and the models, the data acquisition system, and the flow visualization tech-

niques. The method to determine the freestream conditions is also described.

2.1 Experimental Facility

The GALCIT free-piston shock tunnel T5 which has the specific aim of studying the

fundamental features of high-enthalpy reacting flows was used for the experiments. The

facility was named T5 in honor of its Australian predecessors TI to T4. The facility uses

the principle of free-piston adiabatic compression of the driver gas of a shock tunnel to

achieve the high shock speeds and densities required to generate the high enthalpy and

reaction scaling. It is capable of producing flows of air or nitrogen up to specific reservoir

enthalpy of 25 MJ/kg at reservoir pressure up to 100 MPa and reservoir temperature up to

10000 K. Helium is usually used as the driver gas because it is a light gas and has no low-

energy internal degrees of freedom and hence behaves like a perfect gas up to relatively

high temperatures. The shock tunnel has two additional essential features. One is that the

test duration is sufficiently short (typically 1 ms) to avoid destruction of the machine by

melting, yet long enough to provide good measurements during the steady-flow period.

The other is that the gas is partially dissociated at the nozzle exit, especially in the cases of

air and carbon dioxide at high specific reservoir enthalpies, where they also contain some

nitric oxide and carbon monoxide. The schematic of the facility is shown in Fig. 2.1 and its

primary parameters are summarized in Table 2.1.
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FIG. 2. 1. Schematic drawing of the free-piston shock tunnel T5 with details of the critical
section.
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Maximum diaphragm burst pressure 130 MPa

Maximum secondary reservoir pressure 15 MPa

Driver section diameter 0.3 m

Driver section length 30 m

Driven section diameter 0.09 m

Driven section length 12 m

Piston mass 120 kg

Nozzle exit diameter 0.3 m

Table 2.1. Primary parameters of T5.

In a typical run, the secondary reservoir is filled with compressed air at 10 MPa, the

driver section contains helium at 120 KPa, and the driven section contains air at 20 KPa. The

driver and driven sections are separated by a main diaphragm of a 7 mm thick stainless steel

304 plate with a burst pressure of 100 MPa. The diaphragm has two grooves which cross

normal to each other (for more detail, see Cummings (1993)). This pre-stressed groove

configuration improves dramatically the repeatability of the desired burst pressure and it

produces very little debris at the test section. When the piston is released, it is accelerated by

the compressed air to a maximum speed of about 300 m/s. The piston compresses the helium

to 1/55 of its original volume and heats the helium to around 4600 K at diaphragm rupture.

A strong shock wave is formed and propagates in the shock tube at 4.6 km/s. The incident

shock will reflect off the end wall and creates a reservoir region. The reservoir enthalpy

is about 21 MJ/kg, the reservoir pressure is about 75 MPa, and the reservoir temperature

is about 9000 K. The gas is then expanded through a contoured nozzle of 300 mm exit

diameter and 30 mm diameter throat, producing a flow of about 6 km/s.

As the piston accelerates along the driver section, this center of mass shift is compen-

sated by a recoil of the driver section, driven section and nozzle. The test section and dump

tank remain stationary, and the secondary air reservoir recoils in the opposite direction un-

der the action of the thrust of the outflowing air. To accommodate the resulting relative
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motions, the joints at the nozzle and at the launch manifold are fitted with sliding axial

seals. The recoil speed determines the level at which the tube is stressed by a wave re-

leased by the rapid piston deceleration. This and other considerations make it desirable to

reduce the recoil speed as much as possible. For this reason a substantial inertial mass of

14 tons (prominent in Fig. 2.1) is fixed to the high-pressure end of the driver section, the

origin of the stress wave. The recoil distances are typically 100 mm and 150 mm for driver

section and secondary air reservoir respectively.

A more detailed description of T5 and its performance envelope, flow quality and re-

peatability may be found in Hornung (1992).

2.2 Instrumentation of the Facility

2.2.1 Data Acquisition System (DAS)

DSP Technology's TRAQ system, a modularized system to acquire analog or digital

data from multiple input channels, was used to acquire the experimental data. The current

modules of the data acquisition system are summarized in Table 2.2, and the schematic of

the system is shown in Fig. 2.2.

Each of the forty A/D digitizers has a resolution of 12 bits and a maximum sampling rate

of 1 MHz. The total through-put is limited to 16 MSamples/s. The system is controlled from

a Sun SPARCstation computer with software facilities enabling 'quick-look' examination

of the data immediately after the shot. For these experiments, the sampling rate was 200

kHz and each digitizing channel had 4 kByte length. 1/8 of the memory of each digitizing

channel was pre-trigger data.
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Module Number of channels

Enhanced TRAQ controller (DSP 4012A) 1

Memory module (DSP 5200) 1

A/D digitizer (DSP 2860) 40

Trigger generator (DSP 1024) 8

Amplifier (DSP 1402E) 24

Digital counter 1

Digital delay generator 1

PCB piezotronics pressure transducer power supply 24

Table 2.2. Primary modules of the data acquisition system.

2.2.2 Pressure and Shock Speed Measurements

Seven PCB Piezotronics Inc. pressure transducers (Model number 119M44) were used

for the shock tunnel. A pair of pressure transducers were installed at the end of the driver

section to monitor the burst pressure of the diaphragm. Another pair of pressure transducers

were installed at the end of the driven section to record the nozzle reservoir pressure his-

tory and two signals were linked to an OR logic controller in the trigger generator to insure

the triggering of the whole data acquisition system. The other three pressure transducers

were mounted in three shock-timing stations (STS) along the driven section to obtain the

shock speed. For the experiments, the shock speed is calculated from the distance sepa-

rating station 2 and 3 divided by the time difference of the signal rise. Fig. 2.3 shows the

typical pressure traces of three shock-timing transducers and one of the nozzle reservoir

transducers during a run. Because the nozzle reservoir pressure and the shock speed are

two important parameters in calculating the freestream conditions at the nozzle exit, the

repeatability of these two parameters must be addressed. Hornung (1992) has demonstated

that the repeatability of the nozzle reservoir pressure and the shock speed for T5 is ± 4%

and 1%, respectively.
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FIG.2.3. Time traces given by three shock-timing pressure transducers and one of the nozzle
reservoir pressure transducers (during a experiment). The velocity of the incident
shock wave is obtained from the distance separating station 2 and 3 divided by the
time difference of the signal rises. The fourth pressure trace gives the value of po,
the average of the signal between t = 1.0 ms and t = 1.5 ms is made.
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2.3 Free Stream Conditions

An equilibrium shock tube calculation (ESTC) code (McIntosh, 1970) was used to cal-

culate the nozzle reservoir conditions. The measured shock speed and the initial test gas

pressure, composition, and temperature were used to evaluate the conditions behind the inci-

dent and reflected shocks. The nozzle reservoir conditions were then obtained by changing

the conditions after the reflected shock isentropically so that the total pressure matched the

measured nozzle reservoir pressure. These reservoir conditions are then used as the input of

a quasi one-dimensional nonequilibrium nozzle calculation NENZFG (Lordi et al., 1965)

or an axisymmetric inviscid nonequilibrium flow calculation SURF (Rein, 1989) to give

the freestream conditions at the nozzle exit. Table 2.3 gives the ranges of the reservoir

and freestream conditions chosen for the present investigation. The Mach number of the

freestream is about 5.5 for nitrogen, 5.3 for air, and 4.6 for carbon dioxide. The shot num-

ber, reservoir and freestream conditions of each run in this study are listed in detail in tables

in Appendix A.

parameter p0(MPa) h0(MJ/kg) uoo(km/s) Too(K) p.(kg/m3 )

Nitrogen

from 30 10.58 4.2 1390 0.0175

to 90 21.06 5.5 2760 0.0561

Air

from 30 9.81 3.9 1340 0.0152

to 90 22.15 5.6 2930 0.0627

Carbon dioxide

from 30 4.5 2.5 1130 0.0326

to 90 11.95 3.6 2400 0.162

Table 2.3. Range of values of reservoir and freestream conditions chosen for experiments.
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2.4 Model, Instrumentation of the Model, and Data Reduction

2.4.1 The Model and its Instrumentation

The models chosen were a set of spheres with diameters 1, 2, 3, 4, and 6 in. in order

to vary the reaction rate parameter at a given tunnel condition. This has an upper limit

of 6 in. because of the useful diameter of the flow, and a lower limit of 1 in. because

of the resolution of the optical system. The models were made of stainless steel 302 for

the considerations of strong pressure load, durablility and matching as nearly as possible

the value of heat transfer constant \ to that of the thermocouple material to maintain

the surface continuity of the convective heat transfer rate and obtain accurate measurement

of the rapidly changing surface temperature. With the extremely high values of heat flux

encountered at the stagnation point of the sphere, the classical thin-film metal gauges are

not suitable. Thermocouple gauges were found to serve our purpose very well. Therefore,

four Medtherm coaxial thermocouples of type E (chromel-constantan) were mounted flush

with the surface of the sphere to measure the heat transfer distribution for the 2, 3, 4, and

6 in. model. They are 1.6 mm in diameter and are mounted at the stagnation point and

200, 400, and 600 from the stagnation point. For the 1 in. model, only the stagnation point

heat transfer rate was measured. The response time of the thermocouples is about 1 Ps and

the recommended temperature range is from 78 to 1270 K, according to the manufacturer.

The response time is more than adequate for the test time of T5, which is about 1.5 ins. The

junction was formed by gently sanding the surface to be exposed to the flow. The cold junc-

tion was the feed-through plate for signal cables between the test section and the laboratory.

A PCB Piezotronics Inc. pressure transducer was used for Pitot pressure measurement.

The sphere was positioned at zero incident angle and with the stagnation point just at

the nozzle exit before the test to avoid the interference of the expansion wave from the

edge of the nozzle after the recoil. The centerline of the sphere-sting assembly was set

0.5 in. below the centerline of the nozzle to avoid the shock-focusing from the nozzle.

All the thermocouples were in the lower half-sphere. The Pitot probe was set far enough
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away in order not to interfere with the sphere flow. The method used to make sure that the

centerline of the sphere-sting assembly is parallel to the centerline of the nozzle is described

in Germain (1993). Fig. 2.4 shows the schematic of the arrangement of the test section.

2.4.2 Data Reduction

The emf signals of thermocouples of type E were converted to temperature by a poly-

nomial fit (see Avallone and Bannierster, 1987):

T (K) = Ae + Be 2 + Ce' + De 4  (2.1)

where
A= 17.022525

B = -2.209724 x 10-1

C = 5.4809314 x 10-'

D = -5.7669892 x 10-5 ,

and e is in mV. The one-dimensional semi-infinite slab theory was then used to reduce the

time history of the surface temperature to heat flux, given that the test time is short compared

to the heat penetration time into the gauge (see Schultz and Jones, 1973):

E/-ek f dT(r-) dr (2.2)

where the thermal product \p-k for the gauge material was determined to be 8919 W/(mK).

The indirect method, in which integration was performed first to compute the cumulative

heat input Q(t) and then the differentiation to obtain 4, was used to process these data

numerically. The cumulative heat input to a semi-infinite solid is given by

Q(t)= pýk f T (r) d(2.3)F 7r o Vf - (2.3

and the finite-difference representation is

pck T(t)- T(ti-1) (t.-t._•). (2.4)Q~t.) r= = - t, + ,It. - ti,_
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An expression for differeniating the discrete function Q(t) is

=dQ(t.) - 1
dt(t.) = -- ~t = I (-2Q._s - Q.-4 + Q.+4 + 2Q.+8) (2.5)dt 40 (tn - tn-1)

The initial integration to obtain Q(t) tends to smooth the data and no preliminary noise

reduction is generally required.

Fig. 2.5 shows the traces of surface temperature history, cumulative heat input, and heat

transfer rate of four thermocouples for shot 471, using Eq. (2.1), Eq. (2.4), and Eq. (2.5).

The heat flux of each thermocouple was computed by taking the average at a certain time

over a certain time width.
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FIG. 2.5. Tlime traces of surface temperature history, cumulative heat input, and heat transferrate of four thermocouples for shot 471, using Eq. (2.1), Eq. (2.4), and Eq. (2.5).

The average of heat transfer rate was taken between t = 1.0 ms and i = 1.5 ins.
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2.5 Flow Visualization

Two flow visualization techniques were used for the experiments. Finite-fringe differ-

ential interferometry using a Wollaston prism with a divergence angle of 2' 15" was used

throughout most of the experiments. The optical system has an 8 in. field of view, which

is the same as the diameter of spherical mirrors and optical windows, and is a typical Z

shape single pass system with one optical table on each side of the test section. The Wol-

laston prism and the spherical mirrors with a focal length of 10 ft. (3.049 m) produce cor-

respondingly a double image of a maximum displacement of approximately 2 mm. The

light source used for the differential interferometry was an injection-seeded, frequency-

doubled, neodymium-YAG laser for the first 25 shots and a tunable dye laser pumped by

the neodymium-YAG laser for the remaining shots. The neodymium-YAG laser produces

pulses at 532 nm wavelength with about 5 mJ pulse energy and 6 ns pulse width. The

wavelength of the dye laser is about 589 nm with a bandwidth of 3 GHz. Fig. 2.6 shows

the schematic of the optical system. Examples of differential interferograms of the hyper-

velocity flow over a sphere are shown in chapter 4.

In the last five shots, resonantly-enhanced shadowgraphy with sodium seeding was used

with the original aim to see the boundary layer structure along the wall of the model. This

technique relies on the fact that the refractive index of a gas goes through a maximum very

close to a spectral line of the medium. The value of the refractive index at this maximum

is considerably above the broad-band value. The flow was then seeded by painting a very

thin layer of a saturated saline solution in a small spot at the nose of the sphere. This was

left to dry, so that a thin film of salt was left to be ablated during the test. The light source

used was the tunable dye laser mentioned above with wavelength tuned at about 589 nm

and just off the center of one of the sodium D-lines. Note that only 100 parts per billion of

sodium would have to be present in the flow to get good sensitivity. Even if the wavelength

is not perfectly tuned, such that it is in the center of one of the D-lines where the refractive

index contribution of the line is zero, the absorption of the light by the resonance is very

high, and the technique will still function satisfactorily. The optical system was the same

as that shown in Fig. 2.6 except with the Wollaston prism and two polarizers removed. For
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FIG. 2.6. Schematic diagram of the optical arrangement. The neutral density filter is used
to get rid of the luminosity emitted from the test gas. The bandwidth of the band-
pass filter is 10 nm centered at 590 nm for the dye laser and 10 nm centered at
532 nm for the neodymium-YAG laser. The dye solution used in the dye-laser is
Rhodamine 6G (610 nm) diluted in methanol.

more information about the resonantly-enhanced technique see e.g. Blenstrup et al. (1979)

and Germain et al. (1993). An example of the resonantly-enhanced shadowgraph will be

presented in chapter 7.

The pictures were taken at the time when the flow was steady and not yet contaminated

by the driver gas, which is typically 1.5 ms for the lower and medium enthalpy shots (h0 <:

15 MJ/kg) and 1.0 ms for the high enthalpy shots (h0 > 15 M//kg), after the arrival of the

shock at the end of the shock tube. The laser was triggered by the programmable digital

delay generator (Camera shutter and laser firing control unit) in Fig. 2.2 and Fig. 2.6. Kodak

TMAX (ASA 400, 4 in. x 5 in.) film, developed normally, was used for all the photographs.
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CHAPTER 3

Computational Method

The difficulties associated with the experimental investigation of hypervelocity flow

over spheres made application of numerical simulation an attractive complement to the

experimental effort. In this chapter, the numerical code used to compute the hypervelocity

dissociating flow over the front part of a sphere or a circular cylinder is described. The code

was provided by Candler and was used extensively in the current study. The methodology

for the computational interferometry and the particle-tracing technique, developed as part

of this thesis work, will also be addressed. The computational interferogram generated from

the computational flow field can provide a useful visualization tool for the validation of the

numerical code and the particle-tracing technique can extract all the flow information along

a specific streamline. These computations were used to enhance the understanding provided

by the experimental data and theoretical derivations.

3.1 Description of Candler's Code

Candler's (1988) code was used to construct the inviscid reacting flow over a sphere.

The flow field is described by coupled partial differential equations for the conservation

of species, mass, mass-averaged momentum, vibrational energy of each diatomic species

and total energy. A finite-volume method using modified Steger-Warming flux-vector split-

ting is used to obtain the steady-state solution to these fully coupled equations for different

gases. Park's semi-empirical two-temperature model and chemical kinetics model (Park,

1988, 1989) were used to calculate the reaction rates for different reactions. The scheme is

implicit, using Gauss-Seidel line relaxation, and is second-order accurate in the tangential

direction. The code is also set up for viscous flow. The inviscid code was used to obtain

the conditions at the edge of the boundary layer for the theoretical heat flux predictions and
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to construct the computational differential interferograms for comparsion with the experi-

mental pictures. Extensive documentation of successful examples exists in reproducing in

great detail those experimental results, see e.g., Candler (1988), Rock et al. (1992), Wen

and Hornung (1993), and Hornung et al. (1994). Since the shock values of temperature,

vibrational temperatures, and density are not accessible during the experiment, the compu-

tational method provides a good way to obtain partial information about them. The flow

field computations were performed using a CRAY Y-MP2 at the Jet Propulsion Laboratory

(JPL), Pasadena, CA. It took 0.11 to 0.20 millisecond of CPU per grid per iteration on the

CRAY Y-MP2 and 1000 to 2000 iterations were required for each case.

3.1.1 Governing Equations and the Numerical Method

The equations that describe the thermo-chemical nonequilibrium flow over a sphere

will be summarized below. No ionization is considered for the present work, although

the code is capable of implementing it. With a multicomponent gas that is characterized

by a translational-rotational temperature and a common vibrational temperature for all the

diatomic species, we must solve the following equations:

a mass conservation equation for each species,

ap, +-a a(3.1).(p, uj) = -Ox--•.(p'v,) + w.;(3)

a mass-averaged momentum equation,

(Pu + (PuiUj + pbij) = C '(3.2)

a vibrational energy equation for each diatomic species,

+ -(E, 5 uj) = (E,,v *) - -+ QT-., + Q,-,8 + wqe, ; (3.3)at+ .E''J ax,-ax" V . ax.

and a total energy equation,

--- -+ - [(E+p)u]= (qj +q qj)- -(uirij) v,ph, (3.4)
9at a1 x, V ax, a9Xj
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Equations (3.1-3.4) can be written in two-dimensional conservation-law form

au1 +9U2 +U3  aU2v aU3v& + • + Oy z Oy(3.5)
at ax ay 9X a9y

Once the fluxes have been split, they are upwind differenced using a modified Steger-

Warming flux-vector splitting method. The governing equations are then solved using the

numerical method based on MacCormack's implicit Gauss-Siedel line relaxation technique.

A more detailed description of the numerical method may be found in Candler (1988).

The caloric equation of state for mass-averaged gas is derived by substracting the vi-

brational, kinetic, and chemical energies from the total energy to yield the energy in the

translational and rotational modes. Assuming that the rotational energy modes are in equi-

librium with the translational modes, the translational-rotational temperature, T, can be

determined as:

ZpSCVST= E -~ p, Z - ,. (3.6)

The pressure is the sum of the partial pressures,

1 (3.7)

The shear stress tensor and heat conduction vectors are given by

/ eu, 8u. o
- ýaj Nj 2 auL

7'i = -P \ -z z + Pt X-," (3.8)

q, = -k ka q,, = -k,., ae.- (3.9)

The conduction of vibrational energy is treated in this fashion because of the nonlinear

variation of vibrational temperature with energy (Vincenti and Kruger, 1965).

A viscosity model for reacting gases developed by Blottner et al. (1971) is used to

determine species viscosity. The conductivities of the translational-rotational temperature

and vibrational energy for each species are given by

k, = p, ('Cvtran.s + Co. , k,, = c, p, (3.10)
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which are derived from an Eucken relation (Vincenti and Kruger, 1965). The total viscos-

ity and the total conductivity of the gas mixture are then calculated using Wilke's semi-

empirical mixing rule (Wilke, 1950).

The diffusion velocities of all components of the gas mixture are assumed to be pro-

portional to the gradients of the mass fractions

pv = -pD, ac. (3.11)5ax.

The expression for the species diffusion coefficients is obtained by assuming a constant

Lewis number (L, = 1.4).

3.1.2 Energy Exchange Mechanisms

The energy exchange mechanisms that appear on the right side of Eqs. (3.3) will be

outlined below.

The rates of energy exchange between the translational and vibrational energy modes

QT-,o are assumed to be of the Landau-Teller form,

QT-v, = pS e•,(T) - (3.12)

An expression developed by Lee (1985) yields the Landau-Teller relaxation time, < r, >.

In a mixture of diatomic gases that have been thermally excited, as one species becomes

excited it tends to transfer its vibrational energy to other species in vibration-vibration (v - v)

energy exchanges. The rate of vibrational energy transfer from species r to s is the product

of the probability of a v - v exchange, the number of collisions, and the change in the energy

during the collision. This may be written as

Q,_v, = Pr Z. . AC,, (3.13)

where Ae,, is the change in the s particle vibrational energy due to the v - v energy transfer.
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Assume that after the collision, the two collision partners have the same vibrational

temperature, T',,. Thus, balancing the energy before and after the collision yields

6.,(T") + 6.,(T") = E.(T,',.) + v(T",') . (3.14)

From this expression, T 8,, can be solved using the definition of the vibrational energy per

particle for a simple harmonic oscillator

6.R(T") =-- =__I__ -- (Tt) . (3.15)N,(• 1ee../Tv• N

Thus, the change in the s particle vibrational energy due to a collision with r is

Ae0r = Evs(T7r) - ev. (3.16)

And, therefore, for n species, the v - v energy transfer rate is
nl 

n 
M

Qv-vj = Z Qv-ev, = 3 p87 Zar-•[ev,(Tvr) - e-J] . (3.17)
r~a r#, a

Zo, is determined from kinetic theory (see Vincenti and Kruger, 1965), and the probabilities

of vibrational energy exchange during a collision have been measured for several molecules

experimentally (see Taylor et al., 1967). For temperatures of interest (above 2000 K), Par

is typically of the order of 0.01, and for this work, it has been assumed to be constant at that

value.

3.1.3 Vibrational Energy Model for CO2

Carbon dioxide has three vibrational modes, one of which is doubly degenerate. Again,

a simple harmonic oscillator is employed to describe the vibrational potential of each vi-

brational mode of the molecules. With the same assumption as above, that there is a unique

vibrational temperature at each point in the flowfield, the vibrational energy per unit mass

of CO2 is given by

evCO2 = evCO2 ,l + evCo 2 ,2 + evco 2,3 , (3.18)

where
R OvCO 2,r (3.19)

e~CO2,, =gM, ea-C°2,/Tr -1(.
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The values of 0,Cco,r and g, for CO2 are listed in Table 3.1.

0vco,,, K gr

1903 1

945 2

3329 1

Table 3.1 Vibrational energy constants of CO2

The total vibrational energy of the CO 2 mixture is the sum of the individual vibrational

energies of the molecular species, and the energy exchange mechanisms for the dissociating

CO2 flows are modelled with the same methods as the mixture of diatomic gases mentioned

above.

3.1.4 Chemical Source Terms

The chemical reaction considered for nitrogen flow is

N2 +M - 2N+M. (3.20)

For flows not involving ionization, there are five primary chemical species, N2, 02, NO,

N, and 0 for air flows and C0 2, CO, 02, C, and 0 for carbon dioxide flows. The primary

chemical reactions between the five species considered in this work are

N2 +M • 2N+M

0 2 +M - 20+M

NO+M N N+O+M (3.21)

N2 +O NO+N

NO+O 0 2 +N,
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for air, and
C0 2 +M - CO+O+M

CO+M C+0+M

0 2 +M 20+M (3.22)

C0 2 +0 0 2 +CO

CO+ 0 0 +C

for carbon dioxide.

The reaction rate constants for these reactions were taken from Park (1985) for nitrogen

and air, and from Park et al.(1991) for carbon dioxide. Note that, in Park's two-temperature

chemical kinetic model (Park, 1988, 1989), the forward reaction rate will be a function of

the vibrational excitation of the diatomic molecule or carbon dioxide and the translational

temperature of the impacting particle in the first three reactions of air and carbon dioxide.

Thus, using the arguments of Park, an average temperature, Te,,, defined as

T.,v = T7/ , (3.23)

will determine these reaction rates. The backward reaction rates will depend only on the

translational temperature, T.

3.1.5 Boundary Conditions

Uniform supersonic freestreamn conditions are assumed. The outflow is also supersonic,

and therefore, a zero-gradient exit condition is appropriate. In viscous computation, a no-

slip velocity condition is applied, while in the inviscid case, the velocity is free-slip at the

wall. The other wall boundary conditions are specified by assuming a fixed-wall tempera-

ture, a zero normal pressure gradient, and a noncatalytic wall, which implies that the normal

gradient of each species mass fraction is zero at the wall.
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3.1.6 Computation Grid

Throughout the present work, the computations were performed on body-fitted meshes

with 56 points axially along the sphere and 100 points in the flowfield normal to the body.

An exponentially expanding mesh in the wall-normal direction was used. For viscous flow

computations, a fine mesh spacing near the wall is necessary to reproduce the boundary layer

profile which determines the accuracy of the heat flux computations. However, refining the

mesh near the wall while keeping the number of cells fixed yields a coarser mesh spacing

away from the wall. This implies that the resolution near the shock region becomes worse.

Therefore, different meshes were used for the viscous computation and inviscid computa-

tion. The mesh fineness is expressed by the minimum cell size in y-direction, dym•i,, which

is represented by the fraction of the nose radius, a. A mesh with dy,,i,, equal to a/10000 was

used for viscous computations to get good resolution in the boundary layer and a mesh with

dym,n equal to a/600 was used for inviscid computations to get good resolution near the

shock region. These meshes are shown in Fig. 3.1 and Fig. 3.2 for the viscous and inviscid

case, respectively.

3.2 Computational Interferometry

3.2.1 Computation of Mach-Zehnder Interferograms

A Mach-Zehnder interferometer is an optical device that makes possible the visualiza-

tion of density fields in a flow. The Mach-Zehnder interferograms are created by recording

the intensity of two superposed beams: the reference beam and the object beam. The refer-

ence beam does not pass through the flowfield and its phase is not changed. The object beam

does pass through the flowfield, and its phase is changed by the density variations. When

the object beam interferes with the reference beam, under the assumption that the conditions

of optical coherence are fulfilled, the two constructively and destructively combine to form

a manifest series of dark and light fringes.
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Fir. 3.1. 56 x 100 grid used for viscous computations.

When calculating Mach-Zehnder interferograms from computed flowfields, the phase

shift of the object beam relative to the reference beam was obtained by integrating the

following equation along a line of sight:

-•, = 17r (n - no)dl. (3.24)

For equilibrium or nonequilibrium reacting gases, the refractive index is given by

Merzldrch (1987)
n = I + •Kipi (325n= + Ki,.(3.25)

The values of Gladstone-Dale constants are listed in Table 3.2.

The integration of Eq. (3.24) is performed along the optical path length of the light
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FIG. 3.2. 56 x 100 grid used for inviscid computations.

source passing through the flow. By using the approximation that the light's path is a straight

line perpendicular to the image plane, it is possible to construct interferograms without ray

tracing. Tracing the actual light path as it bends through the flowfield solution and inte-

grating the appropriate function of the refractive index along this path is computationally

expensive. Yates (1992) has shown that for regions of the flow without shocks, this ap-

proximation should have a minimal effect on the constructed images, and in shock regions

where the refractive index will change rapidly, the approximation may introduce errors.

However, Yates concluded that these errors are in many cases on the order of, or smaller

than, the solution and experimental errors. Straight line approximation also implies that the

diffraction around the object can be neglected.
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species K, x 10-1 m3/kg

N2  0.238

02 0.19

NO 0.221

N 0.31

O 0.182

CO2  0.230

CO 0.270

C 0.404

Table 3.2 Gladstone-Dale constants for use in Eq. (3.25). Values from Merzkirch (1987),

Alpher and White (1959), and Kaye and Laby (1986).

Because Candler's code gives only the solution on one of the axisymmetric planes, the

axisymmetric flowfield is obtained by rotating the computational grid 90 degrees around the

x-axis. The computational grid for the inviscid flows and the coordinate system are shown

in Fig. 3.3. The x - y plane is the image plane and the light path direction coincides with

the z direction. A beam starts from a grid point in the x - y plane with dz as the marching

length in the physical domain.

Since the flow solution is obtained on a curvilinear coordinate system, a line of sight

calculation must be performed to evaluate the integration in Eq. (3.24). This calculation

is achieved by transforming the physical space into a computational space, (x, y, z) -* (,

77, (). The line of sight calculation can then be performed in the computational space in an

efficient manner. The straight line assumption requires that x and y remain constant (dx--O

and dy=O), while z(dz) is allowed to vary. x( is also equal to zero. These conditions lead

to the following set of equations that govern the integral calculation.



-31-

dý = x'?Y( dz
J

d7- (3.26)

d( = (xfy -I xI7Yd) dz

where
X• X,7 XCJ~det yc y, y( (3.27)

Zf Z,7 Z(

The new starting point will be located at (ý + d, 71 + dr, + d(). Let int(x) be a function so

that int(x) gives the largest integer which is not larger than x. The density at the new starting

point during the integration was then obtained by first order linear interpolation about the

grid point (int(ý + d6), int(77 + dq), int(( + d()) and the line integration of Eq. (3.24) was

done by the trapezoidal rule. The phase shift obtained from Eq. (3.24) was then multiplied

by two because the flowfields are symmetric with respect to the x - y plane.

For infinite fringe interferogramns, the quantity actually recorded is the intensity of the

interference of the recombined beams. The intensity, I, is related to the phase shift by

I, cos2 (op, /2) . (3.28)

Contours of I then give a computational Mach-Zehnder interferogram.

For finite fringe interferograms, a linearly-varying phase is added to Eq. (3.24):

Ooptinear = k~x + kyy , (3.29)

and the spacing and orientation of the freestreamn fringes are determined by kx and ky, which

can be measured from the experimental interferograms. Examples of computational Mach-

Zehnder interferograms will be shown in chapter 4. The generation of computational Mach-

Zehnder interferogram took about 3 hours of CPU time on a Sun SPARCstation computer

and about 30 seconds of CPU on the CRAY Y-MP2.
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¥

FIG. 3.3. Grid used for computations of inviscid Mach-Zehnder interferograms.

3.2.2 Computation of Differential Interferograms

Differential interferometry measures gradient of optical path length. In contrast to

the Mach-Zehnder interferometry, the signal obtained with a differential interferometer is

caused by the interference of two light rays passing through the test flow. Two parallel,

laterally displaced light rays passing through the flow at positions (x + dx/2, y + dy/2) and
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(x - dx/2, y - dy/2) on the image plane are considered. The shearing element, Wollaston

prism, positioned in or near the focal point provides that components of the two rays co-

incide after they have passed through this element. Assuming the two coinciding rays are

optically coherent, they can interfere with each other. If the refractive indices, n, of two

rays are not equal, they will exhibit a difference in their optical phases, 60,, given by

2rdx dy 2rdx dy
bop,(XY) = T n(x +-, Y + ,zldz - -T n(x - - - ,z)dz2 2 (3.30a)

dx dy A dx dy
=qo(X + 2, y + ot(x - y'Y - 2

or

27r z d! dy 2 n~ dx dy
,bopt(X, rY) =A n( 2' 2' 0zldz - + T, y2

dx dy +dx dy (3.305)

The sign difference in Eq. (3.30a) and Eq. (3.30b) corresponds to the orientation of the

Wollaston prism used in the experimental differential interferometry. This sign determines

the direction of the fringe shift. The quantity bqo$t (x, y) is measured in the recording plane

in the form of interference fringes and is related to the intensity, I, as in Eq. (3.28).

Eq. (3.30) is derived under two assumptions. First, the path lengths of two light rays

through the flow are equal. Second and more important, the propagation of light in the

flow is straight and undeflected, i.e., the straight line assumption for computational Mach-

Zehnder interferometry.

The edges of rigid bodies, which are normal to the direction of shear, appear as a double

image or gray zone of width d = ,/(dx) 2 + (dy) 2 (or d cos 0, where 0 is the angle between

the direction of shear and the normal to the wall). The formation of this double image is

due to the blocking of one of the two conjugate rays by the wall. The exact position of the

wall edge is in the middle of the gray zone. The boundary layer will be partially or totally

embedded in the double image.



- 34-

The direction of shear and the maximum size of the double image d can be measured

from the experimental interferogram. The direction of shear d is perpendicular to the di-

rection of freestream fringes, or parallel to the wall-normal direction of the point with the

maximum size of the double image.

Using the integrated optical phase, Op, of each grid point on the image plane from

a computational Mach-Zehnder interferogram, a computational differential interferogram

can be obtained using Eq. (3.30). For instance, consider a light beam passing through

the flow at the grid point X(ý, r) on the image plane. The optical system is set up so that

the light beam will interfere with a light beam passing through the flow at point X' with the

coordinate (x+dx, y+dy) in the physical domain. Here, dx and dy are the shear components

in the x and y direction. dx = d. cos 0, dy = d. sin 0 and 0 is the direction of the shear.

Jacobian matrices are used to transform the physical space into the computaional space.

The transformation equations are as follows:

d = y,7dx - xdy
J (3.31)

dr= xedy - yfdx(J

and

J=detl Xf X'

The coordinate of point X' in the computational domain is (ý +dý, t/+dr/). The integrated

optical phase at point X' can then be obtained by first order linear interpolation about the grid

point (int(ý + d<), int(r + d77)). Subtracting the value of the integrated optical phase at point

X' from that of point X and taking the intensity of this phase difference yields the signal

at the midpoint of point X and X'. If point X' falls inside the wall, its optical phase will

be set to zero. No interference will occur in this case and these single-ray signals provide

the double image for the computational differential interferogram. Contours of intensity I

of 60,,p, then give a computational differential interferogram. Examples of computational

differential interferograms and comparsion with experimental ones will be shown in chapter
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4. The computational differential interferogram could be generated from the computational

Mach-Zehnder interferogram within a minute by a Sun SPARCstation computer.

3.3 Particle-Tracing Technique

The concept of streamlines in a steady flow provides a means by which solutions to

the governing equations may be interpreted physically. Hence, it is important to be able

to follow a streamline and gather all the physical information along the streamline from

a computational flowfield. In steady flow, streamlines, particle paths, and streaklines are

all identical. A particle is instantaneously moving along a streamline; if that streamline

is unchanged at a slightly later time, the particle will continue to move along it, and so

the particle path coincides with the streamline. In order to establish the equations of the

pathlines in a given flowfield, consider an axisymmetric or a two-dimensional flowfield in

which the velocity has components u and v in the x and y directions, respectively. Then,

by virtue of the definition of a pathline, the equations of the pathline are

daz dud-- U , v. (3.32)dt Tit

Using Candler's code, one can get velocity, density, temperature, pressure, reaction rates,

... etc. at each grid point on an axisymmetric or a two-dimensional plane. If a given fluid

particle is released at grid point (Q, 77) at time t = 0, the particle under consideration will

move with the fluid at its local, known velocity.

We now proceed as in section 3.2.2 and transform the physical space into a compu-

tational space, (x, y) -- (ý, 77). By choosing a small dt, the increments dx and dy can be

obtained by Eq. (3.32). The Jacobian transformation equations in Eqs. (3.31) are then used

to find the next starting point (ý + d, 77 + d77) in the computational space. All the physical

parameters of interest can be found by taking the first order linear interpolation about the

grid point (int(Q + dc), int(7 + d77)), for example, the physical coordinate (x, y), velocity,

density, reaction rates, ... etc.. The same procedures are followed until the particle reaches
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beyond the computational space. Fig. 3.4 shows the density and temperature variation along

two selected streamlines. More examples will be shown in chapter 6. The particle-tracing

calculation can be done within a few senconds by a Sun SPARCstation computer.

T(K) (a) p(kg/m3 )

p 0.250

7500.0- T
- 0.200

0.150
5000.0

S0.100

2500.0 0.050
0.000 0.010 0.020 0.030 0.040 0.050 0.060 S

T(K) (b) p(kg/m 3) (

(a)

7500.0 0.200

T 0.150

5000.0
-0.100

2500.0 0.050
0.000 0.010 0.020 0.030 0.040 0.050"

FIG. 3.4. Density and temperature variation along two selected streamlines. The streamlines
are labelled a and b in the diagram on the right. The kink in the streamline indicates
the shock location. Freestream conditions: nitrogen flow over a sphere of D=4 in.,
5.07 km/s, 0.04 kg/im3, 2260 K, 16.46 MJ/kg.
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CHAPTER 4

Results of Heat Transfer Rate Measurements and Flow Visualization

This chapter presents the experimental results of measurements of the heat transfer

rates experienced by spherical models of 1, 2, 3, 4, and 6 inch diameter in nitrogen, air,

and carbon dioxide at stagnation enthalpies ranging from 4 to 22 MJ/kg and stagnation

pressures from 30 to 90 MPa. These experimental results are compared with theoretical

predictions and with numerical calculations. The results of heat transfer rate measurements

will be discussed. The experimental pictures obtained by optical differential interferome-

try are compared with the images constructed from flowfields computed using the method

of Candler. The comparison of the computational results with the experimental differen-

tial interferograms and heat transfer rate measurements provides a means to validate the

numerical code.

4.1 Theoretical Predictions

4.1.1 Stagnation Point Heat Transfer Rate

For laminar boundary layer flow, Lees (1956) studied the heat transfer rate over blunt-

nosed bodies at hypersonic flight speeds based on self-similar solutions and made a pio-

neering step forward in the analysis of chemically reacting viscous flow. The stagnation

point heat transfer rate given by Lees for an equilibrium boundary layer is

0.5x 2k1/2 Pr-2/1 3 V 7p T/'f-ho G(Ma., , (4.1)q,, = ~v/a (.1
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where
{( ._)(I + 1 )(1 1/4

G(Ma.,,57,>) = (+ ) ( 1 ) . (4.2)7o•- Ma'C 00ao

Here k = 0 for a planar body and k = 1 for a body of revolution.

In the present work, the principle of equipartition of energy is used to estimate w and

(f + 2)(1 -a)+ 5a
f(1 - a) + 3a

The vibrational energy was assumed to be half excited, as in the case of ideal dissoci-

ating gas proposed by Lighthill (1957) and Freeman (1958). Therefore, the value of 6 was

used for f in Eq. (4.3).

Fay and Riddell (1958) generalized the self-similar method of Lees and carried out the

most important classic solution for the stagnation point heat transfer rate. Based on a large

number of calculations covering flight velocities from 1.8 km/s to 7 km/s, altitudes from 7.6

km to 36.6 km, and wall temperatures from 300 K to 3000 K, they proposed a correlation

for stagnation point heat transfer rate in dissociated air. This correlation for dissociated air

is still in regular use today by industry for hypersonic vehicle analysis. For an equilibrium

boundary layer (spherical nose), the correlation is

= 0.76Pr-° 6 (p, Pe)°4(pWtuw).1 (-)(ho - h.) [1 + (Le° 52 
- 1)(ho)] (4.4)

For a frozen boundary layer with a fully catalytic wall (spherical nose), the correlation is

l 0.76Pr- 6 (pe )°4 (pwuiw)0 ' (•-)(ho - h) [1 + (Le 6a-1)(L)] (4.5)

And for a frozen boundary layer with a noncatalytic wall (spherical nose), the correlation

is

ql, =0.76Pr-0 6 (peiue)0 4 (pwt1w). 1 (ho - h-) (4.6)
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In Eqs. (4.4)-(4.6), the stagnation point velocity gradient is given by Newtonian theory as

follows:
(du ),) 1 2 (pe p-o) (4.7)

and hD is defined as

hD= Zch° . (4.8)

Note that Eqs. (4.4) and (4.5) are essentially the same, varying only in the slightly different

exponent on the Lewis number. This demonstrates that the surface heat transfer is essen-

tially the same whether the flow is in local chemical equilibrium or is frozen with a fully

catalytic wall.

In the theoretical analysis of Fay and Riddell, the properties of a symmetric diatomic

gas are implicitly contained. No theoretical effort has been made for carbon dioxide.

Sutton and Graves (1971) extended the theoretical analysis of the stagnation point heat

transfer to an axisymmetric blunt body and developed a general relation for arbitrary gases

and gas mixtures in chemical equilibrium. Their equation is given as

4. = K(p,/a)l/ 2(ho - h.) , (4.9)

where K can be determined by a simple technique over a wide range of gas mixtures and is

equal to 0.121 kg/(s-m 3/2-atml/ 2) for carbon dioxide.

Eqs. (4.1), (4.4)-(4.6), and (4.9) can be written in dimensionless form as

k
St, = (4.10)

where
k = •/Pe Pr -2/3 G(Ma.o ,%), (4.11)

Vpoo/'oo

for Lees's theory,

k =0. O6VPo(pe~fJe)(pw~yjw 2(pe. - p.e) p.~ 1/4 .52

kI.76v2rr 2 1 + (Le - 1)(L)

(4.12)
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for Fay and Riddell's equilibrium boundary layer correlation, and

k=K 2pu (4.13)vpcooIooLeo

for Sutton and Grave's method.

Stagnation point heat transfer data were then presented in the form of Stanton number

and Reynolds number. The Stanton number at the stagnation point and freestream Reynolds

number based on the model diameter are defined as

St. = p h (4.14)p~uo.(ho - h.,)

Re. = (4.15)

A viscosity model for reacting gases developed by Blottner et al (1971) is used to determine

species viscosity. The viscosity of the gas mixture is then calculated using Wilke's semi-

empirical mixing rule (Wilke, 1950). In the range of the present experiments, the wall

enthalpy is in fact negligible compared with the stagnation enthalpy.

Although Lees' theory and Fay and Riddell's correlation implicitly contain the real gas

properties of air in the variation of ppi through the boundary layer, it is proposed here to

use Eqs. (4.1) and (4.4) to predict the stagnation point heat transfer rate for nitrogen, but to

substitute the thermodynamic and transport properties of nitrogen for those of air wherever

they occur in the final formulas. Eq. (4.4) was also employed to predict the stagnation point

heat transfer rate for carbon dioxide.

Candler's inviscid code was used to obtain the density, pressure, and viscosity values

at the edge of boundary layer for Lees' theory and Fay and Riddell's correlation. Prandtl

number 0.71 and Lewis number 1.4 were chosen for the present study.

Fig. 4.1 shows the heat transfer rate predicted by Lees' theory for each experimental

condition with nitrogen or air as the test gas. The standard deviation of the heat transfer

coefficient k is only 1.5 % and 2.2 % for nitrogen and air, respectively. The maximum

deviation from the mean value of k is 2.8 % for nitrogen and 3.7 % for air. Therefore, k can

be considered as a constant for nitrogen and air in the range of the present study.



-41-
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-0 St=4.60//R-e., N.

St,=4.41 /' e , AIR
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0.0011
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Re.

FIG. 4.1. Stagnation point heat flux in dimensionless form predicted by Lees' theory.

The predicted values of stagnation point heat transfer for each test gas using Fay and

Riddell's equilibrium correlation and the predicted values of stagnation point heat transfer

for carbon dioxide using Sutton and Graves' method are shown in Fig. 4.2 and Fig. 4.3,

respectively. The mean value, standard deviation, and maximum deviation of k from the

three different methods are summarized in Table 4. 1.

FR FR FR Lees Lees Lees SG SG SG

Gas k ot/k (Ak/k)maa, k o/k (Ak/k)m.a k a/k (Ak/k)maz

N2  4.97 1.9% 2.3% 4.60 1.5% 2.8% - -

Air 4.76 2.0% 3.0% 4.41 2.2% 3.7% - - -

CO2 3.50 6.2% 9.7% - - - 4.08 3.8% 7.5%

Table 4.1 Summary of the mean value, standard deviation, and maximum deviation of k (Eq.

(4.10)) from three lifferent methods. FR: Fay and Riddell's equilibrium correlation, Eq.

(4.12). Lees: Lees'theory, Eq. (4.11). SG: Sutton and Graves' correlation, Eq. (4.13).
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0.100
-St,=4.97/- e, N2
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0.001
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FIG. 4.2. Stagnation point heat flux in dimensionless form predicted by Fay and Riddell's
equilibrium correlation.

-0 ,t=4.08/1vKe., CO 2
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0.00 1 1 . . .. . . . .,. . .
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FIG. 4.3. Stagnation point heat flux in dimensionless form predicted by Sutton and Graves'
correlation.
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As may be seen, the heat transfer coefficient k can be considered as a constant for each

in the range of the present experiment. Evidently, k is only a weak function of parameters

in the freestream and at the edge of the boundary layer at the stagnation point.

4.1.2 Heat Flux Distribution on the Sphere

In Lees's study of laminar heat transfer rate over blunt-nosed bodies described in section

(4.1.1), he also investigated the heat transfer distribution over spheres. According to his

result, the heat transfer distribution normalized with the stagnation point heat transfer rate

is given by

209sin { (1 ) Cos 2 )}4(0Ma.0 co + -0)
S= 7•Ma•(4.16)

where

D(9)= (1 - oa ) (02 Osin40 + 1 -cos40)4 ( 1 - cos298 (4.17)

-cMa ( - 0 sin22 +)

In Fig. 4.4, the ratio 4(0)/4, is plotted as a function of 9 for Ma00 = 2.0, 5.0 and oo, with

%o = 1.4, and for Mac, = 5.0, with -y00 = 1.2. The quantity pv/•, for Ma00 = 5.0 is also

shown in Fig. 4.4 for comparsion. According to the modified Newtonian flow approxima-

tion for spheres,

P- =cos2,+( 2)sin2 . (4.18)

Evidently, for Ma0 o > 5.0, Eq. (4.16) is close to its hypersonic limits and becomes

Mach number independent. It will also be a weak function of Fy00 and appears independent

of the freestream Reynolds number, a result which has its analogy in the blunt body pressure

distribution.
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1.0 .... ....0 8 ...... a....-.= .
Ma,.=2, -f.= 1.4

0.6..... Ma.6=5, 7.=1.4
-,.... .... a.=0, -f.= 1.4

"0.4

0.2 ......

0.0 _ _ _ _ _ _ _ _ _ _

0 20 40 60 80 100
0

FIG. 4.4. Laminar heat transfer rate distribution over a sphere with Lees' theory (see Eq.
(4.16)).

4.2 Comparison with Experimental Data and Computational Results

Candler's viscous code was used to compute the heat transfer rate along the wall of the

model. For viscous reacting flow, the heat flux due to diffusion of species s should be taken

into account. Therefore, the surface heat transfer is written as

(k aT2 (pD 12  h, Lf. (4.19)
ay ~ay

Since the viscous code provided by Candler was set up for the noncatalytic wall boundary

condition (see section 3.1.5), the second term of Eq. (4.19) was put equal to zero in the

heat flux computation. The experimental heat transfer data were then compared with the

theoretical predictions and numerical computations in the following section.
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4.2.1 Stagnation Point Heat Transfer Rate

The measured stagnation point heat transfer rate was normalized to form the Stanton

number, and a plot of this against the Reynolds number is shown in Fig. 4.5. Also shown in

Fig. 4.5. are the theoretical predictions of Fay and Riddell's correlation of the equilibrium

boundary layer for air, nitrogen and carbon dioxide. The mean value, standard deviation

and maximum deviation of heat transfer coefficient k for experimental data of each gas

are summarized in Table 4.2, along with those of computational results using Candler's

viscous code. As may be seen, the agreement of the present measurements with theoretical

predictions of Fay and Riddell is good.

Experimental Computational

Gas k r/k (Ak/k)m.. k a7/k (Ak/k)max

N2  4.99 5.6 % 5.1% 4.71 12.0 % 7.3 %

Air 4.77 5.5 % 10.9 % 5.07 5.6 % 11.1 %

CO2  3.65 7.3 % 5.2 % 3.65 12.6 % 7.3 %

Table 4.2 Summary of the mean value, standard deviation, and maximum deviation of k (Eq.

(4.10)) of experimental data and computational results.

In Fig. 4.6, the experimental data for nitrogen are compared with the numerical results

and Lees's theory. In Fig. 4.7 and Fig. 4.8, the experimental data for air and carbon dioxide

are compared with the numerical results and the existing data obtained by the ballistic range

facility at NASA Ames (Yee et al, 1961). Lees' theory for air and Sutton and Graves's

correlation for carbon dioxide are also plotted in Fig. 4.7 and Fig. 4.8, respectively. All the

data follow the theoretical predictions though data show more scatter for the carbon dioxide

case. The agreement of computational results with the experimental data is also good. It

seems that the experimental data for carbon dioxide agree better with Fay and Riddell's

equilibrium correlation than with Sutton and Graves' correlation.
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FIG. 4.5. Experimental stagnation point heat fluxes of T5 in dimensionless form and com-
parison with Fay and Riddell's correlations
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K Numerical calculation
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FIG. 4.6. Comparison of experimental stagnation point heat fluxes of T5 numerical results,
and theoretical predictions for N2.
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FIG. 4.7. Comparison of experimental stagnation point heat fluxes of T5 and NASA Ames'
ballistic range facility, numerical results, and theoretical predictions for air.
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FIG. 4.8. Comparison of experimental stagnation point heat fluxes of T5 and NASA Ames'
ballistic range facility, numerical results, and theoretical predictions for CO2.
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From Fig. 4.6 and Fig. 4.7, it is seen that Lees' theory gives lower heat transfer rate than

Fay and Riddell's correlation for nitrogen and air. Actually, Table 4.1 suggests that Lees'

theory gives heat transfer rate about 7.4 % lower than Fay and Riddell's correlation for both

nitrogen and air. As shown in Kemp et al. (1959), Lees' theory for the stagnation point heat

transfer rate is low by a factor (pei'/pwiw)°1', in addition to having no Lewis number term.

The value of 4, obtained by Fay and Riddell's equilibrium correlation can be larger than

Lees' by a factor 1.3. The reason we obtained a smaller deficit than Kemp et al. (1959) is

that ;ý in the present calculation is overestimated by Eq. (4.3). The average value of 5' in

the present work is about 1.39 compared with 1.13 used by Kemp et al..

The error bars for the heat transfer measurements in the plots shown above represent an

accuracy of 15 %, 10 % of which comes from the uncertainty of the freestream conditions

and the other 5 % is contributed by the uncertainty of the bulk heat transfer properties of the

thermocouple materials, see Germain (1993). Performing an experiment in the T3 shock

tunnel using similar gauges, Gai and Joe (1992) assessed the accuracy to be on the order of

15 % too.

4.2.2 Heat Flux Distribution on the Sphere

Experimental heat flux distributions are shown in Fig. 4.9 to Fig. 4.17. The distribution

obtained from Lees' formula for laminar flow, Eq. (4.16), is also plotted on each figure.

As discussed in section 4.1.2, Eq. (4.16) is a weak function of 7-y and becomes Mach

number independent for Mac, > 5.0. Therefore, -yc = 1.2 and Mac, = 5.0 were used

for the theoretical predictions in the present study. For nitrogen and air cases, experimental

data and the theoretical predictions are in reasonably good agreement. But for the carbon

dioxide cases, data show much more scatter and an unexpected phenomenon occurs in the

heat flux distribution. For each model, it seems that the data follow the theoretical curve

reasonably well in the first few shots, and start to rise over the theoretical curve in the

later shots, especially for those at 400 and 600. Also this transition-like phenomenon seems

more obvious for shots with higher freestream Reynolds number. Transition is not expected
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at our values of Re,, for the front part of sphere flow under investigation because of the

strong favorable pressures gradient associated with it. However, having a close look at

each model, it was found that the surface of each model, especially at the nose region, was

roughened after surviving the severe conditions of high temperature and high pressure. The

surface roughness was estimated for each model at the end of the present experiment and

is listed in Table 4.3. Note that, for each model, the surface got rougher and rougher as the

series of experiments progressed and the carbon dioxide tests came last. This together with

the relatively higher Reynolds numbers in the cases of carbon dioxide than in the cases of

nitrogen and air may explain why this transition-like phenomenon is most evident in the

carbon dioxide experiments.

D(in.) 2 3 4 6

Roughness (x 10-3 in.) 0.220 0.455 0.875 0.875

Table 4.3 Roughness at the surface of models at the end of test.

1.0.--•

A -Eq. (4.16), Ma..=5, -. =1.2
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Ohot No. Re 1O')
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* 483 2.05
o 205 2.02

6 507 1.90
o _484 1.68

0.2 V 508 1.46
o 494 1.35
x 475 1.10
o 478 1.10

0.0 .61f 9.7p . . .

0 20 40 60 80 100
0

FIG. 4.9. Comparison of experimental heat flux distribution of T5 and Lees' theoretical pre-
diction (Eq. 4.16) for N2.
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FIG. 4. 10. Comparison of experimental heat flux distribution over a sphere of 2 in. diameter
and Lees' theoretical prediction (Eq. 4.16) for air.
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FIG. 4.11. Comparison of experimental heat flux distribution over a sphere of 3 in. diameter
and Lees' theoretical prediction (Eq. 4.16) for air.
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FIG. 4.12. Comparison of experimental heat flux distribution over a sphere of 4 in. diameter
and Lees' theoretical prediction (Eq. 4.16) for air.
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FIG. 4.13. Comparison of experimental heat flux distribution over a sphere of 6 in. diameter
and Lees' theoretical prediction (Eq. 4.16) for air.
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FIG. 4.14. Comparison of experimental heat flux distribution over a sphere of 2 in. diameter
and Lees' theoretical prediction (Eq. 4.16) for CO 2.

1.2 .
-Eq. (4.16), Ma..=5, 7.=1.2-

1.0 13

0.8

S0.6"

0.4 So
0.4 0hot NO. Re-(x108 )

+ 476 1.94
o 477 1.62

0.2 • 485 3.56
o 486 7.47

0.0 . . . I I

0 20 40 60 80 100
0

FIG. 4.15. Comparison of experimental heat flux distribution over a sphere of 3 in. diameter
and Lees' theoretical prediction (Eq. 4.16) for CO2 .
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FIG. 4.16. Comparison of experimental heat flux distribution over a sphere of 4 in. diameter
and Lees' theoretical prediction (Eq. 4.16) for C0 2.
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FIG. 4.17. Comparison of experimental heat flux distribution over a sphere of 6 in. diameter
and Lees' theoretical prediction (Eq. 4.16) for C0 2.
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A further attempt to understand this interesting and peculiar phenomenon for carbon

dioxide is to look at the data of heat flux distribution in the space of local Stanton num-

ber, St., and local Reynolds number, Re,. The local Stanton number and local Reynolds

number based on the distance from the stagnation point x are defined as

St, = . (4.20)
peUeho

Re. = p~ueX (4.21)

Y e

Figs. 4.18 to 4.20 show the examples of theoretical heat transfer rates at 200, 400, and 600

for nitrogen, air, and carbon dioxide. The local heat transfer rate 4- for the theoretical

prediction is obtained by multiplying Lees' formula, Eq. (4.16), with the stagnation point

heat transfer rate 4, taken from Fay and Riddell's equilibrium correlation. As pointed out in

section 4.2.1, Fay and Riddell's correlation for 4, agrees with the experimental data better

than Lees'. The 4, is then normalized by p,, u,, and h0 obtained from Candler's inviscid

code.

0.010..........
Ohot No.

x 507
o 508
A 514

199
)K 200
+ 206

0.0011........
104 106r 106

Re.

FIG.4.18. Theoretical heat transfer rates in dimensionless form at 201, 400, and 600 for
selected experimental conditions for N2. Theoretical predictions of each shot are
connected by a solid line.
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FIG. 4.19. Theoretical heat transfer rates in dimensionless form at 200, 400, and 600 for
selected experimental conditions for air. Theoretical predictions of each shot are
connected by a solid line.
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FIG. 4.20. Theoretical heat transfer rates in dimensionless form at 200, 400, and 600 for
selected experimental conditions for CO2. Theoretical predictions of each shot
are connected by a solid line.
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As may be seen in Figs. 4.18 to 4.20, the dependence of St, on Re, is a function of

angle 0. No simple relation like
b

St. = (4.22)Re'X

exists. Here a and b are constants. As Re, increases, St. tends to decrease more steeply on

the Log-Log plot for each shot. However, if we plot the theoretical heat transfer rates at 200,

40', and 600 together for all the experimental conditions for each gas, it is found that Eq.

(4.22) is actually a satisfactory assumption. Figs. 4.21 to 4.23 show the theoretical heat flux

distributions for all the experimental conditions for each gas. The line of least-squares curve

fitting to the theoretical heat flux distributions is also plotted for each gas. The standard

deviation for each gas is about 13 %. The simple relation like Eq. (4.22) seems to correlate

the theoretical heat flux distributions approximately. The correlation of theoretical heat flux

distributions of each test gas suggests that the normalized experimental data should follow

the same trend and should be contained mostly inside the range of standard deviations of

the theoretical predictions.

0.010
- t,=3.24/Re.0 6

- - - 0tandard Deviation

±13%

,,)

Re.=

FIG. 4.21. Theoretical heat transfer rates in dimensionless form at 200, 400, and 600 for all
the experimental conditions for N2.
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FIG. 4.22. Theoretical heat transfer rates in dimensionless form at 200, 40°, and 60' for all
the experimental conditions for air.
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FIG. 4.23. T'heoretical. heat transfer rates in dimensionless form at 200, 400, and 600 for all
the experimental conditions for CO,.
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The measured heat transfer rates at 200, 400, and 600 were normalized to form the lo-

cal Stanton numbers, and plots of these against the local Reynolds numbers are shown in

Fig. 4.24, Fig. 4.25, and Fig. 4.26 for nitrogen, air, and carbon dioxide, respectively. Also

shown in Figs. 4.24 to 4.26 are the correlations of the theoretical predictions. As may be

seen, the agreement of the present measurements for nitrogen and air with the approxi-

mate correlations of theoretical predictions is reasonably good. Experimental data broadly

follow the approximate correlations. But, for carbon dioxide, the data are more scattered

and fall clearly above the correlation of theoretical predictions at high Reynolds numbers.

Experimental data tend to deviate upwards instead of downwards as in the theoretical pre-

dictions (see Fig. 4.20).

0.010 ',..
K X,,K • t,=3.24/Re:_6"

,- - - tandard Deviation
'-,, +13%

r..

o~~ool . . . .~ '... .. . .

104 106 106
Re.

FIG. 4.24. Normalized heat transfer measurements at 200, 400, and 600 for all the N2 shots.
The correlation of theoretical predictions in Fig. 4.21 is also plotted.
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FIG. 4.25. Normalized heat transfer measurements at 200, 400, and 600 for all the air shots.
The correlation of theoretical predictions in Fig. 4.22 is also plotted.
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FIG. 4.26. Normalized heat transfer measurements at 200, 400, and 600 for all the C02 shots.
The correlation of theoretical predictions in Fig. 4.23 is also plotted.
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Fig. 4.27 shows the comparsion of local Stanton numbers of six carbon dioxide runs

with the correlation of theoretical predictions. These six shots were selected because they

exhibited different heat flux distributions from Lees' theory in Figs. 4.15 to 4.17. The

Reynolds numbers of these shots are relatively high in the present experiment. They are in

the order of 106. The normalized experimental data in Fig. 4.27 seem to indicate transition

to turbulence. It is also interesting to point out that for two close shots with the same model,

the transition-like phenomena seem to appear at the same Reynolds number, for example:

shot 190 and shot 192 for the 4 in. model, and shot 204 and shot 207 for the 6 in. model.

0.010 "' . . . .'.. . ." ,N - " S tx=4.9/R e_=°'.7
% - - - Standard Deviation

""14 %

'. %%

% "3

Shot No. Re*.(xlOJ " .3

0190 5.91 A V

V 192 7.27 X" AX

x 204 14.0 %' OP
A 207 16.0 X ', X
o 486 7.47 % V

* 523 9.96 •
0.001.

104 105 106

Rex

FIG. 4.27. Comparsion of normalized heat transfer measurements at 200, 400, and 600 of six
carbon dioxide shots with the correlation of theoretical predictions

The computational method was also deployed to compare with experimental heat

flux distributions and Lees' theoretical prediction, and to help understand those peculiar

heat transfer distributions of carbon dioxide. Examples of this comparsion are shown in

Figs. 4.28 to 4.31. These examples represent typical computational results for the test gases.

As may be seen, computational results show good agreement with Lees' theory. Therefore,

Candler's viscous code with no wall catalysis cannot explain the peculiar heat transfer dis-
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tributions of carbon dioxide either. Because of the neglect of the diffusion term in Eq.

(4.19), the computational distribution is lower than Lees' theory for most of the after-body.
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FIG. 4.28. Comparsion of computational heat transfer distribution with Lees' theory and ex-
perimental measurements for N2. FR: Fay and Riddell's equilibrium correlation.
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FIG. 4.29. Comparsion of computational heat transfer distribution with Lees' theory and
experimental data for air. FR: Fay and Riddell's equilibrium correlation.
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FIG. 4.30. Comparsion of computational heat transfer distribution with Lees' theory and
experimental data for CO,. FR: Fay and Riddell's equilibrium correlation.
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FIG.4.31. Comparsion of computational heat transfer distribution with Lees' theory and
experimental measurements for CO2. FR: Fay and Riddell's equilibrium correla-
tion.
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Although, data seem to indicate the possibility of transition from laminar flow to tur-

bulence because of the surface roughness, a more carefully designed experiment is needed

to test this tentative conclusion. A few suggestions to help understand the true mechanism

of these interesting heat flux distributions are listed below:

(1) A viscous code which is implemented with the boundary condition of wall catalysis and

an adaptive computational grid are needed to investigate the effect on local heat release of

the wall catalysis.

(2) Lees' theory has to be reexamined. Lees has dealt with the heat flux distribution on the

after-body with an assumption of "local similarity". The real gas properties of air are also

implicitly contained. In Lees' approximate solution of similarity differential equations, he

took the enthalpy gradient constant around the body, so the non-similar term in the energy

equation is identically zero. Since the internal degrees of freedom of carbon dioxide are

relatively complex and carbon dioxide consumes larger fraction of energy to equilibrate its

thermodynamic states than air, the assumption of "local similarity" needs to be carefully

verified.

(3) A more focused experiment has to be designed and accomplished. The experiment must

consider the factors of the surface roughness and the wall catalysis. More thermocouples

and pressure transducers may also help. Note that the interesting heat flux distributions

occurred more obviously in the runs with high freestream Reynolds number, and that the

local Reynolds number for the present carbon dioxide experiment can be as high as one

million. Togami (1993) investigated the heat flux distributions for flow over a spherically

blunted cone in T5 and observed a similar phenomenon for carbon dioxide. He concluded

that, by using carbon dioxide, the transition to turbulence can be obtained even with a blunt

body. The transition Reynolds number for his experiment is about one million. According

to Germain (1993), the transition Reynolds number for a slender cone of 50 half-angle in

T5 is also on the order of one million. Matthews (1993) has examined the shuttle Orbiter

reentry data and found that the transition data were significantly influenced by disturbances

caused by surface roughness of the shuttle tiles. If the Reynolds number based on rough-
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ness height is on the order of 100 or greater, the shuttle reentry data showed that transition

Reynolds number based on the distance from the stagnation point is dramatically reduced.

The Reynolds numbers based on the roughness height of the later shots in the current ex-

periments (see Table 4.3) are on the order of 100. Therefore, the rough surface of the later

shots may well have tripped transition.

4.3 Flow Visualization

4.3.1 Experimental Differential Interferograms

Figs. 4.32 to 4.34 present examples of differential interferograms obtained for nitrogen,

air and carbon dioxide respectively. These pictures show the continuous variation in density

between the bow shock wave and the wall which is expected in relaxing flows.

Differential interferometry measures the gradient of optical path length. Specifically,

it measures the component of the gradient in the image plane and in a direction that can be

chosen by rotating the Wollaston prism in the setup. The parallel fringes in the undisturbed

freestream of the photograph are oriented at right angles to the direction of this compo-

nent. In order to convert the fringe shift observed in an axisymmetric flow field behind the

shock into a refractive index field, from which the density might be inferred, it would be

necessary to perform an inversion of the Abel integral equation using the measured fringe

shift as input. While this does not present a problem, the result is still ambiguous, since

the refractive index may not be interpreted directly as density in a gas whose composition

is not uniform. In nitrogen flow, this problem is relatively mild, but if one deals with air,

where some 8 species may be expected to be present, the problem is harder. However, the

experimental interferograms do provide the important information of the stand-off distance

and shock shape. They also provide valuable evidence to validate the numerical code.



-65-

L ~~ ~ RK" oil"T~~ w

-~ -. ~ - VOW

OAK'

-00

FIG. 4.32. Finite fringe differential interferograms of N2 flow over sphere. A =589 nm.
(a) Shot 518. (b) Shot 514. (c) Shot 475. (d) Shot 594. The blemishes ahead of
the bow shock waves in interferograms (a) and (b) are due to a flaw in the optical
window.
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FIG. 4.33. Finite fringe differential interferograms of air flow over sphere. A - 589 nm.
(a) Shot 519. (b) Shot 497. (c) Shot 472. (d) Shot 491. The blemish ahead of the
bow shock wave in interferogramr (a) is due to a flaw in the optical window.
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(a)j
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FIG. 4.34. Finite fringe differential interferograms of CO2 flow over sphere. A = 589 nm.
(a) Shot 516. (b) Shot 515. (c) Shot 476. (d) Shot 486. (e) Shot 488. The
blemishes ahead of the bow shock waves in interferograms (a) and (b) are due to
a flaw in the optical window.
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4.3.2 Computational Mach-Zehnder Interferograms

A better comparison of the computed result with the experimental one is to construct

the differential interferogram from the calculated flow field, using the computed density

and composition and the known refractive indices of the components of the gas mixture.

As mentioned in section 3.2, the computational differential interferogram is obtained by

first calculating the infinite fringe Mach-Zehnder interferogram and subtracting from it a

displaced copy of itself which then gives a double image of the boundaries, such as the

body, of course, just as in the experimental differential interferogram. Figs. 4.35 to 4.37

show examples of computational infinite fringe Mach-Zehnder interferograms of nitrogen,

air, and carbon dioxide, respectively. The density field for each case is also shown by the

side of the computational Mach-Zehnder interferogram. As may be seen, a large number of

fringes would be observed, so that even a relatively insensitive differential interferogram

would give good quantitative resolution of the flow field.

S 2

FIG. 4.35. Result of a computation of the flow field over a sphere for N2. Freestream con-
ditions are the same as Shot 181. LEFT: Infinite fringe Mach-Zehnder interfero-
gram constructed from the numerical solution. RIGHT: Lines of constant density.
The numbers on the plot indicate the density values as multiples of the freestream
density. The border of the diagram on the right is the edge of the computational
domain. The glitch at the right is an artifact of the interpolation routine.
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FIG. 4.36. Result of a computation of the flow field over a sphere for air. Freestream condi-
tions are the same as Shot 491.
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FIG. 4.37. Result of a computation of the flow field over a sphere for CO2. Freestream
conditions are the same as Shot 190.



- 70-

4.3.3 Comparison of Experimental and Computational Differential Interferograms

Fig. 4.38 shows a computed differential interferogram for comparison with the mea-

sured one. As may be seen, the features of the photo are faithfully reproduced by the com-

putation, both qualitatively and quantitatively. It should be noted that if the density of the

computation is changed by 10%, this change can be resolved easily in the interferogram.

FIG. 4.38. Comparison of experimental and computed differential interferograms of nitro-
gen flow over a sphere, at the same conditions as those of Fig. 4.35. The photo-
graph on the right is a finite-fringe differential interferogram of nitrogen flow over
a sphere. The picture on the left is a corresponding computed interferogram at the
same conditions as the experiment. Except for a slight difference in the vicinity
of the shock, the two pictures are virtually congruent. To show this, a line along
the center of the calculated white fringe is superimposed on the photograph.

To show other examples, Fig. 4.39 and Fig. 4.40 show similar exercises for an air flow

and a carbon dioxide flow. Again, the comparison shows excellent agreement. Clearly,

viscous effects are not important in the determination of the major features of the flow field.
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FiG. 4.39. Comparison of differential interferograms in the case of air flow over a sphere, at
the same conditions as those of Fig. 4.36.

FiG. 4.40. Comparison of differential interferograms in the case of carbon dioxide flow over
a sphere, at the same conditions as those of Fig. 4.37. In this case advantage has
been taken of the symmetry of the flow to get both components of the gradient
measured by the differential interferogram, by setting the angle of the fringes at
45 deg. in the freestream.
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4.4 Chapter Summary

The free piston shock tunnel T5 was used to gather new data on hypervelocity dissoci-

ating flow and has extended the range of heat transfer measurements to freestream Reynolds

number one million and stagnation enthalpy 22 MJ/kg. The experimental measurements of

heat transfer rates over spheres for nitrogen, air, and carbon dioxide have been presented.

Good agreement was observed among the measured stagnation point heat transfer rates, nu-

merical computation results, and Fay and Riddell's theoretical predictions. This agreement

provides another calibration of T5. For the cases of nitrogen and air, the measured heat flux

distributions were also in reasonably good agreement with numerical computation results

and Lees' theory for laminar flow. For the cases of carbon dioxide, some agreed and some

did not. Early transition tripped by surface roughness is possibly responsible for the devia-

tion of heat flux distribution from the theory. However, no definite conclusion can be drawn

at this stage. A more carefully designed experiment is suggested to resolve this interesting

phenomenon and to gain more knowledge about carbon dioxide dissociating flow.

The experimental results obtained by optical differential interferometry were compared

with the images constructed from flowfields computed using the method of Candler. Good

agreement of fringe pattern and shock shape was observed, which along with the agreement

of heat transfer calculations with experimental data validate the computational method for

the study of hypervelocity dissociating flow over blunt bodies. Computational interferom-

etry also proved to be a useful tool to visualize the computational flow field and to have a

direct comparsion of the computational flow field with the experimental one.
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CHAPTER 5

Correlation between the Reaction Rate Parameter and the Stand-off Distance

In this chapter, an analytical solution is obtained for certain features of inviscid hyperve-

locity dissociating flow over spheres. The solution explains the correlation between the di-

mensionless stand-off distance and the dimensionless reaction rate parameter, Q, previously

observed by Hornung (1972) for nitrogen. It is shown that the essence of the correlation is

what is known as "binary scaling". To generalize Hornung's correlation for more complex

gases than nitrogen, a new dimensionless reaction rate parameter is defined. Numerical

results based on the method of Candler show that this parameter correlates the stand-off

density product. Experimental results obtained by optical differential interferometry in T5

also confirm the new correlation.

5.1 Review of Hornung's Correlation

Consider steady flow over spheres at high Mach number and at such high velocity that

the ordered kinetic energy of the uniform freestream is comparable with the dissociation

energy of the gas. In the simplest case of dissociation of a single diatomic gas, this means

that a dimensionless number of the form

Mu2
Do= (5.1)ROd

has to be 0(1).

In addition, the gas density is assumed to be large, so that the collision frequency be-

tween the molecules produces a dissociation rate that is fast enough to cause significant dis-

sociation over distances that are comparable with the radius of the sphere. In the simplest

case of dissociation of a single diatomic gas, where the composition may be characterized
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by a single variable, e.g., the dissociation fraction a, this means that a dimensionless number

of the form

dt -" (5.2)

has to be O(1). Here, the time derivative is the dissociation rate at a representative point,

e.g., just after the normal shock wave. High density is required to satisfy this condition

because the dissociation rate is directly proportional to density. Clearly, this means that the

product of density and body size must be sufficiently large. Hence, the Reynolds number

of the flow is also large, and for many purposes the flow may be considered to be inviscid

to very good approximation. Infinite Q corresponds to such a fast reaction that the flow

may be considered to be in equilibrium, while zero Q corresponds to no dissociation, or the

frozen limit. For given freestream conditions, the flow can be made to achieve a different

degree of nonequilibrium by changing the size of the blunt body. If the radius of the sphere

is small, Q is consequently small and the flow rate is large compared with the chemical

reaction rate. The flow is then close to the frozen limit. On the other hand, if the radius of

the sphere is large such that the chemical reaction rate is much greater than the flow rate,

the flow approaches the equilibrium limit and Q is much larger than one.

A well-known feature of hypervelocity blunt-body flows is that the shock wave stand-

off distance, A, is inversely proportional to the average density in the shock layer. This

follows from a very simple argument which is presented here because it determines the

correct dimensionless numbers to choose for the problem. Consider the control volume

shown in Fig. 5.1. Apply continuity to this control volume. At the left, the rate at which

mass enters the control volume is u..poob or 7ruopoob2 , depending on whether the flow is

axisymmetric or plane. For small b, the rate at which mass leaves the control volume is

UbPA or 27rubbpA, respectively, where p is the average density in the shock layer. With

ub = uOcosq$ and b = rsh coso, mass balance gives

lAp _ 11= I and = 1 (5.3)2 r, h p.o 4' 2
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FIG.5.1. Notation.

respectively, for axisymmetric and plane flow. Here, rsh is the radius of curvature of the

shock. Since the stand-off distance is small compared to the body radius, a = rh and

the dimensionless parameter on the left may be formed with the body radius instead of the

shock radius. The importance of this simple argument is not in the numbers on the right,

but in the fact that it brings out the importance of the average density in the shock layer.

This topic was studied theoretically and experimentally in some detail by Hor-

nung (1972). By examining a large number of numerical computations of dissociating ni-

trogen flow over cylinders, it was found that the dimensionless stand-off distance, in the

form
/P 2 a p,h (5.4)2 a p,,.

could be correlated by plotting it against the parameter Q. Hornung also concluded that the

computed density fields in the shock layer were also correlated well by Q. However, the

experimental results of this study did not corroborate the numerical correlation very well.

This earlier study suffered from two main problems. First, the theory was limited to a

single diatomic gas, and did not account for the effect of p (Eq. (5.1)) on A. No deriva-

tion of the correlation of A with Q was given. Second, the unavoidable end-effects in

experimental studies of flow over cylinders manifest themselves in just the same manner
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as nonequilibrium dissociation effects, so that the latter were obscured by them. Also, the

facility employed probably suffered from driver-gas contamination at the highest specific

enthalpies.

Therefore in the present study, we have the following three aims: perform a theoretical

study to relate the stand-off distance to both Q and I; seek a more general reaction rate

parameter, that allows the gas to consist of many species with many reactions; and test the

results experimentally and numerically. In the experiments, the new facility T5, in which

the density is significantly larger than was possible in T3 so that interferograms of flow

over spheres give sufficient resolution, permitted the bothersome problems associated with

flow over cylinders to be avoided. In the numerical investigation, the code developed by

Candler (1988) was employed.

5.2 Theoretical Derivation

5.2.1 Conditions along the Stagnation Streamline

A. Effect of Chemical Reactions

Consider the stagnation streamline along the symmetry axis between the shock and the

stagnation point. The momentum and energy equations for inviscid adiabatic flow take the

simple forms

dp + pudu = 0 = dh + udu . (5.5)

Thus,

dp = pdh . (5.6)

This equation does not mean that the entropy is constant along the stagnation streamline, but

rather that the only entropy change that occurs is that associated with the chemical reaction:

Tds = A [tidci , (5.7)
i=1
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where Ai and ci are the chemical potentials and mass fractions of the constituents. Let the

caloric equation of state be given in the form

h = h(pp, c,) . (5.8)

Since the mass fractions must satisfy the identity

n

Zc, = 1 , (5.9)
i=1

the number of mass fractions that are independent is one less than the total number n of

components present. It is usually convenient to choose cl as a dependent variable and the

other ci's as independent variables. Thus,

nt I

dh = hpdp + hpdp + hcidci = hpdp + phpdh + hc,dc, (5.10)
i=2 i=2

where the subscripts denote partial differentiation. Solving for dp,

dp = (1- ph,) 1 h,dc (5.11)
hP h, i=2

Note that the coefficient of dh is related to the frozen speed of sound a1 , and that dh may be

replaced by -udu. These may be used to rewrite the first term on the right of this equation,

so that it becomes

dp u 2 du 1 "

2_.,-hc, dci (5.12)
p a2 u php E =2

where
2 -hp (.3

= [hp - I/p](5.13)

The frozen Mach number after the normal shock is typically 0.2. This means that in the

absence of dissociation, the density is practically constant along the stagnation streamline,

and, with dissociation, the density change along the stagnation streamline is essentially

controlled by the chemistry.
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The local solution at the point just after the normal shock on the stagnation streamline

is considered. Using the equation of contiunity, du/u in Eq. (5.12) may be replaced by

-dp/p. This leads to the following simple relation for the density change associated with

chemical reaction at the point just after the shock on the stagnation streamline:

(dp)Sh = - ( 1u 2 ),h (- h,,dci) (5.14)
hP[1 - --•], i=2 sh

We now also assume that the gas obeys the ideal-gas thermal equation of state

T = T(p,p,c,) = P (5.15)
pRF (

where
nf ci 1r = 1 = (5.16)

i=1

and, M, and M are the molecular weights of species i and the dissociated gas mixture,

respectively. Thus, 19h(p, T,c, -Cp

hP = -77T C,) = cpp (5.17)aT T p 2R r
8h(p, T,cc)

hP = .- 7 TC)TP = (5.18)
pRT

and
Oh(p, p, T) T 1P 1 1

h= = -• (h- - hi) - '(- M)" (5.19)
877 pRr2 M M,

cp is the specific heat at constant pressure of the gas mixture and is given by

Cc.cp, (5.20)

where the cpi are the specific heats at constant pressure of the constituents. This yields

a = cp p (5.21)

for the frozen speed of sound and Eq. (5.14) can be written as follows:
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p E hdci
(dp),h i=2

u2[l +-'-••2 1)M "h
h' (t(5.22)

h+i=-2 = h h

The boundary conditions on the shock have been used in Eq. (5.22) and are determined

from the conservation of energy, momentum, and mass across the shock:

1 U2 l 2h,, + • = h,h + su h ,
Po .2. 2 (5.23)

ina ntniPahonn = psh + Psih vu an

Pooiisoo = psh ennsh

where the subscript n refers to components normal to the shock. Since the flow is hyper-

sonic, p,, has been neglected in Eq. (5.22).

B. Density Profile

Fig.5.2 shows seven density profiles along the stagnation streamline obtained using

Candler's inviscid code plotted against y/A, where y is the distance from the shock. The

freestreav conditions for these different profiles were the same, and the changes are brought

about by successively increasing the sphere diameter. As may be seen, the profile changes

in a monotonic fashion from the frozen-flow profile, with virtually constant density, to the

equilibrium profile, in which all the dissociation, and therefore all the density change, occurs

in the shock, and the density is again virtually constant thereafter.

Recall that the quantity that determines the stand-off distance is the average density,

see Eq. (5.3). In fact, numerous correlations of stand-off distance with average density

have been made for non-reacting flow. Upon interpretation into our variables, these give
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the following result:

= L (5.24)
2 apoo

where L = 0.41 for spheres, see e.g., Ambrosio and Wortmann (1962).

Equilibrium
10.0 ---------------

9.0

8.0

7.0

6.0

ShockBody -4
5-0

0.00 0.25 0.50 0.75 1.00 y/A

FIG.5.2. Plot of density profiles on stagnation streamlines of spheres for equilibrium,
frozen, and nonequilibrium flows. The five intermediate density profiles repre-
sent flow over spheres of five different radii of 0.025, 0.25, 1, 3, and 60 in., with
the same freestream conditions: u~,,=5.2 km/s, p,,=0.04 4 3 kg/m3 , T,"=2300 K and
aoo=0.0156.

Because the stand-off distance is related to the average density, the exact details of

the density profile are not important and we can proceed in an approximate Krmd.n-

Pohlhausen-type analysis by assuming linear density profiles between the shock and the

body, provided that the density on the body Pb is smaller than the equilibrium density p,.

If the linear profile reaches pe before the stagnation point, the density is taken to be con-

stant thereafter at p,. This clearly requires the equilibrium density to be determined and is

evidently the place where the dependence of A on y enters.

To proceed with the analysis, distinguish the cases where Pb < p, from those in which

the body density is p,. The slope of the density profile at the shock is determined from the

dissociation rate just downstream of the shock. Fig. 5.3 shows the simplified linear profiles.
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FIG. 5.3. Sketch of modelled linear density profiles on the stagnation streamlines. On the
frozen side, Pb < P,. On the equilibrium side, Pb = p, before y/A = 1. The
dividing case is where Pb = pe at y/A = 1. Pb and pe denote the stagnation
point density and the equilibrium density, respectively.

5.2.2 Analytic Solution for the Correlation

A. Frozen-Side Solution

In cases where Pb < p,, the linear profiles give

dy = Pb- Psh and = (Pb + Ph) (5.25)( ),h /

where the subscript sh denotes values just after the shock, as before. (dp/dt)8 h can then be

approximated as

d) hh ( PshL(LP,) 'h =Uhd/ (b s).(.6
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Using Eq. (5.26), Eq. (5.14) can be regrouped as

Pb

= Psh (5.27)
Kfl

where

i" -2 2=- ) = ,==h (th , (5.28)

pho[j1 _ _. s h p~u• [1 +MCk(% -2)

and
i=2

Note that Eq. (5.22) has also been used to obtain Eq. (5.28) and in the simplest case of

dissociation of a single diatomic gas, e.g., nitrogen, where the composition may be charac-

terized by a single variable oa, this generalized definition of f• includes the variable of the

same name defined by Hornung (see Eq-X. (5.2)) as a special case.

Using Eq. (5.24), the stagnation-point density is given by

Pb _2L - 1 .(5.30)

P [I ! p] h AIU

Substituting Eq. (30) into Eq. (5.27) results in
-h2

Z -( - )--- = 0. (5.31)

This quadratic equation can be solved for zX:

+-(---(1 + n (5.32)

The other root of Eq. (5.32) has been discarded because it is negative and is not physically

possible. The form of this equihaio g es that rog would be a better parameter than c

to correlate Ax.
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B. Equilibrium-Side Solution

For equilibrium-side density profiles,

( p), =T(Pe Psh fory<y <1<

dy, sh \
and (5.33)

pp= N fory_>y 1 ,

where T is a density slope parameter at the shock and y, is the intersection point of the

linear density profile with the uniform density profile. T is greater than one and y, is equal

to A/T. The average density • for this ramp-like density profile is

1= -[(2T - 1)p, + ph] . (5.34)
2T

Substituting p into Eq. (5.24),

A =T e(5.35)
1 +(2T- 1)( -s )

P.h

For given freestream conditions, pe/po is a constant and can be obtained by using the

equilibrium normal-shock solution. The density slope parameter T is the only controlling

variable for the problem. The corresponding Q for a known A will be given by Eq. (5.26)

as

T( P'! -1)

Q= Psh (5.36)
K

Note that in the limit of equilibrium flow, T will approach infinity and A will have a equilib-

rium value of (ph/p,)L (see Eq. (5.35)). Again, the appearance of KQ together indicates

that this rather than Q is the proper parameter to correlate A.



- 84-

C. The Dividing Point

The solution for the dividing case can be obtained by letting T be equal to one in the

equilibrium-side solution. and Q2 for the dividing case become

_X 2L _____ -

Ad 2L and Qd = sh A ' (5.37)

P, h

where subscript d denotes the values of the dividing case.

For simplicity, we will proceed in further theoretical analyses with the simplest case of

a pure dissociating diatomic gas, e.g., nitrogen. The ideal dissociating gas model introduced

by Lighthill (1957) for equilibrium flow and Freeman (1958) for nonequilibrium flow will

be employed in this work to represent nitrogen. A brief review of the ideal dissociating gas

model will be given in the next section.

5.2.3 Lighthill-Freeman Ideal Dissociating Gas (IDG)

A. Equations of State and Reaction-Rate Equation

According to Lighthill, the law of mass action for the IDG model may be written as

a_2 =_d expd (---) (5.38)
1-a p

where 09 and Pd are the characteristic temperature and characteristic density. 0d = 113200

K and Pd = 130 x 10' kg/mr are recommended by Lighthill. Pd represents a combination

of terms in the partition functions for N and N2 and is taken by Lighthill to be constant.

It turns out that the assumption that Pd is constant is equivalent to representing the sum of
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the equilibrium values of energy of electronic and vibrational excitation by the energy of a

single degree of freedom for the diatomic species which is fully excited at all temperatures.

In other words, the IDG in the undissociated state is like a diatomic gas, whose vibrational

mode is "half-excited".

The equation of state for a mixture of molecular and atomic nitrogen is

R
p = p(1 +a) T. (5.39)

MN2

The specific enthalpy for IDG is given by

=4 + a p + a (5.40)h-1 +, a P N

Eq. (5.40) and Eq. (5.13) then yield a simple expression for the frozen speed of sound:

a 4 + a p (5.41)a 3 p

The effective value of the ratio of specific heats of a frozen IDG is seen to be (4 + a)/3.

The rate equation giving the combined rate of production of dissociated nitrogen for

the reaction in Eq. (3.20) may be written in terms of the degree of dissociation, and is (see

Vincenti and Kruger, 1965, p. 232)

da P [2a kf,1  + (1 -akr,2] (1- 2  (5.42)
d'-t = m,• MNýK I (.42

where KI, is the equilibrium constant of reaction, and kf,1 and k, 2 are the forward reaction

rate constants for the reaction with the collision partners N and N2, respectively. From

Eq. (5.38), the equilibrium constant for the IDG model based on a molar concentration is

defined by

K, = 4 Pd exp (--) (5.43)
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Freeman (1958) described the square bracket in Eq. (5.42) in the following form

2a kf, + (1-)kf,2 = MN2 CT exp (- ); (5.44)

thus incorporating the two components of reaction rate into one constant C. This, however,

is not a serious restriction in view of the uncertainty associated with experimental data on

reaction rates for nitrogen. The reaction rate for a nonequilibrium IDG flow then becomes

d-a = C p T7 (I - a) exp ( o a 2P(5.45)

B. Shock Equations for IDG

Using Eq. (5.23) and Eq. (5.40), the specific enthalpy h at the shock then becomes
MNh (4h + ) T + sin2 € + 2 &+Ce" , (5.46)

ROdd 2ROd

where € is the angle between the freestream and the shock, and the component of velocity

normal to the shock has been neglected. The temperature may now be obtained as an explicit

function of a and freestream conditions, for a given streamline defined by the value of 4 at

which the streamline crossed the shock, by using Eq. (5.40) and Eq. (5.46):

T _ 1 [( 4 T + L.(l+a) sin 24 1 a- .
- +a [( 9+ + 2 -(-~J , (.7

where p is the dimensionless parameter defined in Eq. (5.1).

Eq. (5.47) and Eq. (5.39) then yield a similar expression for the density:

P = P Od(5.48)

poo pcO U 2 T

The temperature and density immediately behind the normal shock may now be ex-

pressed in terms of the freestream conditions from Eq. (5.47) and Eq. (5.48) with 0 =

7r/2, a• = aoo, and Psh/pUoou = 1 as

Th T. p I 1 +a. and P°_ Od

-d =d 2 4 + ao a P.h T- ".
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Thus the dissociation rate Eq. (5.45) at the shock can also be written in terms of freestream

conditions directly.

da = A(1 - a,,.) Lo +/ L1 + a,,. 1-1 Too z T1, I+ a .o (5.50)

dt 2 4=+ J exp [2 2 4+,d +a(.0

where A is the dimensionless parameter aCp. "a /uoo and the recombination rate has been

neglected. It is well known that at the shock where the temperature is high, the dissociation

rate dominates the recombination rate. For given freestream conditions, p,/po is also a

constant and can be obtained by using the iteration technique of the normal-shock solution

described by Freeman (1958) for an ideal dissociating gas.

5.2.4 Analytic Solution for Nitrogen Using IDG Model

As mentioned previously, the dissociation of nitrogen can be characterized by a single

variable, i.e., the dissociation fraction a. Thus, E h•, becomes h,,. By substituting the

relevant derivatives of h (see Eq. (5.40)) and a1 (Eq.(5.41)) of the IDG into Eq. (5.28), the

coefficient K becomes

2[ ~) 1 P• Pn-)]

1K7= 2(s) 2  (+ ) -(5.51)
K /z(1 + 4+a. \o/ (1+a)2 \p

[I+ (+a) (P.h 2)]

The boundary condition for a at the shock is taken to be a,h = aoo and K is then a funtion

of freestream conditions only.

From Eq. (5.49) and Eq. (5.51), it is clear that K is a strong function of p, and, for given

freestream conditions, the relation between Q (Eq. (5.2)) and 6, (Eq. (5.4)) can be solved

analytically for nitrogen by using Eq. (5.32), Eq. (5.35), and Eq. (5.36).
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5.3 Results and Discussion

In this section, the correlation of the numerical results obtained by Candler's inviscid

code is compared with the analytic solutions and the experimental data obtained by optical

differential interferometry in T5. A more general reaction rate parameter, that allows the

gas to consist of many species with many reactions, is also presented.

The stand-off distance A and the shock values of the reaction rate (da/dt),h and den-

sity Poh for the numerical calculation are determined from the point where the vibrational

temperature reaches a maximum. For the purposes of presenting the experimental results

on the stand-off distance, the shock density ratio and the reaction rate at the shock were cal-

culated using Eq. (5.49) and Eq. (5.50) for nitrogen, and Candler's inviscid method for air

and carbon dioxide. The stand-off distance was measured from the experimental pictures.

5.3.1 Comparision of Analytical, Numerical, and Experimental Results for Nitrogen

Fig. 5.4 shows the analytic solutions of four different freestream conditions as a plot of

the dimensionless stand-off distance A and the dimensionless reaction rate Q. The values

of P, uoo, Too , po,, a,,,, and ho are given in Table 5.1. As may be seen in Fig. 5.4, the four

solutions have different equilibrium limits of dimensionless stand-off distance A and they

tend to reach equilibrium at different values of the reaction rate parameter Q.

Line type Pz uo(km/s) T. (K) p.(kg/m3 ) ao h0(MJ/kg)

Long dashed 0.5 4.1 950 0.06 0.0007 9.90

dash-dot-dot 0.8 5.2 2300 0.0443 0.0156 16.9

dash-dot 1.0 6.1 3900 0.033 0.082 26.4

solid 1.2 7.0 5260 0.025 0.201 38.2

Table 5.1. Freestream conditions used to calculate the analytic solutions in Fig. 5.4
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0.50

0.40 ----
C\2

o- 0.30

- 0.20

0.10

0.00 .. ....... . , .
10-3 10-2 10-1 1 101 102

FIG. 5.4. Analytic solutions obtained using Eq. (5.32), Eq. (5.35), Eq. (5.36), and Eq.
(5.37) for nitrogen. The freestream conditions for analytical solutions are given in
Table 5.1. The abscissa is the reaction rate parameter, defined as the dissociation
rate immediately after the shock scaled by sphere radius and flow speed. The ordi-
nate is the dimensionless stand-off distance scaled by the density ratio at the shock.
The filled circular symbols on the analytical curves are the points of dividing cases.

Fig. 5.5 shows the results of sixty-five calculations of nitrogen flow over spheres su-

perimposed on Fig. 5.4, the ranges of values of p, u ,00, a cc0 T,,O, p.., and a being given in

Table 5.2. The only chemical reactions in the flow are those for nitrogen dissociation (Eq.

(3.20)). Good correlation between two parameters has been observed as Homung (1972)

has shown with the one-temperature inverse method, and the theoretical curves predict the

numerical correlation quite well. Also shown in Fig. 5.5 are the experimental results. The

range of values of reservoir and freestream conditions chosen for the experiments is listed

in Table 2.3. The experimental data agree well with the correlation of the numerical results.

The correlation between the density stand-off product A and the dimensionless reaction

rate Q happens to be a collection of nonequilibrium regions for different freestream condi-

tions. A starts from the frozen limit, decreases as f? increases, and eventually approaches

the equilibrium limit asymptotically. The reaction rate parameter can be varied at given
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freestream conditions by adjusting the radius of the model. As the radius of a sphere in-

creases without changing the freestream conditions, Q increases. The flow rate becomes

smaller and smaller compared to the chemical reaction rate which is a constant for given

free stream conditions. The flow will then moves from the frozen limit to the equilibrium

limit. Fig. 5.2 demonstrates this feature.

parameter pi u•(km/s) To(K) poo(kg/m3 ) a, h0(MJ/kg) a(m)

from 0.5 4.0 900 0.0036 0.0007 9.85 0.00635

to 1.2 7.0 5260 0.06 0.35 38.1 0.0762

Table 5.2. Range of values of parameters covered in calculation by Candler's method for

nitrogen.

0.50

0.40 -...-

`- 0.30

A 0.20

0.10

0.00......... ... , .
10-3 10-2 io0- 1 101 102

(da,/dt)Sh*(aUC)

FIG. 5.5. Comparison of the numerical correlation, analytical solutions, and experimental
results. The filled square symbols in this diagram represent experimental results
in T5, while the open symbols are computational results. The lines shown are for
analytic solutions in Fig. 5.4. The filled circles again show the dividing points in
the analytic results.
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The density patterns of the six selected cases are plotted next to each other in ascending

order of Q in Fig. 5.6. The density pattern is very sensitive to the dissociation rate.

3 2 3 2 2
4!43

4 52
5 6

56

?66

fl=0.00371 fl=0.0371 !Q=0.371

5

Q=1.485 fl=4.455 0=89.1

FIG. 5.6. Density fields for flow over a sphere as calculated by Candler's method.
Freestream conditions as for Fig. 5.2. The radii of the spheres are 0.0025, 0.025,
0.25, 1, 3, 60 in.

It should be pointed out that the different equilibrium limits of A expected for different

freestream conditions are not clearly evident in the computational and experimental results

shown in Fig. 5.5, because the correlation with Q? moves the curves to the left as the total

enthalpy is decreased. The analytical plots of Fig. 5.4 also exhibit this phenomenon which

will be discussed further.
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FIG. 5.7. Analytic solutions of three different freestream conditions with the same specific
reservoir enthalpy, ho=16.9 MJ/kg. Freestream conditions as for Table 5.3.. The
cross symbols represent computational results using Candler's method of flows
over spheres of radii 0.0025, 0.025, 0.25, 1, 1.5, 2, 3, 30, and 60 in. with the same
free stream conditions as the first one in Table 5.3.

Fig. 5.7 shows the analytic solutions of three different freestream conditions with the

same specific reservoir enthalpy, 16.9 MJ/kg. The freestream conditions are listed in Table

5.3. The three solutions are almost identical. From Eq. (5.49), the shock temperature

and shock density ratio are funtions of freestream velocity, temperature, and dissociation

fraction only. If the three freestream parameters are fixed, K in Eq. (5.51) will be fixed

too. The ratio of equilibrium density to free stream density is also a function of freestream

velocity, temperature and dissociation fraction only. So, from Eq. (5.32), Eq. (5.35), and

Eq. (5.36), the correlation curves will be exactly identical if the three freestream parameters

are kept the same. A closer look at K in Eq. (5.51), indicates that the first term in the

numerator is an order of (ps h/pOO) higher than the second term. Together with Eq. (5.49),

it is clear that K is a strong function of freestream velocity (y') and a weak function of

freestream temperature and dissociation fraction. Note that the freestream temperature term
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in the shock temperature equation (Eq. (5.49)) is usually much smaller than the freestream

velocity term (p term) in hypervelocity nonequilibrium flow because the kinetic energy of

the freestream is usually much larger than its internal thermal energy. The deviation in

Fig. 5.7 between the three freestream conditions is due to the minor influences from the

different freestream temperatures and dissociation fractions. Also shown in Fig. 5.7 are the

computational results of the six cases in Fig. 5.6, and four more cases of spheres of radii

0.5, 1.5, 2.0 and 30 in. with the same freestream conditions as Fig. 5.6. Note that the first

freestream condition in Table 5.3 is the same as that of Fig. 5.6.

parameter p u.o (km/s) T.(K) p.(kg/m3 ) a,, ho(MJ/kg)

solid 0.80 5.2 2300 0.0443 0.0156 16.9

dash-dot 0.75 5.1 2100 0.019 0.0315 16.9

dash-dot-dot 0.70 5.0 1690 0.0065 0.0627 16.9

Table 5.3. Freestream conditions used to calculate the analytical solutions in Fig. 5.7.

Fig. 5.8 shows another example of three different freestream conditions with the same

specific reservoir enthalpy, 38.1 MJ/kg. The freestream conditions are listed in Table 5.4.

Again, the agreement is good. The larger freestream temperature difference between the

three cases causes a larger deviation of the correlation curves than the previous example in

Fig. 5.7.
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parameter ,I u.(km/s) T.(K) p.(kg/m3) a,, h0(MJ/kg)

solid 1.2 7.0 5260 0.025 0.201 38.1

dash-dot 1.1 6.9 4110 0.011 0.265 38.1

dash-dot-dot 1.0 6.7 2780 0.0036 0.35 38.1

Table 5.4. Freestream conditions used to calculate the analytical solutions in Fig. 5.8

0.50

0.40

Q, 0.30

A 0.20

0.10

0.00. ........ . , .
10-1 10-2 10-1 1 10, 102

( da/ dt),,h*( a/U-)

FIG. 5.8. Analytic solutions of three different freestream conditions with the same specific
reservoir enthalpy, ho=38.1 MJ/kg. Freestream conditions as for Table 5.4.
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Gibson and Marrone (1964) have introduced the concept of binary scaling for nonequi-

librium flows involving reactions with two-body molecular collisions. Binary scaling

means that, for two different flows with the same freestream velocity, temperature, and

dissociation fraction but different values of the freestream density and body radius, the

nonequilibrium flowfields with x and y scaled by the radius a will be the same if the prod-

uct p,, a is the same between the two flows. It has been shown that the forward reaction

rate (the dissociation rate) dominates the backward reaction rate (the recombination rate) at

the shock and the forward reaction rate is proportional to the freestream density p"'. Q is

then proportional to the binary scaling parameter (pooa/uo) implicitly. The essence of the

correlation between the dimensionless stand-off distance Ax and the dimensionless reaction

rate Q is clearly recognized to be the binary scaling from Figs. 5.7 and 5.8.

One other interesting feature in Fig. 5.4 that should be pointed out is that for the two

high enthalpy cases (h0=26.4 and 38.1 MJ/kg), the two correlation curves are very similar

to each other. This similarity may be the reason that the density pattern of nonequilibrium

dissociating flow can be correlated in terms of f in Hornung's (1972) previous conclusion.

Note, however, that the three pairs of cases used by Hornung (1972) to test the effectiveness

of f? as a correlating parameter are all very high enthalpy flows (u.0=6.56 and 8.2 km/s),

so that they do not bring out the influence P,/Ph or the sideways shifts of the curves with

changing ho. At Q=l, the first case with specific reservoir enthalpy, 9.9 MJ/kg in Fig. 5.4,

will already be close to equilibrium. However, for the fourth case with specific reservoir

enthalpy, 38.2 MJ/kg in Fig. 5.4, the effect of nonequilibrium chemistry might be most

marked at Q= 1. The flow patterns of the two cases are not expected to be similar, even with

the same Q2.
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5.3.2 Generalized Reaction Rate Parameter Q

To generalize the idea of a correlation between the dimensionless stand-off distance and

dimensionless reaction rate parameter for more complex gases than nitrogen, in which many

species are formed by many different reactions, a new dimensionless reaction rate parameter

ý will be defined. As was pointed out in section (5.2.2), KQ is a more appropriate reaction

rate parameter than Q. By combining K in Eq. (5.28) and Q in Eq. (5.29), a new generalized

reaction rate parameter is then defined as

n dci

S dc(5.52)

m dca

(()2 [

where h, can be obtained using Eq. (5.19). Note that the dissociation rate of species i has

been weighted with h,, which is the energy needed to form species i equivalently, and ý has

incorporated the effect of the freestream velocity (or the dimensionless freestream kinetic

energy p). Since the ph/p,,o term in the square bracket in the denominator is dominant

compared to the other two terms, Q can be approximated as

p 00,/2a (5.53)

Energy absorption rate by chemical reactions just after the normal shock

Input rate of free stream kinetic energy

The physical meaning of 2 is then recognized as the ratio of the energy absorption rate by

chemical reactions just after the normal shock to the input rate of freestream kinetic energy.

Fig. 5.9 shows the analytic solution of nitrogen flows of four different freestream con-

ditions as a plot of the dimensionless stand-off distance zA and the newly defined reaction
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rate Q, using the IDG model. The freestream conditions are as for Fig. 5.4. As expected

from Eq. (5.32), Eq. (5.35), and Eq. (5.36), the frozen-side solutions for different freestream

conditons have collapsed onto a single curve and the equilibrium-side solutions will depart

from the main nonequilibrium curve at different dividing points to approach their own equi-

librium limits of A asymptotically. The dividing point and the equilibrium limit of A are

determined by the ratio of the equilibrium density to the shock density, Pe/Ph, and constant

L only. As may be seen, Ž has resolved the dispersion nature embedded in the solutions

obtained using Q as the dependent variable (see Fig. 5.4).

0.50

CQ 0.40 --

8

S0.30

A0.20

0.10

0 .0 0 . . . . . .. , . . .. , . . . . . . .

10-3 10-2 10-1 1 101 102

FIG. 5.9. Analytic solutions of stand-off distance variation with new reaction rate parameter.
Freestream conditions as for Fig. 5.4. The filled circular symbols on the analytical
curves are the points of dividing cases.

Similar solutions can be obtained for the nitrogen cases in Fig. 5.7 and Fig. 5.8. The

solutions are shown in Fig. 5.10 and Fig. 5.11. The slight dispersion in Fig. 5.7 and Fig. 5.8

has disappeared. Also, the solutions of three different freestream conditions with the same

h0, in both Fig. 5.7 and Fig. 5.8, are almost identical. These analytic results for nitrogen

clearly demonstrate that Q is the reaction rate parameter that should be used.
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FIG. 5.10. Analytic solutions of stand-off distance variation with new reaction rate param-
eter. Freestream conditions as for Fig. 5.7. The filled circular symbols on the
analytical curves are the points of dividing cases.
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FIG. 5.11. Analytic solutions of stand-off distance variation with new reaction rate param-
eter. Freestream conditions as for Fig. 5.8. The filled circular symbols on the
analytical curves are the points of dividing cases.
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The compuational results of the dimensionless shock stand-off distance A against Q

for nitrogen, air, and carbon dioxide are shown in Fig. 5.12, Fig. 5.13, and Fig. 5.14. The

chemical reactions for nitrogen are as Eq. (3.20), and the freestream conditions used in

calculation are as Table 5.2. For air and carbon dioxide, five primary chemical reactions

between five species were used in the computation. The chemical reactions for air and

carbon dioxide are as Eq. (3.21) and Eq. (3.22), respectively. The freestream conditions

used in the numerical method are listed in Table 5.5. It may be seen that £ correlates the

stand-off density product A\ quite well, and Q has made the equilibrium tail emerge more

evidently. Note that each type of symbol in Figs. (5.12) to (5.14) represents computational

results of freestream conditions with the same specific total enthalpy ho.

0.40

C\2 04

S0.30

A 0.20 ho (MJ/kg)
S* 9.9

'0 16.90.10 A 26.4

0 38.2
0 .0 0 . . . . .... I , . . . ... , . . ..... , - . .....

10-2 10-1 1 10' 102

Fia. 5.12. Stand-off distance variation with the new reaction rate parameter for nitrogen.
The symbols represent computational results using the freestream conditions
listed in Table 5.2. The lines shown are for analytic solutions obtained using
freestream conditions listed in Table 5.1
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£

Fia. 5.13. Stand-off distance variation with the new reaction rate parameter for air. The
symbols represent computational results using the freestream conditions listed in
Table 5.5. The lines shown are for analytic solutions obtained using freestream
conditions listed in Table 5.6

0 .5 0 . . ..... ' . . ..... ' . . ..... '

cv 0.40 •_

S_•._
8o.. 0.30

S0.20
Sho (MJ/kg)
<1S• 4.10.10
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0 .0 0 . . . . .... , . . . . .... , . . . . .... , . . . . ...

10-2 10-1 1 101 102

Fro. 5.14. Stand-off distance variation with the new reaction rate parameter for carbon diox-
ide. The symbols represent computational results using the freestream conditions
listed in Table 5.5. The lines shown are for analytic solutions obtained using
freestream conditions listed in Table 5.7
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parameter u(kmi/s) T.(K) p,(kg/m3 ) h0(MJ/kg) a(m)

air

from 3.89 1350 0.00379 9.53 0.0254

to 7.08 5370 0.0778 38.3 0.0762

carbon dioxide

from 2.45 1070 0.0451 4.11 0.0254

to 3.49 2280 0.202 10.76 0.0762

Table 5.5. Range of values of parameters covered in calculation by Candler's method for

air and carbon dioxide.

Also shown in Figs. (5.12) to (5.14) are the analytic solutions of different freestream

conditions. For air and carbon dioxide, the freestream conditions used in obtaining the

analytic solutions are listed in Table 5.6 and Table 5.7. For nitrogen, the values are as

Fig. 5.9. Again, Eq. (5.32), Eq. (5.35), Eq. (5.36), and Eq. (5.37) are used to obtain the

analytic solutions. One interesting feature that should be pointed out is that the frozen-side

solutions are all the same for nitrogen, air, and carbon dioxide, provided the same value

of L is used. The values of dividing points and equilibrium limits of A for air and carbon

dioxide are determined from the values of p,/Psh obtained using equilibrium normal-shock

solutions. As may be seen, the computational correlation is in good agreement with the

analytic solutions for all the test gases. The feature that the solution moves from the frozen

limit to the equilibrium limit of A, as l2 increases, is clearly demonstrated for each test gas.
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u0, T00  p.0  h0  CN•,OO Co 2 ,oo CNOoo CNo. CO,0o

Line type km/s K kg/m3 MJ/kg

Long dashed 3.9 1410 0.078 9.60 0.723 0.190 0.065 2.6x10-9 8.2x10-3

dash-dot-dot 5.0 2490 0.048 16.7 0.731 0.133 0.0504 6.2x 106 0.072

dash-dot 6.1 3660 0.033 26.3 0.74 0.022 0.0306 6.7x 10- 0.194

solid 7.1 5270 0.024 38.3 0.68 2.3x 10-1 0.0072 0.081 0.230

Table 5.6. Freestream conditions used to calculate the analytic solutions in Fig. 5.13 for air.

u00  Too Poo h0  cco 2,oo Co,,oo Cco, Cc,oo Coo00

Line type km/s K kg/m3 MJ/kg

Longdashed 2.5 1150 0.202 4.1 0.946 0.0196 0.0343 1.8x10 8- 1.1xl0-

dash-dot 2.9 1770 0.213 6.5 0.866 0.0487 0.0854 7.7x10-'5 2.4x10-'

solid 3.5 2280 0.102 10.8 0.593 0.141 0.259 2.1x10- 13 6.9x10-3

Table 5.7. Freestream conditions used to calculate the analytic solutions in Fig. 5.14 for CO 2.

Figs. (5.15) to (5.17) show the comparsion of the normalized experimental data with

analytic solutions of three different freestream conditions for nitrogen, air, and carbon diox-

ide. Each type of symbol in the figures represents experimental results of runs with the

specific total enthalpy ho within a small range. Each analytic solution is obtained using

the freestream conditons of one of the shots in that range of h0 . The shot numbers for the

analytic solutions in Figs. (5.15) to (5.17) are shown in Table 5.8, and detailed freestream

conditons for each shot are listed in Appendix A. The experimental data agree reasonably

well with the analytic solutions for all the test gases. In the range of the present experiments,

the flows tested are close to equilibrium, especially for the cases of nitrogen and air.
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N2  Air CO2

Line type Shot No. Shot No. Shot No.

Long dashed 198 201 523

dash-dot 181 481 203

solid 182 470 524

Table 5.8. Run numbers chosen to calculate the analytic solutions in Figs. 5.12 to 5.14.
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A 21.06 +2%

0 others
0 .0 0 , . . ., . . . . . . . ., . . . .

10-2 10-1 1 101 102

FIG. 5.15. Comparsion of normalized experimental stand-off distance and analytical so-
lutions for N2. The lines shown are for analytic solutions obtained using the
freestream conditions in Table 5.8
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FIG. 5.16. Comparsion of normalized experimental stand-off distance and analytical so-
lutions for air. The lines shown are for analytic solutions obtained using the
freestream conditions in Table 5.8
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FIG. 5.17. Comparsion of normalized experimental stand-off distance and analytical solu-
tions for CO,. The lines shown are for analytic solutions obtained using the
freestream conditions in Table 5.8
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5.4 Chapter Summary

An analytic attempt to understand the physics of the correlation between the dimension-

less stand-off distance and the dimensionless reaction rate parameter Q previously observed

by Homung (1972) for nitrogen has been presented in this chapter. The results of the theo-

retical derivation agree well with the numerical computations. The analytic solutions show

that the correlation of numerical results of nitrogen between the dimensionless stand-off

distance and the reaction rate parameter Q is a collection of nonequilibrium regions for

different freestream conditions. As has been observed before, the frozen limit of the di-

mensionless stand-off distance is fixed for a constant freestream Mach number. When the

freestream kinetic energy is large enough to dissociate the gas, the reaction rate parameter

Q1 can be varied at given freestream conditions by adjusting the radius of the model. Dif-

ferent equilibrium limits are expected for flows with different freestream enthalpies. These

limits will be clearly observed when the radius of a sphere is sufficiently large, for example,

in the full-scale real flight situation. For nitrogen flows with the same freestream velocity,

temperature, and dissociation fraction, the reaction rate parameter Q represents the binary

scaling parameter pa. The physics of the correlation can be understood as the binary

scaling. The analysis indicates that a more appropriate correlation parameter would be the

product of f2 with a freestream parameter K which is essentially inversely proportional to

the total enthalpy.

The nonequilibrium dissociating flow of a complex gas, like air or carbon dioxide, over

a sphere can be approximately correlated in terms of a new reaction rate parameter, Q, which

incorporates the factor K, based on the analytic solutions. The correlation applies to the

stand-off distance and represents the main nonequilibrium region of different freestream

enthalpies. Numerical results also show that this parameter correlates the stand-off density

product more satisfactorily than Q for all the test gases studied.

The experimental results illustrated clearly that nonequilibrium reacting flows of nitro-

gen, air, and carbon dioxide can be obtained in the free-piston shock tunnel. The results

agree well with the numerical computations and theoretical predictions. With the current
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running conditions in T5, the results indicate that the flows are close to equilibrium, espe-

cially for cases of nitrogen and air.
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CHAPTER 6

Nonequilibrium Recombination after a Curved Shock Wave

In this chapter, two-dimensional flow will be considered instead of axisymmetric flow.

This choice makes the analysis somewhat simpler without losing the physical features to be

discussed. The following work extends the prior analysis of Hornung (1976) for nonequi-

librium dissociation after a curved two-dimensional shock wave in a hypervelocity dissoci-

ating flow of an inviscid Lighthill-Freeman ideal dissociating gas (IDG) to nonequilibrium

recombination. Analytic solutions are obtained with the effective shock values derived by

Hornung (1976) and the assumption that the flow is "quasi-frozen" after a thin dissociating

layer near the shock. The solution gives the expression of dissociation fraction as a func-

tion of temperature on a streamline. The solution then provides a rule of thumb to check

the validity of binary scaling for the experimental conditions and a tool to determine the

limiting streamline which delineates the validity zone of binary scaling. The effects upon

the nonequilibrium chemical reaction of the large difference in freestream temperature be-

tween free-piston shock tunnels and equivalent flight conditions are discussed. Numerical

examples are presented and the results are compared with solutions obtained with two-

dimensional Euler equations using Candler's code.

6.1 Nonequilibrium Dissociation after a Curved Shock Wave

Hornung (1976) performed an approximate analysis of the nonequilibrium IDG flow

behind a curved two-dimensional shock wave, under the assumption that the flow is far from

equilibrium and that the backward (recombination) reaction of Eq. (3.20) can be neglected

in comparison with the forward (dissociation) reaction. He concluded that the flow could

be conveniently divided into a thin layer of intense dissociation near the shock followed by
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a large region of chemically frozen flow. The method of matched asymptotic expansions

was used, with the product of shock curvature and reaction length as the small parameter.

The expressions for the frozen dissociation level and effective shock values of the frozen

flow were given by Hornung's solutions as functions of freestream, gas and shock param-

eters. Hornung (1988) and Stalker (1989) have referred to this freezing of the dissociation

reaction as "quenching". Macrossan (1990) has shown that the recombination reaction is not

negligible at the higher values of the density in the test section of the free-piston shock tun-

nel, although further downstream, the flow is frozen again. The aim of the work described

here is to relax Hornung's binary reaction assumption and to understand the mechanism

which 'freezes' the recombination.

6.2 Theoretical Derivation

The work is concerned with inviscid, adiabatic, hypersonic flow of a diatomic gas after

a curved shock wave under conditions where the freestream speed uo is sufficiently high

to dissociate the gas. An IDG is considered, for which the reaction rate is given by Free-

man (1958) as Eq. (5.44). A further simplification of the rate equation is afforded by the fact

that, for situations where dissociation is important in gases such as nitrogen or oxgen, T is

much smaller than 9 d, so that the temperature dependence of the dissociation near the shock

is very strongly dominated by the exponential function, and the factor CpT'7 (1 - a) may

be considered constant (Freeman, 1958). With the above approximations, the reaction-rate

equation is written as

dcr u_ K 2o exp (: ALd a2 P.1 (6.1)

dt 6 1 T/ I - a pd

where E is a small constant parameter ( e = 10-') and 1/ic 0 is a typical length scale, e.g., the

radius of curvature of the shock.
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6.2.1 Equations of Motion on a Streamline

Shock

X
Streamline

x=O

FI. 6.1. Notation

To make the context clear, in this section, the equations of motion on a streamline

derived by Homung (1976) will be reiterated concisely. The coordinate system is illustrated

in Fig. 6.1 , where x and y are coordinates parallel and perpendicular to a shock of curvature

r.(x), and O(x) is the incident angle to the shock of the uniform freestream of velocity

uK,. K is taken to be positive if the shock is convex towards the upstream direction. Let u

and v be the components of velocity in x and y directions, respectively. The variables are

nondimensionized according to

h* = h/u 2o 2 T* = TR/MN U. 2 ,p* =/pU2

v* =v/u, U = v/uuu , u / " = p/p (6.2)

X = X o y* = Y Ko , K* = C/K-o

where *s indicate dimensionless quantities.
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An ideal dissociating gas is considered (see section (5.2.3)), for which the equations of

state (Eq. (5.39) and Eq. (5.40)) and the reaction-rate equation (Eq. (6.1)) become

h* = 4 + • 7p a ' * - P4+ a p* p*(1 +a)

(6.3)

dao_ I exp(-92Pf *

dt* E I -apd*

9~ is the dimensionless dissociation energy per unit mass and is equal to ROd/MN, Uý. 0

is 0(1) for situations where dissociation becomes important.

The conservation equations for momentum, energy, and mass are (see Hayes & Prob-

stein 1966, p. 168)

u u.+(1- K*y*)V*U - *u*v* +p*./p* = 0,

UV3: +(I *V *vy** +tr*U.+(-• Ky*)v Vy + + (1 -- Ky)py./p* 64
(6.4)

h*p>p* + h,.p** + +** * * = 0

and (p*u*) - K*p*v* + (1 - K*y*)(p*V*)y* = 0

The subscripts denote partial differentiation.

The boundary conditions at the shock are (see Eq. (5.23))

P~h- * m(1 .=-1 *

P~h - = m - p r) , sh= =, v, =I
1 •1, =(6.5)

hh- h* = m 2( - * -2) , = 1- M2

2

where m = sin q and the subscript sh denotes values just downstream of the shock. Bound-

ary conditions are specified only on the shock because experience with inverse numerical

techniques applied to blunt-body problems shows that, over a distance which is small com-

pared with the radius of curvature of the shock, the shock boundary conditions are sufficient

to specify the problem. By combining x* and y* derivatives (see Hornung 1976), the time

derivatives of p*, p*, and u* become
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dp* da *p *2 hp,
I = p*h* + G* G
dt* a. dt* .

Fdp* : P-*h*2 -- *--*-(h**- 1 )G* and (6.6)

vdV* 1 dp*
drt* p* dt*

where V* = (u*2 + v*2)* is the flow speed, h* is considered as h*(p*, p*, a), and

I h*F'* 1 *" P" h*P

V*2 + *2 +U*V*- U* 1 P: *U~*ý(
u+,: 1 Vp•~ ,-__. } (/1- K'y*)-. , .} (6.7)

G* v+ *+ V* 'p* K* K¢*

6.2.2 The Differential Equation for a(T) along a Streamline

We now proceed as in Hornung (1976) but extend the analysis to include the recom-

bination reaction rate. Differentiating T*(p*, p*, a) with respect to t*, substituting for the

time derivatives of p* and p* from Eq. (6.6), and dividing by da/dt* results in the following

equations:

FdT* + *h* + F*T+ + 1) dt* (6.8)

F ) pý,h + T~. P T. + TVp~h*. - T-*.(h*.- )d_.*

dT * a* 7V P - P~h p*Jd

The relevant derivatives of T* and h*, and dca/dt* in Eq. (6.3) may now be substituted into

Eq. (6.8), which becomes

dT* (1 - p*v* 2/p*)* + T* + EK*v*G*e°IT /(1 - A)
(4+a) 1-= 3- (6.9)

4 +a p*
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where

a2 p. 'T *TA - 2 C e/T = B e /d

a o P*d

and (6.10)
a2 *9

B = 
2

1-a p•d

By estimating the order of magnitude of all the terms of Eq. (6.9), as in Hornung (1976),

and retaining only the first-order terms, one gets

dT* = f - T*f(I + al)9/m 2 - 1} + bf(l + )T* eeIT* /(1 - A) (6.11)
(4+a) {- 3(l+a) T* (611

where

b = 3(1 - m 2 )K*mr- 1  (6.12)

To demonstrate all the features of the solution with less complexity and good accuracy, we

neglect a in the two terms in curly brackets in Eq. (6.11), assuming a is negligible compared

with I (see Hornung (1976)). Eq. (6.11) then becomes

da (4 + a)(1 - (lA (6.13)_dý 1 - + ebý(1 + a) 61la/(1 - A)

where = T*/9d and

a = (9-m 2 )/m 2 , A = 3 6/M2. (6.14)

This model equation Eq. (6.13) differs from the one Hornung derived (1976) only in the

factor A, which is the ratio of recombination rate to dissociation rate of an ideal dissociating

gas. A is o(1) right behind the shock, but may become important further downstream.
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6.2.3 Solution for ck(T) along a Streamline

Near the shock, where T* or ý is relatively large, the term in 6 in Eq. (6.13) is small. As

the temperature falls with proceeding dissociation, the 6 term, which is due to the negative

pressure gradient accompanying the curved shock, becomes important and finally dom-

inates. The factor A will expedite the speed with which doa/d< approaches zero as the

temperatures falls away from the shock. Three cases are then discussed.

Case 1: A < 1 for all ý of interest.

Hornung's model equation is recovered from Eq. (6.13) and binary scaling is appropri-

ate. All the solutions obtained by Hornung (1976) with the method of matched asymptotic

expansions hold. The flow is then divided into a thin region of intense reaction close to

the shock followed by a large region of chemically frozen flow. The thin reacting layer can

then be considered to be part of the shock and effective shock conditions can be defined on

each streamline by extrapolating the frozen-flow solution back to the shock. The frozen

dissociation level and effective shock values of the frozen flow are given by Hornung as

follows:

oeff = 4A 1{1 - Al 1 - - 2 logb - b2[1A - 1 + log(4A, - 3)]} + o(2), (6.15)
6

= {1 +b logb + b log (4A1 - 3)} + 0o(2) , (6.16)

P:f = Ph + (4A 1- 3)0d[B1 -6] , (6.17)

and

* = P*.JJ/[6 d*f.f(1 + ae)] , (6.18)

where subscripts eff and sh denote effective shock conditions and values just downstream

of the shock as before,

A1 = {exp (Aa-'•)(1 - ro-)-lC-A/E7)}Sh , (6.19)

and

B = 1 - 0/B1 = --, log (1 - O'i,) . (6.20)
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6 and v are defined by

6 = 1/log (b)` 1 , (6.21)

and

= 3/(4A1 - 3). (6.22)

Case 2: A = 0(1) before eb6(1 + a) e'/ becomes 0(1)

The effective shock conditions were used to estimate the order of magnitude of A. From

Eq. (6.10), A = 0(1) when ,.=O(1/log(B,)-r), where

B, = Caff2 P__ (6.23)

1 -eff P•d

and the subscript r denotes values at which recombination becomes important. In this case,

recombination is always important and C, > Cef .

Case 3: A = 0(1) after ebý(1 + a) el / becomes 0(1) (Q, < ý,ss or &, -- ff)

This case is the one of most interest. The flow will tend to reach and maintain the effec-

tive frozen dissociation level ao f and further downstream, recombination will bring aq f

down again. One can simplify the model equation, Eq. (6.13), even further by observing

that A > 1 and ebý(1 + ck)/B > 1 in the region further downstream of the dissociating

layer. If we neglect the terms Aý and (1 - af), Eq. (6.13) becomes

d• 4+oad- = 4ba(1+a)/B (6.24)
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Notice that the sign of dol/d< has changed from negative (- -4) near the shock (see

Eq. (6.13)) to positive in Eq. (6.24). To solve Eq. (6.24) the assumption that the flow is

"quasi-frozen" in the region downstream of the dissociating layer was made. The assump-

tion was made based on observations from Macrossan's (1990) and Hornung et al. (1994)

results that the dissociation fraction varied less than 20% from the maximum value in the

free-piston shock tunnel conditions. The assumption gives

P " Pe.t ( ), and, 7 = , (6.25)

where y is the ratio of specific heats for the IDG (see Eq. 5.41)). Eq. (6.24) then becomes

K= I 2 • _ , (6.26)

where

K,.= 4#:f (6.27)

assuming that a is small compared to one. Eq. (6.26) may be integated to give the "quasi-

frozen" flow solution

a = (7 - -, (6.28)

where C, = 1 /log(B,) 1 and &•, is taken to be aq f . It is assumed that the initial condition

is a = oeff at ý = &r which is the premise of Case 3. The assumption that recombination

becomes dominant at • = •r in Case 2 and Case 3 will be justified later with a numerical

example.
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6.3 Results and Discussion

One set of typical flow conditions in the shock tunnel T5 was chosen to illustrate the

nature of the solutions obtained in section (6.2.3). A nitrogen flow over a circular cylin-

der of diameter D =4 in. with freestream conditions u00 = 5.08 km/s, p,,, = 0.04 kg/m 3,

ho = 16.0 MJ/kg, T~o = 2260 K and a,, = 0.029 was considered. The particle-tracking

technique introduced in section (3.3) was used to obtain the values of the dissociation rate,

recombination rate, and dissociation fraction along a streamline from the calculated flow

field using Candler's inviscid method.

6.3.1 Comparsion of Analytic and Numerical Results

Fig. 6.2 shows the dissociation rate, recombination rate, and dissociation fraction along

three streamlines in the example shock tunnel flow. Clearly, the recombination rate is not

negligible compared to the dissociation rate, especially for the streamlines that cross the

shock close to the axis. This feature essentially violates the binary scaling. It is interesting

that, while the recombination rate becomes dominant in the downstream region, the flow

seems to be frozen again because of the slow recombination rate.

In Table 6.1, the assumption that recombination becomes dominant at • = •r in Case

2 and 3 is justified. Close to the axis (4 = 890 and 820), Cqj < C, and the solutions

belong to Case 2. From streamline (a) (q$ = 890) in Fig. 6.2, it is clear that recombination

becomes important immediately behind the shock. For the other streamlines in Table 1

where Ceff > C, the solutions are classified into Case 3. The good agreement between

Cq f and ak.,n.,.m seems to support the assumption of the initial condition of Eq. (6.28). The

dissociation fraction along streamlines (b) (• = 720) and (c) (q$ = 67.50) in Fig. 6.2 also

suggests that the flow tends to reach and maintain Hornung's frozen dissociation level o!f f

before recombination brings aeff down again.
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FIG. 6.2. Reaction rate and dissociation fraction variation along three selected streamlines in
the example shock tunnel flow. The streamlines are labelled a, b, c in the diagram
on the right. (da/dt) and (da/dt), are dissociation rate and recombination rate
respectively. As may be seen, the recombination rate is not negligible for the inner
streamlines.
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0 ef f Ceff G'. &numu

89.0 0.0470 0.270 0.0669 0.0643 0.240

82.0 0.0589 0.217 0.0637 0.0634 0.222

76.0 0.0628 0.188 0.0621 0.0621 0.199

72.0 0.0644 0.169 0.0610 0.0600 0.168

67.5 0.0652 0.147 0.0597 0.0590 0.137

62.0 0.0662 0.116 0.0577 0.0573 0.110

56.5 0.0662 0.085 0.0553 0.0556 0.085

Table 6.1. The justification of the assumption that recombination becomes dominant at

= , in Case 2 and 3. 0 is the shock angle. Cqff and ,eff are Homung's effective shock

temperature and dissociation fraction. C is defined in section (6.2.3). o,,,,m is the maxi-

mum value of the dissociation fraction extracted from the numerical calculation and &,,,,,m

is the corresponding temperature at oa = ar,num.

One can also transfer the coordinate system of Fig. 6.2 into (a, C) coordinate system.

Fig. 6.3 shows the comparsion of the solution, Eq. (6.28), and the numerical results from

Candler's code, where streamlines (a) and (b) correspond to the streamlines (b) and (c)

in Fig. 6.2, respectively. It may be seen that the solutions starting at • = & are in good

agreement with numerical results.
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a Streamline (a)
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FIG. 6.3. Plots of dissociation fraction a versus dimensionless temperature • along two
streamlines (a) and (b) over a circular cylinder (see inset on right). Freestream
conditions: 5.08 km/s, nitrogen, 0.04 kg/rm, 16.0 MJ/kg. Full line: numerical
solution of Euler equations using Candler's code (a,,. = 0.029). Dashed line:
analytical solution of Eq. (6.28).
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6.3.2 A Rule of Thumb for Binary Scaling

With the above results in mind, one is able to use Eq. (6.28) to derive a rule of thumb

for validity of binary scaling. Eq. (6.28) can be rewritten in the form

a = aqef1 +laeyeff K(-- 1)&•Y(- ( ) )](6.29)

Binary scaling will work if

QejKr(Y - 1)(-Y --x <K 1. (6.30)

The flow will be "quenched" and a -+ oq f. The Case 3 degenerates into Case 1.

Substituting for K, from Eq. (6.27), Eq. (6.30) becomes

aeffpeff 4(1 + aeff << 1 (6.31)

d p* 3 G ff)

Note that

4(1 + eff) ( e '00,-

3 k•77, 0(l) (6.32)

Pc' "- 0(10)

Eq. (6.31) may then be simplified into

S b- p*" << 0.1. (6.33)

Eq. (6.33) then presents a rule of thumb to check the validity of binary scaling. Note that

pd = Pd / p,. Again freestream density has to be low to use binary scaling.
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Take streamline (a) in Fig. 6.3 as an example. The shock shape for a flow over a circular

cylinder is well approximated by the catenary K* = M 2 , so that b = 3 (1 - M 2) m. For

streamline (a) 0 = 720 , b = 0.272 , e = 8.88 x 10-6, and of = 0.169. Recall from

section (5.2.3) that Pd = 130 x 101 kg/m3 for nitrogen. Therefore, S = 0.021, which is

not much smaller than 0.1. In fact, it implies that as ý -- 0, a ,,- aQof/(1 + 10S) = 0.14,

which is consistent with the result of streamline (a) in Fig. 6.3. About 20 % of the atoms will

recombine. If one sets the criterion that the mass fractions should agree to within 5 % on the

= 720 streamline between the free flight conditions and the shock tunnel environment,

the above test conditions with p•, = 0.04 kg/m3 are certainly not appropriate to simulate

the free flight conditions where density is much lower and the flow will freeze at aof f.

The analytic Eq. (6.28) can also provide a tool to determine the limiting streamline

which delineates the validity zone of binary scaling. If one sets the same 5 % discrepancy

of the mass fractions as the criterion for the limiting streamline and "guesses" that C ,- 0.05

at the vertical mid-plane of the circular cylinder, Eq. (6.28) will provide o(C = 0.05) = 0.14

for the streamline of q! = 67.50. Compared to aneff = 0.147, the discrepancy of the mass

fraction is about 4.75 %. The numerical method (see streamline (b) in Fig. 6.3) gives us

a .u,.(. = 0.05) = 0.132 and onu = 0.137. The discrepancy of the mass fraction is about

3.65 %. The analytic solution (4.3.4) predicts the limiting streamline at 0 = 67.50 which

is very close to the numerical prediction. For streamlines outside the limiting streamline,

binary scaling is valid. For those inside the limiting streamline, three body recombination

can not be neglected.
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6.3.3 The Effect of Large Temperature Difference

The final point to be addressed is the large Mach number difference between the free

flight conditions and the shock tunnel flows, pointed out by Macrossan (1990). In order to

achieve sufficiently high density in the shock tunnel flow for the simulation of dissociative

real-gas effects, the nozzle is operated at an area ratio that is too small to achieve the high

Mach number of flight. Apart from the partially dissociated freestream, the shock tunnel

flow therefore differs from flight conditions also in having too high a freestream temper-

ature. Typical flight freestream conditions with the same circular cylinder and freestream

density ( po = 0.04 kg/ m3 ) as in the experiments were considered. This density corre-

sponds to that in the Earth's atmosphere at an altitude of about 25 km. The freestream tem-

perature was taken as 217 K, which is about the atmospheric temperature for that altitude,

and the freestream velocity was chosen to give the same stagnation enthalpy ( h0 = 16.0

MJ/kg) as in the experiments. The corresponding velocity is 5.6 km/s. The freestream Mach

number was then 18.6 as opposed to 5.5 in the experiments.

The effective dissociation fraction aq f on streamlines that have crossed the shock at •,

for the shock tunnel and the equivalent flight conditions, as a function of q$, are compared

in Fig. 6.4. The agreement is good for the streamlines with a large incident angle and gets

worse as the curved shock gets weaker. The shock tunnel flow has a higher frozen dissoci-

ation fraction than the equivalent flight flow for streamlines that cross the shock away from

the axis, because of the two different flow velocities which have been chosen. Although

the stagnation enthalpy has been chosen to match the simulation parameter of the ratio of

the dissociation energy and the energy of the flow, the binary scaling parameter pra/uo

which is the ratio of the dissociation rate and the flow rate, will not be the same. The shock

tunnel flow with the slower speed will have more "time" to dissociate than the equivalent

flight flow does before the expansion causes the "quenching" of the flow. Note that only

results with q$ smaller than 800 were shown because the theory of effective shock values is

not valid for q$ larger than 800 where the recombination is important. Also shown in Fig. 6.4

is the other flow condition with uo, = 5.08 km/s, pc,, = 0.04 kg/m3, h0 = 13.0 MJ/kg, and

T• = 217 K. As may be seen, the dissociation fraction of the flow is well below the other
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two cases. In this case, the binary scaling parameter is the same as in the shock tunnel

flow and the time scale is matched. However, the energy parameters are not the same. The

stagnation enthalpy of the flow is too low to produce the same degree of dissociation of

the shock tunnel flow. This suggests that, if one is interested in simulating the chemical

nonequilibrium flow over a blunt body with the free-piston shock tunnel facility, it is desir-

able that the shock tunnel flow has the same stagnation enthalpy as the real flight conditions,

although the freestream temperatures will not be the same. Matching the binary scaling pa

and h0 is more suitable than matching pa and u,,.

U

0.250

0.200-

0.150.

0.100 -. - --

0.0500
0.000 ... . L.<' .. , . . . ., . . , , , ,

45 50 55 60 65 70 75 80

FIG. 6.4. Comparsion of effective frozen dissociation fraction ao for the free-piston shock
tunnel and equivalent flight conditions. 0 is the incident angle to the shock of the
uniform freestream. Freestream conditions: N2 , a... = 0.0, D = 4 in. Full line:
shock tunnel flow with conditions 16.0 MJ/kg, 5.08 km/s, 0.04 kg/m3 , 2260 K;
Dashed line: equivalent flight flow with conditions 16.0 MJ/kg, 5.6 km/s, 0.04
kg/m3 , 217 K; Dash-dot line: 13.0 MJ/kg, 5.08 km/s, 0.04 kg/m3 , 217 K.
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Fig. 6.5 (a) and Fig. 6.5 (b) show the comparsion of frozen dissociation fraction and the

solution of Eq. (6.28) at ý = 0.05 of the shock tunnel and equivalent flight conditions. The

solution of Eq. (6.26) reaches a maximum at about q0 = 750 for both flows and gradually

merges into the frozen dissociation fractions. Compared to Table 6.1, one will easily realize

that the solution of Eq. (6.28) is not appropriate for q0 larger than 750. The solution of

Eq. (6.28) manifests itself as the dividing point between the Case 2 and Case 3. The limiting

streamline can also be easily estimated from Fig. 6.5 (a) and Fig. 6.5 (b). From Fig. 6.5 (a)

for the shock tunnel flow, one can see that the discrepancy of dissociation fractions will be

smaller than 5 % for streamlines with the incident angle smaller than 67.50, which has been

mentioned above.

Fig. 6.6 shows a comparsion of the solutions of Eq. (6.28) at • = 0.05 of shock tunnel

and equivalent flight conditions. The dissociation fraction of the equivalent flight condition

is lower than that of the shock tunnel flow. Close to the plane of symmetry, the discrepancy

is small and approximately constant. The solutions starting to diverge from each other away

from the plane of symmetry. Compared to Fig. 6.4 and Fig. 6.5, it is clear that the difference

between the two dissociation fractions at ý = 0.05 is just the difference between the two

effective frozen solutions in the weak portion of the curved shock wave. Near the stagnation

streamline, although the effective frozen dissociation fractions are almost the same for the

two flows (see Fig. 6.4), the solution of Eq. (6,.28) at ý = 0.05 of the equivalent flight

conditions is lower than that of the shock tunnel flow, because the higher density behind

the shock, corresponding to the higher Mach number for the equivalent flight conditions,

enhances the recombination rate. Note that the recombination rate is proportional to the

square of the density, while the dissociation rate is proportional only to the density. This

difference in the dissociation fractions may result from the large difference in the Mach

number. In the strong shock portion, the influence seems to be small. In the weak shock

portion, it may become a problem.
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FIG. 6.5. Plots of effective frozen dissociation fraction a&f and the solution of Eq. (6.28)
at ý = 0.05 versus incident angle q0 for shock tunnel and equivalent flight con-
ditions. Fig. 6.5 (a): shock tunnel flow; Fig. 6.5 (b): equivalent flight flow. Full
line: effective frozen dissociation fraction a,&f. Dashed line: analytic solution of
Eq. (6.28) at • = 0.05.
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FIG. 6.6. Plot of solutions of Eq. (6.28) at • = 0.05 versus incident angle 4 for shock
tunnel and equivalent flight conditions. Full line: shock tunnel flow. Dashed line:
equivalent flight flow.

6.4 Chapter Summary

The flows considered here were for the case of the hypersonic flow after a two-

dimensional curved shock with Lighthill-Freeman ideal dissociating gas under circum-

stances that the recombination rate is not negligible.

Analytic solutions are obtained for a streamline with the assumptions that the flow is

"quasi-frozen" in the region downstream of a thin dissociating layer near the shock. The

theory gives an explicit expression for the dissociation fraction as a function of tempera-

ture. The analytic solutions are shown to agree quite well with the results obtained with
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two-dimensional Euler equations using Candler's method. The dissociation fraction seems

to be "frozen" again in the downstream region of the flow in the free-piston shock tunnel,

although the recombination rate dominates the dissociation rate. The freezing of the flow

occurs because of the strong exponential temperature dependence of the dissociation reac-

tion rate and the effect of the negative pressure gradient associated with the shock curvature

upon temperature and density for both dissociation and recombination reaction rates.

An important result is that the analytic solutions offer the engineer a simple expression

as a rule of thumb to check the validity of binary scaling for the experimental conditions

before doing any extensive and expensive numerical calculations and experiments. The

analytic solutions can also be used to determine the limiting streamline which delineates

the validity zone of binary scaling.

The effects upon the chemical nonequilibrium processes of the large difference in

freestream temperature (or Mach number) between free-piston shock tunnels and equiv-

alent flight conditions are discussed. The results indicate that, for the strong shock portion,

it is not a serious issue, while away from the stagnation point, it may become important.

The results support Macrossan's conclusion about the Mach number effect. In many cases,

one can decouple this effect from the simulation of hypersonic chemical nonequilibrium

flow. If one cannot remove the effect of large freestream temperature difference, the results

suggest the stagnation enthalpy ho is a more important parameter to match than uco.
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CHAPTER 7

Future Work

There are still many interesting features of hypervelocity dissociating flow over blunt

bodies that need to be explored and the research is far from complete. Among them, three

problems will be addressed in this chapter, namely, the vorticity concentration associated

with the edge of the high-entropy layer generated in the nose region by the strongly curved

shock, the evaluation of vibration-dissociation coupling models, and transition in the blunt

body boundary layer and the effects of wall catalysis. Certain features of these three prob-

lems may have been observed during the course of the present experiments. These encour-

age further studies in the future.

7.1 Vorticity Interaction

It is known that there are strong entropy gradients generated in the nose region of a

blunt body in hypervelocity flows. The high-entropy layer essentially wets the body as it

flows downstream. For some distance downstream of the blunt nose, the thin boundary layer

will grow inside this entropy layer, and then the boundary layer will eventually "swallow"

the entropy layer far enough downstream. According to Crocco's theorem, the edge of the

entropy layer is also a region of strong vorticity so that this interaction is sometimes called

a "vorticity interaction".

Fig. 7.1 shows computational vorticity contours of a typical carbon dioxide run. Strong

vorticity gradients are observed. Fig. 7.2 shows a resonantly-enhanced shadowgraph of the

carbon dioxide flow with the same conditions as Fig. 7.1. (Resonantly-enhanced shadowg-

raphy has been described in section (2.5).) Streamlines are marked by the sodium seeding

and are starting to roll up at the side of the sphere. Fig. 7.3 shows these vortical structures on
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a larger scale. These vortical structures may be the by-product of the entropy layer. If they

are, to our knowledge, this resonantly-enhanced shadowgraph is the first visualization of

the vorticity interaction in hypervelocity blunt-body flows. Further experiments are needed

before definite conclusions may be reached. Nevertheless, the resonantly-enhanced shad-

owgraphic technique may provide a promising tool for studying the vorticity-interaction

problem in hypervelocity blunt-body flows.

Vorticity
9

10 -60000
9 -70000
8 -80000
7 -90000

1 6 -100000

5 -110000
4 -120000
3 -130000

2 -140000
1 -150000

FIG. 7.1. Result of a computation of the vorticity field of over a sphere of 4 in diameter. Free
stream conditions: C0 2, 3.55 km/s, 0.081 kg/m 3, 11.27 MJ/kg (shot 524).
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FIG. 7.2. Resonantly-enhanced shadowgraph of CO2 flow over a sphere, at the same condi-
tions as those of Fig. 7.1. The blemish ahead of the bow shock wave is due to a
flaw in the optical window.

FIG. 7.3. Enlargement of the vortical structures in Fig. 7.2.
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The interaction of the entropy layer and the boundary layer has been a challenging

aerodynamic problem for years. The effect of the shock-generated free-stream vorticity on

hypersonic boundary layer needs to be understood. Also, experimental and numerical in-

vestigations of the real-gas effects in this important feature, both with respect to the amount

of vorticity produced by the bow shock, and with respect to the additional amount produced

by dissociation downstream of the bow shock (see Eq. (5.7)) are essential to improve the

understanding of the fundamental physics in nonequilibrium flow.

7.2 Evaluation of Vibration-Dissociation Coupling Models

Computational fluid dynamics has proved to be a useful method for studying hyper-

velocity dissociating flow over blunt bodies. To accurately predict these flow fields, the

coupling between the dissociation process and the vibrational state of the gas must be cor-

rectly modeled.

Landau and Teller (1936) originally derived an expression for vibrational relaxation

in gases considering only transitions between neighboring vibrational energy levels of a

simple harmonic oscillator. By using expressions for vibrational relaxation times based

on experimental data as given by Millikan and White (1963), it is possible to extend this

expression to anharmonic oscillators. This model, however, fails to take into account the

coupling between dissociation and the vibrational state of the gas. Namely, in regions where

the vibrational temperature lags the translational temperature, molecules have less internal

energy than if they were at thermal equilibrium, thus inhibiting the dissociation process.

In the present research, Park's (1988, 1989) semi-imperical two-temperature model is

implemented in Candler's code to account for this coupling. This model uses the Landau-

Teller expression for vibrational relaxation but also assumes that the dissociation rate is

governed by the average temperature Tae, = V77 instead of the translational temperature

T. While this method can be extended to take into account that dissociating molecules have
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higher than average vibrational energy, currently only the average vibrational energy is

removed during dissociation.

Previously, the coupled-vibration-dissociation (CVD) model of Hammerling et al.

(1959) and the coupled-vibration-dissociation-vibration (CVDV) model with preferential

removal of Marrone and Treanor (1963) account for this effect. The CVDV model, under

the assumption that the relaxation of vibrational energy occurs through a series of Boltz-

mann distributions, includes expressions in the vibrational relaxation equation that account

for the higher than average energies of the dissociating molecules and the different energy

at which new molecules are formed. The effect of vibration on dissociation is accounted

for by a coupling factor which modifies the dissociation rate. Additionally, the fact that

molecules in higher vibrational energy levels are more likely to dissociate is accounted for

by a preferential removal parameter.

The research on the evaluation of these models is currently under way with the joint

efforts of experimenters in T5 and the computation group at the University of Minnesota

led by Professor Candler. The research was motivated by the comparsion of the experimen-

tal and computational interferograms shown in Fig. 4.38. Recall that the features of the

experimental photograph are faithfully reproduced by the computation, except for a slight

difference in the vicinity of the shock, where the vibrational and translational temperatures

are not at thermal equilibrium and the correct modelling of the vibration-dissociation cou-

pling is most needed.

It is hoped that the combination of experimental and numerical efforts will shed light

on the mechanism of the vibration-dissociation coupling and make it possible to not only

assess the validity of these models, but also to determine the actual amount of vibrational

energy removal during dissociation.
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7.3 Transition in the Blunt-Body Flow and Effects of Wall Catalysis

In chapter 4, the interesting phenomenon that occurred in the measured heat transfer

distributions for carbon dioxide needs to be further studied. The effect of roughness on

transition to turbulence in the nose region and the effect of nose bluntness on the transition

on the after-body of a blunt cone are both interesting subjects.

For understanding the effects of the surface catalysis, the numerical code implemented

with the boundary condition of wall catalysis will be a useful tool. The fabrication of a

model with quantitatively measurable surface catalysis is also important. The diagnostic

technique for the chemical species concentration is, of course, essential for this study.
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CHAPTER 8

Conclusions

In the present research, three aspects of the fundamental physics of chemical nonequi-

librium flow over spheres were investigated through theoretical derivations and a series of

computations and experiments, using nitrogen, air, and carbon dioxide as test gases. The

three aspects and the conclusions of each aspect are summarized as follows:

1. Aerodynamic Heating in Hypervelocity Flow

a. The free-piston shock tunnel T5 was used to gather new data on hypervelocity disso-

ciating flow and has extended the range of heat transfer measurements to freestream

Reynolds number one million and stagnation enthalpy 22 MJ/kg.

b. Good agreement was observed among the measured stagnation point heat transfer rates,

numerical computation results, and Fay and Riddell's theoretical predictions for all the

test gases. This agreement provides another calibration of T5.

c. The measured heat flux distributions were also in reasonably good agreement with nu-

merical computation results and Lees' theory for nitrogen and air.

d. Surface roughness may have caused early transition from laminar flow to turbulence for

some cases of carbon dioxide. A more carefully designed experiment was suggested to

resolve this interesting phenomenon and to gain more knowledge about carbon dioxide

dissociating flow.
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2. Correlation between the Reaction Rate Parameter and the Stand-off Distance

a. An analytical solution is obtained for inviscid hypervelocity dissociating flow over

spheres, using an approximate Kdrmdn-Pohlhausen-type analysis.

b. The solution explains the correlation between the dimensionless stand-off distance and

the dimensionless reaction rate parameter Q previously observed by Hornung (1972)

for nitrogen, and agrees well with the correlation of numerical results. The physics of

the correlation is shown as the binary scaling.

c. The analysis indicates that a more appropriate correlation parameter is the product of Q

with a freestream parameter K which is essentially inversely proportional to the total

enthalpy. This new dimensionless reaction rate parameter can be extended to more

complex gases than nitrogen, in which many species are formed by many different

reactions, and generalizes Hornung's correlation. Both experimental and numerical

results confirm the new correlation.

d. The experimental results clearly illustrated the capability of producing nonequilibrium

reacting flows of nitrogen, air, and carbon dioxide, in the free-piston shock tunnel.

With the current running conditions in T5, the results indicate that the flows are close

to equilibrium, especially for cases of nitrogen and air.

3. Effect of Nonequilibrium Recombination in Hypervelocity Dissociating Flow

a. An analytical solution is obtained for inviscid hypervelocity dissociating flow after a

curved two-dimensional shock with Lighthill-Freeman ideal dissociating gas under cir-

cumstances in which the recombination rate is not negligible. The solution gives an

explicit expression for the dissociation fraction as a function of temperature along a

streamline and agrees well with the numerical computation result extracted using the

particle-tracking technique.
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b. The solution provides a rule of thumb to check the validity of binary scaling for the

experimental conditions and can be used to determine the limiting streamline which

delineates the validity zone of binary scaling.

c. The effects upon the chemical nonequilibrium processes of the large difference in

freestream temperature (or Mach number) between free-piston shock tunnels and equiv-

alent flight conditions are discussed. The results indicate that, for the strong shock

portion, it is not a serious issue, while away from the stagnation point, it may become

important. The results support Macrossan's conclusion about the Mach number effect.

In many cases, one can decouple this effect from the simulation of hypersonic chemical

nonequilibrium flow. If one can not remove the effect of large freestream temperature

difference, the results suggest the stagnation enthalpy h0 is a more important parameter

to match than uo.

The difficulties associated with the experimental investigation of hypervelocity flow

over spheres made the application of numerical simulation an important complement to

the experimental effort. During the course of this research, the computational method has

strongly enhanced the understanding provided by the experimental data and stimulated the

theoretical derivations.

Optical differential interferometry proved to be very valuable in providing the evidence

to validate the numerical code and the important information of the stand-off distance and

shock shape. Computational interferometry also proved to be a useful tool to visualize the

computational flow fields and to have a direct comparsion of the computational flow field

with the experimental one.
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Appendix A

Shot ho Po POO U00  T,0  Mao Re,, ccx

No. MJ/kg MPa g/m3  km/s K x 10-5 kg/kg

198 10.58 60.0 56.1 4.23 1390 5.75 7.29 N 0.0034

199 10.58 60.0 56.1 4.23 1390 5.75 7.29 N 0.0034

200 21.06 60.0 33.9 5.55 2760 5.34 3.51 N 0.070

205 21.18 30.0 17.5 5.44 2420 5.51 2.02 N 0.103

206 12.83 30.0 24.6 4.54 1670 5.65 3.01 N 0.019

Table A. 1 Reservoir and freestrearn conditions for experiments using test gas nitrogen and

a sphere of 6 in. diameter.

Shot h Po pOO uo Too Mao0  Re,, c,00

No. MJ/kg MPa g/m3  km/s K x 10-5 kg/kg

180 10.58 60.0 56.1 4.23 1390 5.75 7.29 N 0.0034

181 16.46 60.0 40.2 5.07 2260 5.45 2.92 N 0.029

182 21.06 60.0 33.9 5.55 2760 5.34 2.34 N 0.070

187 10.58 60.0 56.1 4.23 1390 5.75 4.86 N 0.0034

494 20.15 30.0 18.1 5.35 2350 5.52 1.35 N 0.090

495 15.46 27.5 19.8 4.86 1950 5.59 1.55 N 0.041

Table A.2 Reservoir and freestream conditions for experiments using test gas nitrogen and

a sphere of 4 in. diameter.
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Shot ho Po poo u0, T0  Mao, Rem0  c,0 O

No. MJ/kg MPa g/m3  km/s K x 10-5 kg/kg

475 18.01 30.0 19.5 5.14 2200 5.53 1.10 N 0.064

478 18.01 30.0 19.5 5.14 2200 5.53 1.10 N 0.064

483 17.77 60.0 38.1 5.21 2420 5.41 2.05 N 0.039

484 20.68 56.0 32.2 4.99 2690 5.36 1.68 N 0.069

Table A.3 Reservoir and freestream conditions for experiments using test gas nitrogen and

a sphere of 3 in. diameter.

Shot ho Po pPM U0  T0, Mac,, Re,, c,0o

No. MJ/kg MPa g/m3  km/s K x 10-5 kg/kg

507 15.70 75.0 51.6 5.00 2200 5.46 1.90 N 0.019

508 16.00 57.5 39.4 5.01 2190 5.47 1.46 N 0.026

514 15.46 27.5 19.8 4.86 1950 5.59 0.78 N 0.041

Table A.4 Reservoir and freestream conditions for experiments using test gas nitrogen and

a sphere of 2 in. diameter.

Shot ho P o P uo To0  Ma0 O Reoo c"00

No. MJ/kg MPa g/m3  km/s K x 10-5 kg/kg

518 17.23 57.5 37.4 5.15 2340 5.43 0.69 N 0.036

Table A.5 Reservoir and freestream conditions for experiments using test gas nitrogen and

a sphere of 1 in. diameter.
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Shot ho Po pOO u To,, Mao,, Reoo c"0o

No. MJ/kg MPa g/m3  km/s K x 10-' kg/kg

201 10.30 60.0 62.7 4.05 1540 5.33 7.01 N2 0.723

02 0.183

NO 0.064

N 1.27x 10- 8

O 0.014

202 20.87 60.0 34.2 5.51 2930 5.17 3.31 N2 0.737

02 0.076

NO 0.038

N 4.75x 10-'

O 0.014

Table A.6 Reservoir and freestream conditions for experiments using test gas air and a

sphere of 6 in. diameter.
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Shot ho Po Poo u0o T, M a,, Re00 c"00
No. MJ/kg MPa g/m3  km/s K x 10-' kg/kg

183 10.30 60.0 62.7 4.05 1540 5.33 4.68 N2 0.723
197 02 0.183

NO 0.0643

N 1.27x 10-8

O 0.0140

184 16.30 60.0 41.9 4.95 2390 5.20 2.81 N2 0.731

02 0.131
NO 0.0508

N 4.81x10-6

O 0.0740

185 20.87 60.0 34.2 5.51 2930 5.17 2.20 N2 0.737

186 02 0.0763

NO 0.0382

N 4.75 x 10-1
O 0.0135

195 21.54 60.0 49.4 5.61 3160 5.18 3.50 N2 0.734

196 02 0.0858

NO 0.0436

N 7.05x 10-'
SO 0.123

491 16.01 27.5 19.9 4.86 2070 5.33 1.45 N2 0.733

02 0.0982

NO 0.0474

N 2.49x 10-6
O 0.108

Table A.7 Reservoir and freestream conditions for experiments using test gas air and a

sphere of 4 in. diameter.
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Shot ho P0 po um T. Macc, Rem, c"0
No. MJ/kg MPa g/m3  km/s K x 10-' kg/kg

492 21.5 27.5 15.8 5.56 2620 5.25 1.12 N2 0.743

02 0.0341
NO 0.0252

N 3.97 x 10-'
O 0.184

493 9.53 27.5 31.2 3.89 1340 5.43 2.45 N2 0.723

02 0.176
NO 0.0654

N 3.58x 10-'

O 0.0214

496 20.59 27.5 16.1 5.45 2620 5.20 1.15 N2 0.743

02 0.0341

NO 0.0252

N 3.97 x 10-'
O 0.184

525 17.38 60.0 39.7 5.08 2530 5.19 2.63 N2 0.733

02 0.118

NO 0.0478

N 9.04x 10-6

SO 0.0885

526 20.51 60.0 34.6 5.47 2870 5.20 2.25 N2 0.737

02 0.0804

NO 0.0393

N 3.84x 10-1
O 0.130

Table A.7(continued) Reservoir and freestream conditions for experiments using test gas

air and a sphere of 4 in. diameter.
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Shot ho P0 Poo u0o T0o Ma,,. Reoý c",3

No. MJ/kg MPa g/m3  km/s K x 1O-' kg/kg

466 19.36 27.5 16.9 5.30 2360 5.34 0.92 N2 0.739

02 0.0569

NO 0.0339

N 1.26x 10-1

O 0.157

.467 17.46 27.5 18.5 5.05 2200 5.33 1.01 N2 0.736

02 0.0794

NO 0.0414

N 5.33x 10-6

O 0.130

468 16.45 30.0 21.1 4.92 2140 5.31 1.14 N2 0.733

02 0.0968

NO 0.0462

N 3.47x 10-6

O 0.110

469 22.15 27.5 15.2 5.63 2710 5.21 0.79 N2 0.744

02 0.0271

NO 0.0223

N 5.83x 10-'

O 0.193

Table A.8 Reservoir and freestream conditions for experiments using test gas air and a

sphere of 3 in. diameter.
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Shot ho P0 POO u" T.0  Mao Re,, c"00

No. MJ/kg MPa g/m 3  km/s K x 10-5 kg/kg

470 20.59 27.5 16.1 5.45 2500 5.30 0.87 N2 0.742

02 0.0428

NO 0.0287

N 2.38x 10-5

O 0.174

471 10.98 27.5 27.6 4.13 1540 5.36 1.57 N2 0.725

02 0.161

NO 0.0630

N 3.78x 10-8

O 0.0370

472 9.99 27.5 30.0 3.96 1410 5.40 1.74 N2 0.724

02 0.171

NO 0.0648

N 8.33 x10-9

O 0.0259

473 16.01 27.5 19.9 4.86 2070 5.33 1.14 N2 0.733

02 0.0982

NO 0.0474

N 2.49x 10-6

O 0.108

Table A.8(continued) Reservoir and freestream conditions for experiments using test gas

air and a sphere of 3 in. diameter.
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Shot ho Po P uo 0  T,. Mao. Reoo c"00

No. MJ/kg MPa g/m3  km/s K X 10-1 kg/kg

474 18.97 27.5 17.2 5.25 2320 5.35 0.94 N2 0.739

02 0.0615

NO 0.0355

N 1.04x 10-1

O 0.151

479 11.09 60.0 58.8 4.18 1670 5.29 3.21 N2 0.724

02 0.178

NO 0.0635

N 4.61 x 10-8

O 0.0195

481 16.45 60.0 41.6 4.97 2410 5.20 2.09 N2  0.731

02 0.129

NO 0.0504

N 5.22x 10-6

O 0.0759

482 19.73 60.0 35.8 5.37 2790 5.20 1.75 N2 0.736

02 0.0897

NO 0.0414

N 2.75 x 10-1

O 0.120

Table A.8(continued) Reservoir and freestream conditions for experiments using test gas

air and a sphere of 3 in. diameter.
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Shot ho P0 Poo U" Tw Ma. Re C"00

No. MJ/kg MPa g/mI km/s K X 10-5 kg/kg

497 9.81 25.0 27.8 3.93 1370 5.42 1.08 N2 0.724

02 0.171

NO 0.0650

N 5.91 x 10-'

0 0.0262

498 16.01 27.5 19.9 4.86 2070 5.33 0.73 N2 0.733

02 0.0982

NO 0.0474

N 2.49x 10-'

0 0.108

499 19.36 27.5 16.9 5.30 2360 5.34 0.61 N2 0.739

02 0.0569

NO 0.0339

N 1.26 x 10-'

0 0.157

504 10.39 75.0 77.5 4.08 1570 5.32 2.87 N2 0.724

02 0.186

NO 0.0640

N 1.30x 10"

0 0.0114

Table A.9 Reservoix and freestream conditions for experiments using test gas air and a

sphere of 2 in. diameter.
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Shot ho P0 Po u0 T, Mao Reo, c"00

No. MJ/kg MPa g/m3  km/s K x 10- kg/kg

505 14.98 75.0 56.0 4.78 2290 5.18 1.87 N2 0.729

02 0.153

NO 0.0552

N 2.16x 10- 6

O 0.0495

506 21.30 75.0 41.8 5.57 3060 5.18 1.32 N2 0.736

02 0.0809

NO 0.0408

N 6.17x 10-1

O 0.129

511 10.85 57.5 57.5 4.14 1620 5.30 2.11 N2 0.724

02 0.179

NO 0.0638

N 3.24x 10-1

O 0.0185

512 17.07 55.0 37.0 5.04 2460 5.20 1.24 N2 0.733

02 0.118

NO 0.0481

N 7.45 x 10-6

O 0.0886

Table A.9(continued) Reservoir and freestream conditions for experiments using test gas

air and a sphere of 2 in. diameter.
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Shot ho P0 Poo u To,:, Ma0. Reo0o c,00
No. MJ/kg MPa g/m 3  km/s K X 10-' kg/kg

513 20.56 55.0 31.8 5.47 2840 5.20 1.04 N2 0.738

02 0.0756

NO 0.0379

N 3.78x 10-1
O 0.136

Table A.9(continued) Reservoir and freestream conditions for experiments using test gas

air and a sphere of 2 in. diameter.

Shot ho P0 Poo u00 To. Mao,, Re 0o C8,00

No. MJ/kg MPa g/m3  km/s K x 10-1 kg/kg
519 10.66 57.5 58.4 4.11 1590 5.31 1.10 N2 0.724

02 0.180

NO 0.0640

N 2.39x 10-'
SO 0.0171

520 17.27 57.5 38.3 5.07 2500 5.19 0.65 N2 0.733

02 0.117

NO 0.0479

N 8.43 x10-6

O 0.0892

521 20.87 60.0 34.2 5.51 2930 5.17 0.57 N2 0.737

02 0.0763

NO 0.0382

N 4.75 x 10-'
0 0.135

Table A.10 Reservoir and freestream conditions for experiments using test gas air and a

sphere of 1 in. diameter.
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Shot h Po PO TPZ Ma. Re• c",0

No. MJ/kg MPa g/m3  km/s K x 10-1 kg/kg

203 8.52 60.0 106 3.18 2030 4.60 8.87 CO 2 0.722

02 0.0996

CO 0.177

C 8.64x 10-14

0 1.52x 10'

204 5.30 60.0 148 2.70 1410 4.62 14.0 C0 2 0.893

02 0.0388

CO 0.0678

C 1.63x10-1'6

O 3.93x 10-8

207 4.62 60.0 162 2.58 1260 4.69 16.0 CO 2 0.923

02 0.0279

CO 0.0488

C 1.77x 10-17

0 5.52x 101o

Table A. 11 Reservoir and freestream conditions for experiments using test gas carbon diox-

ide and a sphere of 6 in. diameter.
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Shot ho O o pCo u T0  Mac,, Re, c",0

No. MJ/kg MPa g/m 3  km/s K x 10-' kg/kg

188 7.47 60.0 117 3.03 1860 4.52 6.66 CO2 0.783

02 0.0787

CO 0.138

C 4.01 x 10-14

O 2.48x 10-1

189 8.52 60.0 106 3.18 2030 4.60 5.91 CO 2 0.722

190 02 0.0996

CO 0.177

C 8.64x 1014

0 1.52x 10-

191 13.51 60.0 70.9 3.85 2400 4.90 4.07 C0 2 0.419

02 0.191

CO 0.369

C 4.63x 10-'3

0 0.0199

192 6.85 60.0 125 2.94 1740 4.51 7.27 CO2 0.816

02 0.0669

CO 0.117

C 9.45x 10-'

O 3.58x 10 5

Table A. 12 Reserveir and freestream conditions for experiments using test gas carbon diox-

ide and a sphere of 4 in. diameter.
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Shot ho 0 PO PO U T Ma. 0 Re,, C"00

No. MJ/kg MPa g/M3  km/s K X 10-1 kgz/kg

488 11.35 22.5 32.6 3.49 2010 4.92 1.94 C0 2 0.459

02 0.185

CO 0.344

C 7.73x 10-1'

0 0.0115

489 4.50 25.0 71.6 2.52 1130 4.78 4.99 C0 2 0.897

490 02 0.0374

CO 0.0655

C 5.18x 1018

0 2.69x 10"

522 4.56 55.0 150 2.56 1240 4.71 9.96 C0 2 0.923

523 02 0.0281

CO 0.0492

C 1.01 X 10"1

0 3.03 x 10-

524 11.27 57.5 80.9 3.55 2260 4.77 4.53 C0 2 0.545

02 0.156

CO 0.289

C 3.24 x 10-13

0 9.16 x 10-3

Table A. 12(continued) Reservoir and freestream conditions for experiments using test gas

carbon dioxide and a sphere of 4 in. diameter.
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Shot ho Po Poo u" T,, Ma,,, Re,, c",0

No. MJ/kg MPa g/m3  km/s K X 10-' kg/kg

476 9.03 25.0 43.7 3.19 1850 4.69 1.94 CO 2 0.615

02 0.138

CO 0.245

C 2.36x 10-1

O 1.68x 10-3

477 11.12 25.0 36.7 3.47 2020 4.89 1.62 CO 2 0.482

02 0.178

CO 0.329

C 6.99x 10-13

O 9.95 x 10 3

485 10.63 57.5 85.1 3.46 2220 4.74 3.56 CO2 0.585

02 0.144

CO 0.264

C 2.68x 10-13

O 6.87x 10-3

486 4.56 55.0 150 2.56 1240 4.71 7.47 CO 2 0.923

02 0.0281

CO 0.0492

C 1.01 x 10-17

O 3.03x 10-1°

Table A. 13 Reservoir and freestream conditions for experiments using test gas carbon diox-

ide and a sphere of 3 in. diameter.
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Shot ho Po Po UO To Ma, Re• c,,0

No. MJ/kg MPa g/m3  km/s K X 10- kg/kg

500 4.50 25.0 71.6 2.52 1130 4.78 2.50 CO 2 0.897

509 02 0.0374

CO 0.0655

C 5.18x 10-1'

0 2.69x 10"

501 10.63 57.5 85.1 3.46 2220 4.74 2.37 C0 2 0.585

02 0.144

CO 0.264

C 2.68x 10-13

0 6.87 x 10-3

502 7.18 70.0 140 3.00 1850 4.50 3.98 C0 2 0.810

02 0.0690

CO 0.121

C 2.51 x 10-

0 1.42x 10-4

503 7.50 70.0 136 3.04 1910 4.52 3.30 C0 2 0.793

02 0.0750

CO 0.132

C 3.21 x lo-14

0 3.30x 10'

Table A.14 Reservoir and freestream conditions for experiments using test gas carbon diox-

ide and a sphere of 2 in. diameter.
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Shot ho Po poo u0  T00  Ma0 , Re, c"00

No. MJ/kg MPa g/m3  km/s K x 10-' kg/kg

510 7.99 50.0 93.7 3.10 1900 4.56 2.66 CO, 0.739

02 0.0941

CO 0.166

C 7.85x 10-14

O 6.05 x 10-1

515 11.95 25.0 34.4 3.58 2070 4.95 1.02 CO 2 0.432

02 0.191

CO 0.361

C 8.15x 10-13

O 0.0150

Table A. 14(continued) Reservoir and freestream conditions for experiments using test gas

carbon dioxide and a sphere of 2 in. diameter.

Shot ho Po POO uo To,, MaOO ReOO c.,0

No. MJ/kg MPa g/m 3  km/s K x 10-1 kg/kg

516 5.96 55.0 126 2.80 1530 4.56 1.68 CO 2 0.857

02 0.0521

CO 0.0912

C 1.56x10'-5

O 8.16x 10'

517 10.63 57.5 85.1 3.46 2220 4.74 1.04 CO 2 0.585

02 0.144

CO 0.264

C 2.68x 10-'

0 6.87 x 10-3

Table A. 15 Reservcir and freestream conditions for experiments using test gas carbon diox-

ide and a sphere of 1 in. diameter.


