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Final Technical Report on AFOSR-90-0016
Statistical Benchmarks for Neural Network Performance
P.I: Terrence L. Fine, Thomas W. Parks

Period Covered: 1 November 1990-31 October 1992
PM: DZ‘. Ap Na:Chma-n

Abstract

Much of our effort was devoted to establishing statistical performance bounds for neu-
ral networks, acting as pattern classifiers, through improvements to Vapnik-Chérvanenkis
theory (VCT). This theory addresses the interrelationships between the complexity of a
network, the amount of training data, and the statistical reliability /performance of the
trained network on independent testing data. The troubling chasm between the predic-

‘tions of VCT and the experience of practitioners remains to be crossed. Our extensive

research into reductions of the sample size estimates produced by VCT and into other
improvements of the VCT arguments have yet to yield results of practical significance

on time series forecasting has been more successful. The continuation of this work under
NSF sponsorship has resulted in 2 state-of-the-art forecaster for short-term electric load
prediction.

Summary

As explained previously, at the outset of research we revised our program objectives
to concentrate on probabilistic studies of:

the ability an artificial neural network (ANN) to generalize, the core of the benchmarking
problem being approached through Vepnik-Chervonenkis theory (VCT);

the development of ANNs using discrete-valued nonlinear nodes such as the classical linear
threshold units;

the eability of neural networks to implement nonlinear forecasters.

Secondary objectives were to develop a graduate program in electrical engineering at Cor-
nell in the area of ANNs. Our ANN research group expanded to include several under-
graduates, one M.Eng.Elec., two M.S., and two Ph.D. students. We continue to offer the
only course in ANN at Cornell as well as a companion course on pattern classification that
surveys standard probabilistic approaches. This summer we expect to see that comple-
tion of the two M.S. programs, with the students advancing to the Ph.D. program, and
completion of one of the Ph.D. programs.

We turn now to review some of our results and this review wil overlap with our
previous interim technical report. Our study of VC theory attempted to understand its
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inadequacy as a guide to practice; VC theory predicts a need for training sample sizes that
are orders of magnitude greater than those used happily by practitioners. We made several
attempts, reported in Fine [1991], to lower the VC upper bound estimates of training
sample size n required to select a net n" whose error probability performance £° is within
e of the lowest error probability £9 achievable by nets in a given family/architecture A/
having a VC capacity/dimension V; VC theary estimates n = O(:1’- In é).‘ Even a small net
architecture can have V > 100 and € < .1 is far from stringent. VC theory then suggests
that successful training will require n = O(10°) a far larger training set than is used in all
but character recognition programs.

Our failures to reduce the VC upper bounds caused us to reconsider this problem and
led us to show that for any VC capacity V there exist architectures A; , V2 of this capacity
such that for A; we need n = O(%) to select a net n" whose performance is within e of the

€

performance of the best net 7° in Aj while for AV we require a saemple size n = O(%) This
latter result is within a factor of i log-} of the VC bound. More recent research improved
these estimates by studying the baseline case of 2 single linear-threshold-unit (perceptron)
operating on normally distributed data. We found e necessary relationship between these

parameters of
. v

n=——,
70¢?

Hence, any universal VC-type bound must be at least as great as this and it must be O().

In the meantime it wes reported that the mathematician M. Talagrand had obtained
the ‘best possible VC bounds’ and we were finally able to obtain a preprint of his paper this
past winter. Talagrand obtains the best possible exponents and his results prove that the
log% factor is not needed. However, his constants are undetermined and it is impossible to
obtain quantitative conclusions from his results without a large amount of difficult work.
Talagrand recognizes this and leaves the necessary calculetions to “those with a taste for
it”. It is clear from our result quoted above for the perceptron, that the issue has become
one of the ‘constants’. Our Jower bound and his upper bound are both O(%). Our research
on this problem continues, although we have yet to discern a general argument for reducing
the VC bounds. Indeed, we have come to suspect, and are attempting to verify, that the
VC bounds are roughly correct for the problem they address of uniform approximation.
The gap between theory and practice may arise from the difference in sample sizes required
to guarantee that all networks will have training set performance within ¢ of their of their
true statistical performance and the sample size required to guarantee this for just the
network selected by the training algarithm. The difficulty is in assessing this quantity.

Our second direction of research is in the application of neural networks to prediction
and to classification. We have studied the use of discrete— valued nodes (binary or ternary
valued) as pattern classifiers (Fine [1991)). We are also engaged in an application of neural
networks, having the usual logistic units, to forecasting/demand for electric power to be
supplied by a large electric utility over the next 24 hours (Yuan and Fine [1992,1993)).
Such forecasts are of economic importance and impact unit cormmitment and possible
purchases from, and sales of power to, other utilities. Experience with nets composed
of only discrete-valued nodes led us to an architecture combining 2 linear predictor with™
a small net of ternary-valued nodes to nonlinearly forecast the residuals. However, we
encountered sparsity problems with our training method and abandoned this direction in

2

-
P




: — P.5
.« APR 14 ’95 11:14AM A L

favor of small nets (2bout five logistic nodes and about twenty weights). This compares
with much more complex nets (several hundred weights) that have been reported in the
literature on forecasting demand. We suspect that in many of the reported nets, most of
the logistic nodes are actually operating over their linear region and can be combined into
a single node. Nor could such designs yield reliable nonlinear forecasters for the number
of weights to be trained was usually comparable to the number of training samples.

To essist our design of smal networks, we developed a new festure selection criterion
that enables us to reduce a large number (about fifty) of potential network inputs to
between one and three inputs. In our application to load forecasting these small networks
performed as well as any other method that had been used on this problem. This study
will enable us to benchmark our neura) net design against the working methods employed
by electric utilities.
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3. Yuan, J.L., T.L. Fine [1992], “Forecasting Demand for Electric Power Using Autore-
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Pub., Palo Alto, to appear.




