REPORT DOCUMENTATION PAGE

PUBLIC REPORTING BURDEN FOR THIS COLLECTION OF INFORMATION IS ESTIMATED TO AVERAGE 1 HOUR PER RESPONSE, INCLUDING THE TIME FOR REVIEWING INSTRUCTIONS, SEARCHING EXISTING DATA SOURCES, GATHERING AND MAINTAINING THE DATA NEEDED, AND COMPLETING AND REVIEWING THE COLLECTION OF INFORMATION. SEND COMMENTS REGARDING THIS BURDEN ESTIMATE OR ANY OTHER ASPECT OF THIS COLLECTION OF INFORMATION, INCLUDING SUGGESTIONS FOR REDUCING THIS BURDEN, TO WASHINGTON HEADQUARTERS SERVICES, DIRECTORATE FOR INFORMATION OPERATIONS AND REPORTS, 1215 JEFFERSON DAVIS HIGHWAY, SUITE 1224, ARLINGTON, VA 22202-4302, AND TO THE OFFICE OF MANAGEMENT AND BUDGET, PAPERWORK REDUCTION PROJECT (0704-0188), WASHINGTON, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 July 10, 1995

3. REPORT TYPE AND DATES COVERED
 Final Report, 10/91 to 12/94

4. TITLE AND SUBTITLE
 Multiple Scattering Study Using Supercomputers

5. FUNDING NUMBERS
 DAAL03-91-G-0339

6. AUTHOR(S)
 W.C. Chew

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS
 University of Illinois
 1406, W. Green Street
 Urbana, IL 61801-2991

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
 U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

10. SPONSORING/MONITORING AGENCY REPORT NUMBER
 AR029205.6 - 65

11. SUPPLEMENTARY NOTES
 The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
 This report summarizes our study of multiple scattering using supercomputers. Our emphasis has been on using fast algorithms to solve such a class of problem so that the memory requirements and computational complexity are reduced compared to conventional methods. We have developed several algorithms to achieve this end. These include nested equivalence principle algorithm (NEPAL), BCG-FFT algorithm, BCG-FFT T-matrix algorithm, the multilevel fast multipole algorithm (MLFMA), and the fast far field approximation algorithm (FAFFA). All these algorithms account for multiple scattering effect within a volumetric scatterer or a surface scatterer with reduced computational complexity and memory requirements. Using BCG-FFT T-matrix algorithm, we have solve multiple scattering problem involving 10,000 particles on a SUN SPARC 10 workstation.

14. SUBJECT TERMS
 Electromagnetics, multiple scattering, fast algorithms

15. NUMBER OF PAGES
 4

16. PRICE CODE
 UL

17. SECURITY CLASSIFICATION OF REPORT
 UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE
 UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
 UNCLASSIFIED

20. LIMITATION OF ABSTRACT
 UNCLASSIFIED

DTIC QUALITY INSPECTED

STANDARD FORM 298 (Rev 2-89) PRESCRIBED BY ANSI Std Z39-18 1991-102
A. STATEMENT OF THE PROBLEM STUDIED

We propose to study multiple scattering effect using supercomputers. This will be accompanied by development of new and novel algorithms to solve such problems. These algorithms will have reduced memory requirements and computational complexity so that larger problems could be solved on present day computers within a shorter turn around time.

B. SUMMARY OF THE MOST IMPORTANT RESULTS

Our finding is that for small particles compared to wavelengths, the traditional method of calculating the extinction coefficient using the QCA-CP is reasonable. However, to date, we have not been able to confirm this for larger particles.

In addition to the above, we have developed several novel fast algorithms for solving multiple scattering effects. These include the nested equivalence principle algorithm (NEPAL), BCG-FFT algorithm, the BCG-FFT T-matrix algorithms, the multilevel fast multipole algorithm, and the fast far field approximation algorithm. All these algorithms can account for multiple scattering effect within a volumetric scatterer or a surface scatterer with reduced computational complexity, and memory requirements.

C. LIST OF ALL PUBLICATIONS AND TECHNICAL REPORTS

D. LIST OF ALL PARTICIPATING SCIENTIFIC PERSONNEL

1. Cai-Cheng Lu, Research Assistant (Ph.D., 1995)
2. Robert L. Wagner, Research Assistant
3. Olivier Franza, Research Assistant (M.S., 1994)
4. William H. Weedon, Research Assistant (Ph. D., 1994)
5. Jiun-Hwa Lin, Research Assistant
6. Mohammad Nasir, Research Assistant/Postdoc (Ph.D., 1994)
7. Xuguang Yang, Research Assistant
8. Jim Bowen, Research Assistant
9. Weng Cho Chew, Principal Investigator