
By

Kevin T. Mason
Jennifer P. Harper
and
Samuel G. Shannon

Aircrew Protection Division

August 1995

19950927 013

Approved for public release; distribution unlimited.

U.S. Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

KEVIN T. MASON
LTC(P), MC, MFS
Director, Aircrew Protection
Division

ROGER W. WILEY, O.D., Ph.D.
Chairman, Scientific Review Committee

Released for publication:

DENNIS F. SHANAHAN
Colonel, MC, MFS
Commanding

Mason, Kevin T., Harper, Jennifer P., and Shannon, Samuel G.

Final

The U.S. Army Aviation Epidemiology Data Register (AEDR) was queried for listings of Army aviators with the finding of herniated nucleus pulposus (HNP) for the 6-year period of 1987 to 1992. This study tabulated the incidence, age-specific annual rates of HNP, and the distribution of aeromedical dispositions for aircrew with HNP. The U.S. Army aviation medicine community can expect an annual incidence rate about 1 case of HNP per 1,000 aviators years. However, the incidence rate is increasing. Aviators about age 40 were at the greatest risk. About 7.4 percent of the aviators with HNP were removed permanently from Army flying duties due to HNP complications.
Table of contents

Page

List of tables ................................................................. 1
Military relevance ......................................................... 3
Background ................................................................. 3
Methods ................................................................. 3
Results ................................................................. 4
Discussion ............................................................... 6
Summary ............................................................... 6
References ............................................................... 7

List of tables

1. Incidence rate of HNP per 1,000 Army aviator-years by calendar year ..................... 4
2. Annual rate of HNP per 1,000 Army aviator-years by age at diagnosis .................... 5
3. Comparison of the required treatment for aviators with cervical and lumbar HNP .... 5
4. Aeromedical disposition outcomes of aviators with cervical and lumbar HNP ......... 6
Military relevance

Herniated nucleus pulposus (HNP) is a common cause of spinal pain and disability in the general population. Among aviators, the annual incidence and age-specific rates of HNP and risk of aeromedical termination from aviation service due to HNP are unknown. Study of the U.S. Army Aviation Epidemiology Data Register (AEDR) provided an analysis of HNP rates and outcomes in the U.S. Army aviator population.

Background

The operative experience of a single U.S. Air Force orthopedic clinic focused on HNP in flying military personnel. Sixty-six flying personnel underwent surgical treatment for HNP, with 22.7 percent being cervical HNPs and 77.3 percent lumbar. Presurgical trauma history, duration and pattern of symptoms, and surgical complications were described. Eighty-eight percent were returned to flying duties in a variety of tanker-bomber aircraft and the F-106 fighter aircraft (Myers, 1964).

A clinic for civilian flying personnel in Romania noted that during a 10-year period, 77 personnel were evaluated for suspected lumbar HNP. Of those, 14 had HNP and root syndrome, with 4 requiring surgical intervention. A few case histories were presented (Galiani et al., 1982).

Among 68 military flying personnel referred to a central diagnostic facility for chronic back pain, none had HNP. However, the authors concluded that radiologic survey for HNP was indicated in flying personnel with chronic back pain, especially if there was a history of back trauma (Delahaye, Pannier, and Tabusse, 1975).

Case-history studies relate high-G exposure to cervical HNP and bulging cervical intervertebral disks. Among eight cases of F-15 and F-16 aircrew members with cervical spine symptoms due to or aggravated by +G\textsubscript{Z} forces, three had HNPs at C5-6 and C6-7 (Schall, 1989). Among three cases of F-16B aircrew members who developed acute onset of neck pain during high-G maneuvers, two had bulging cervical intervertebral disks by magnetic resonance imaging (MRI). One had an HNP at C6-7, which required surgical intervention to decompress the spinal cord (Hamalainen et al., 1994).

Methods

All of the AEDR components were searched for records with ICD9-CM codes related to the finding of degenerative disc disease, herniated nucleus pulposus, lumbago, radiculopathy, and surgical procedures related to the spine. The search was for calendar years 1987 through 1992. The subjects were all U.S. Army aviators, to include Army civilian pilots. We reviewed the aeromedical board documents and consolidated AEDR medical histories for each case matching the search codes. Selected data elements were abstracted for analysis. These elements included Social Security
number, spinal level of the HNP, complications, procedures, medications, and other spinal findings. Other elements derived from the time of diagnosis included age, gender, component of service, height, weight, rotary- and fixed-winged flying hours, and final aeromedical disposition.

The diagnosis of HNP was defined as surgical evidence of HNP, and/or evidence of HNP by radiologic imaging combined with signs and symptoms consistent with the diagnosis of HNP. Cases with only degeneration of the spinal disc or bulging without herniation by radiologic or surgical examination were excluded. Final case selection was made by the first author.

An "aviator-year" was defined as an individual aviator undergoing a FDME in 1 calendar year. The aviator was assumed to be in the follow up cohort for that entire calendar year.

The relative risk with confidence intervals was calculated using the method of Katz (Kahn and Sempos, 1989). Rates were calculated using a computer spreadsheet program.

Results

The average annual incidence rate of HNP among Army aviators was about 1 per 1,000 aviator-years per year. Table 1 shows the incidence rate by calendar year. The incidence rate increased by fivefold from 1987 to 1992.

Table 1.
Incidence rate of HNP per 1,000 Army aviator-years by calendar year.

<table>
<thead>
<tr>
<th>Calendar year</th>
<th>Aviator-years</th>
<th>N</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>22,477</td>
<td>11</td>
<td>0.49</td>
</tr>
<tr>
<td>1988</td>
<td>22,417</td>
<td>12</td>
<td>0.54</td>
</tr>
<tr>
<td>1989</td>
<td>22,092</td>
<td>11</td>
<td>0.50</td>
</tr>
<tr>
<td>1990</td>
<td>21,830</td>
<td>16</td>
<td>0.73</td>
</tr>
<tr>
<td>1991</td>
<td>21,694</td>
<td>31</td>
<td>1.43</td>
</tr>
<tr>
<td>1992</td>
<td>19,653</td>
<td>51</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Table 2 shows the annual rate of HNP per 1,000 aviator-years by age at diagnosis, grouped in 5-year intervals. Middle-aged aviators were at the highest risk for the new diagnosis of HNP.
Table 2.
Annual rate of HNP per 1,000 Army aviator-years by age at diagnosis.

<table>
<thead>
<tr>
<th>Age at diagnosis</th>
<th>Mean annual aviator-years 1987 to 1992</th>
<th>N</th>
<th>Annual rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-24</td>
<td>1,065</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>25-29</td>
<td>4,651</td>
<td>14</td>
<td>0.50</td>
</tr>
<tr>
<td>30-34</td>
<td>4,529</td>
<td>16</td>
<td>0.59</td>
</tr>
<tr>
<td>35-39</td>
<td>3,854</td>
<td>35</td>
<td>1.51</td>
</tr>
<tr>
<td>40-44</td>
<td>4,782</td>
<td>46</td>
<td>1.60</td>
</tr>
<tr>
<td>45-49</td>
<td>2,036</td>
<td>15</td>
<td>1.23</td>
</tr>
<tr>
<td>50-54</td>
<td>536</td>
<td>3</td>
<td>0.93</td>
</tr>
<tr>
<td>55-59</td>
<td>187</td>
<td>3</td>
<td>2.68</td>
</tr>
<tr>
<td>60-72</td>
<td>39</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Among the 132 aviators, 25.8 percent had cervical HNPs, 74.2 percent had lumbar HNPs, and none had thoracic HNPs as shown in Table 3. Operative management was required in 66.6 percent of cases. Those with cervical HNPs were not at increased risk for operative management compared to those with lumbar HNPs (RR=0.961, CI<sub>0.95</sub>=0.723,1.28).

Table 3.
Comparison of the required treatment for aviators with cervical and lumbar HNP.

<table>
<thead>
<tr>
<th>HNP level</th>
<th>Operative</th>
<th>Nonoperative</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical HNP</td>
<td>22</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>Lumbar HNP</td>
<td>66</td>
<td>32</td>
<td>98</td>
</tr>
</tbody>
</table>

The final aeromedical disposition could not be determined in 7.5 percent of the aviators since they retired from aviation service coincidental with the timing of their HNP diagnosis and treatment. Among the remaining 122 aviators, 92.6 percent returned to aviation service with a waiver, as shown in Table 4.
Table 4.
Aeromedical disposition outcomes of aviators with cervical and lumbar HNP.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Cervical HNP</th>
<th>Lumbar HNP</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disqualified, left service</td>
<td>3</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Medical suspension</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Waiver recommended</td>
<td>29</td>
<td>84</td>
<td>113</td>
</tr>
<tr>
<td>N</td>
<td>34</td>
<td>98</td>
<td>132</td>
</tr>
</tbody>
</table>

Discussion

The incidence of HNP among U.S. Army aviators is increasing for unknown reasons. There was no change in aeromedical policy or disease reporting requirements related to HNP during the interval of the study. The increase in incidence rates may be due to the previously documented increase in the number of middle-aged aviators in our work force during the study period (Mason and Shannon, 1994; Shannon and Mason, 1994). It may be due to the increasing availability of MRI during the last few years as a new diagnostic tool for HNP.

Although HNP is accompanied often by disabling pain and neurologic deficits, we observed the chance for returning to flying duties after surgical or conservative management is good. This agrees with the similar findings of other authors (Myers, 1964).

There were no prior studies suitable for comparison to our findings. Most studies were limited to describing individual parameters, such as HNP by level, operative outcome, and conservative management outcome; but not together as in this study. Most studies failed to provide denominators, such as population size and age distribution. Most studies were limited to case-control studies of hospital referral populations, rather than investigations of primary care populations, such as a cohort of truck drivers in a large company with a system of reporting all major illnesses in the cohort.

Summary

HNP is an infrequent cause of medical disability among U.S. Army aviators, with an average annual incidence rate of 1 per 1,000 aviator-years per year over 6 years of observation. The incidence of HNP among U.S. Army aviators is increasing for unknown reasons. We speculate that this may be due to the increasing age of our cohort and/or due to the increased availability of MRI as a new diagnostic tool for HNP during the study period. Fortunately, the majority of aviators with HNP respond to surgical and/or conservative management, and are returned to flying duties.
References


Initial distribution

Commander, U.S. Army Natick Research, Development and Engineering Center
ATTN: SATNC-MIL (Documents Librarian)
Natick, MA 01760-5040

Chairman
National Transportation Safety Board
800 Independence Avenue, S.W.
Washington, DC 20594

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Commander, U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Executive Director, U.S. Army Human Research and Engineering Directorate
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 602-B
Warminster, PA 18974

Commanding Officer
Armstrong Laboratory
Wright-Patterson
Air Force Base, OH 45433-6573

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: SFAE-IEW-JS
Fort Monmouth, NJ 07703-5305

Director
Federal Aviation Administration
FAA Technical Center
Atlantic City, NJ 08405

Director
Walter Reed Army Institute of Research
Washington, DC 20307-5100
Commander, U.S. Army Foreign Science and Technology Center
AIFRTA (Davis)
220 7th Street, NE
Charlottesville, VA 22901-5396

Commander
Applied Technology Laboratory
USARTL-ATCOM
ATTN: Library, Building 401
Fort Eustis, VA 23604

Commander, U.S. Air Force
Development Test Center
101 West D Avenue, Suite 117
Eglin Air Force Base, FL 32542-5495

Aviation Medicine Clinic
TMC #22, SAAF
Fort Bragg, NC 28305

Dr. H. Dix Christensen
Bio-Medical Science Building, Room 753
Post Office Box 26901
Oklahoma City, OK 73190

Commander, U.S. Army Missile Command
Redstone Scientific Information Center
ATTN: AMSMI-RD-CS-R/ILL Documents
Redstone Arsenal, AL 35898

Aerospace Medicine Team
HQ ACC/SGST3
162 Dodd Boulevard, Suite 100
Langley Air Force Base,
VA 23665-1995

Commander
USAMRCM
ATTN: SGRD-ZC (COL John F. Glenn)
Fort Detrick, Frederick, MD 21702-5012

U.S. Army Research and Technology Laboratories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135

Dr. Eugene S. Channing
166 Baughman's Lane
Frederick, MD 21702-4083

U.S. Army Medical Department and School
USAMRDALC Liaison
ATTN: HSMC-FR
Fort Sam Houston, TX 78234

NVESD
AMSEL-RD-NV-ASID-PST
(Attn: Trang Bui)
10221 Burbeck Road
Fort Belvoir, VA 22060-5806

CA Av Med
HQ DAAC
Middle Wallop
Stockbridge, Hants S020 8DY UK

Dr. Christine Schlichting
Behavioral Sciences Department
Box 900, NAVUBASE NLON
Groton, CT 06349-5900

Commander
Aviation Applied Technology Directorate
ATTN: AMSAT-R-TV
Fort Eustis, VA 23604-5577

COL Yehezkel G. Caine, MD
Surgeon General, Israel Air Force
Aeromedical Center Library
P. O. Box 02166 I.D.F.
Israel