A METHOD FOR SIMULTANEOUSLY ENHANCING THE TRANSITION TEMPERATURE AND INCREASING MECHANICAL STRENGTH OF YTTRIUM BARIUM COPPER OXIDE (YBa$_2$Cu$_4$O$_8$)

Robert D. Finnegan
Arthur Tauber
Steven C. Tidrow
William D. Wilber
Herbert A. Leupold
Michelle M. Dornath-Mohr

ARL-TR-428

April 1995
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.
A METHOD FOR SIMULTANEOUSLY ENHANCING THE TRANSITION TEMPERATURE AND INCREASING MECHANICAL STRENGTH OF YTTRIUM BARIUM COPPER OXIDE (YBa2Cu4O8)

Robert D. Finnegan, Arthur Tauber, Steven C. Tidrow, William D. Wilber, Herbert A. Leupold, and Michelle M. Domath-Mohr

US Army Research Laboratory (ARL)
Physical Sciences Directorate
ATTN: AMSRL-PS-EC-H
Fort Monmouth, NJ 07703-5601

Y124 can be heated to 850 deg C without serious O2 loss, and also Y123 loses O2 from its structure at temperatures above 400 deg C. Partial substitution of Ca for Y and of Li for Cu raised the transition temperature (Tc) and enhanced sintering in Y1Ba2Cu4O8. We measured the critical temperature by two methods; a microwave technique (RF) which measures the surface resistivity at 35 GHz, and an AC technique which measures the magnetic screening provided by the whole sample. Twelve samples of Y124 or Y1-zCazBa2Cu4-xLixO8 were prepared; a summary is presented. It is desirable to have a thin film of Y124 for device applications; we have not been successful at this endeavor.
A METHOD FOR SIMULTANEOUSLY ENHANCING THE TRANSITION TEMPERATURE AND INCREASING MECHANICAL STRENGTH OF YTTRIUM BARIUM COPPER OXIDE (YBa$_2$Cu$_4$O$_8$)

INTRODUCTION

In December 1986 High Temperature Superconductors (HTSs) were discovered. These materials promise to provide thin film electronic circuit components with higher speed, smaller size, increased sensitivity and reduced noise. One of the most popular HTS materials is YBa$_2$Cu$_3$O$_7$ (Y123) which shows a transition temperature (T_C) of 89.5 to 91K.

Unfortunately, Y123 has some disadvantages that limit its technological usefulness. For example, its microwave applications are limited by a phase transition at 700°C at which twinning and stress arise that increase the resistivity of the film's surface. Y123 also loses O$_2$ at temperatures above 400°C resulting in a reduction of T_C and a broadening of the transition. This is especially troublesome in the fabrication of multiple layer devices because deposition of successive layers requires heating which degrades the underlying layers by causing O$_2$ loss.

YBa$_2$Cu$_4$O$_8$ (Y124) was found to have a slightly lower range of T_C from 82-90K, but to be free from deleterious characteristics in the temperature range used for most device fabrication (500-825°C). Y124 can be heated to 850°C without serious O$_2$ loss. It was also found that further improvements are attainable through chemical substitutions at 760 Torr of O$_2$ and higher pressures. The substitutions are Ca for Y to raise the T_C and Li for Cu to enhance sintering. In this report we describe the preparation of Y124 and (Y124 with substitutions of Ca and Li).

SAMPLE PREPARATION

PREPARATION AND PROPERTIES OF POLYCRYSTALLINE Y124 AND Y$_{1-z}$Ca$_z$Ba$_2$Cu$_4$$_xLi_xO_8$

Measurements of the critical temperature (T_C) were made by two methods; a microwave technique (referred to here as the RF technique) which measured the surface resistivity at 35 GHz, and an AC technique which measured the magnetic screening provided by the sample. For any sample, the transition temperature measured by the RF technique will be slightly different from the T_C determined by the AC technique for two main reasons. First, the thermocouple in the RF measurement is closer to the sample than is the temperature sensor in the AC system. Second, the RF technique measures only the electrical properties of the one surface that is facing the cavity, while in the AC method, the entire bulk of the sample contributes to the magnetic screening. Because of the differences in the two systems, the T_C and the transition width for any sample will depend upon the measurement technique used. For several samples discussed here, results from both the RF and the AC methods are reported.

Twelve samples of Y124 or Y$_{1-z}$Ca$_z$Ba$_2$Cu$_4$$_xLi_xO_8$ were prepared as summarized in Table 1. Polycrystalline specimens were prepared from two different precursors. One precursor was a gel prepared by dissolving stoichiometric amounts of nitrates of copper, barium, and yttrium in aqueous solution and the addition of Knox® gelatin to produce a gel. The gel was slowly dried at 38°C in a vacuum oven. The second precursor was a mixture of CuO, BaCO$_3$ and Y$_2$O$_3$. These oxides were weighed out in stoichiometric amounts and mixed by grinding together in a boron carbide mortar and pestle. Ca and lithium were added as CaCO$_3$ and Li$_2$CO$_3$ in stoichiometric amounts.
Table 1. Preparation and Results

<table>
<thead>
<tr>
<th>Sample #</th>
<th>T_c by AC Susceptibility (K) (cool down)</th>
<th>T_c by RF Surface Resistivity (K) (cool down)</th>
<th>Manner of Preparation of Bulk</th>
<th>Sample Compound</th>
<th>Process (C)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>nitrates and gelatin; heated in O$_2$; fired in O$_2$</td>
<td>aim at Y$_{124}$</td>
<td></td>
<td>superconducting but not Y${124}$; XRD contained both Y${123}$, Y$_{124}$</td>
</tr>
<tr>
<td>2</td>
<td>77.9 (width 4.2)</td>
<td>77.4 (width 5.2)</td>
<td>fired in helium; 775-825°C for 20 hours; nitrates and gelatin</td>
<td>aim at Y$_{124}$</td>
<td>775-825°C for 20 hours</td>
<td>Y$_{124}$ partially achieved</td>
</tr>
<tr>
<td>3</td>
<td>78.4 (width 4.2)</td>
<td>63.8 (width 60.5)</td>
<td>nitrates and gelatin; fired in vacuum; 775-825°C for 68 total hours; in O$_2$</td>
<td>aim at Y$_{124}$</td>
<td>ground powdered gel</td>
<td>tried to make Y${124}$, made Y${123}$; poor result; XRD gave Y${123}$ with some Y${124}$</td>
</tr>
<tr>
<td>4</td>
<td>61.5 (width 13)</td>
<td></td>
<td>powder mixed in mortar; sinter in vacuum 750°C, 48 hours</td>
<td>aim at Y$_{124}$</td>
<td>750°C for 48 hours O$_2$ flow; then 4 days at 800°C</td>
<td></td>
</tr>
<tr>
<td>5A</td>
<td>76.6 (width 6.8)</td>
<td></td>
<td>powder mixed in mortar</td>
<td>first successful attempt to produce Y$_{124}$</td>
<td>800°C for 96 hours with O$_2$ flow</td>
<td>XRD gave Y$_{124}$</td>
</tr>
<tr>
<td>5B</td>
<td>85.4 (width 4.1)</td>
<td></td>
<td>powder mixed in mortar</td>
<td></td>
<td>920°C in O$_2$ for 4 minutes; 750°C for 1 minute; 450°C for 2 hours in O$_2$</td>
<td>XRD gave Y$_{123}$ + CuO</td>
</tr>
<tr>
<td>6A</td>
<td>no resistivity RF resonance</td>
<td>powder mixed in mortar</td>
<td></td>
<td></td>
<td>825°C for 100 hours with O$_2$ flow</td>
<td>XRD gave Y$_{124}$</td>
</tr>
<tr>
<td>6B</td>
<td>74.0 got resonance</td>
<td>powder mixed in mortar</td>
<td></td>
<td></td>
<td>825°C for 100 hours with O$_2$ flow</td>
<td>XRD gave Y$_{124}$</td>
</tr>
<tr>
<td>6C</td>
<td>79.2 (width 7.2)</td>
<td>there was resonance</td>
<td>powder mixed in mortar</td>
<td></td>
<td>825°C for 100 hours with O$_2$ flow</td>
<td>XRD gave Y$_{124}$</td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>powder mixed in mortar</td>
<td></td>
<td>sinter at 825°C for 100 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>73.5 (width 4.4)</td>
<td>powder mixed in mortar</td>
<td>Ce sub $Z = .025$</td>
<td>calcine 790°C in vacuum; hold for 48 hours; down slowly to 100, sinter 825°C for 100 hours in O$_2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...Table 1 continued on following page.
Table 1. Preparation and Results (continued)

<table>
<thead>
<tr>
<th>Sample #</th>
<th>T_c by AC</th>
<th>T_c by RF Surface Resistivity</th>
<th>Manner of Preparation of Bulk</th>
<th>Sample Compound</th>
<th>Process (C)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>9A</td>
<td>69.4</td>
<td>(cool down)</td>
<td>powder mixed in mortar; calcine at 770C in vacuum; (sinter 825C for 120 hours)</td>
<td>Ca sub Z = .05 Y,95 Ca .05 Ba2 Cu4 O8</td>
<td>(in Al2 O3 boat in quartz tube 800C in O2 for 48 hours; cooled to 300C in O2); made a thin film by pulsed laser ablation 150 mTorr O2; film was shiny but XRD gave Y123+Cu O</td>
<td>film had retreated from the edges and changed from Y124 to Y123 by laser action in O2 atmosphere</td>
</tr>
<tr>
<td>9B</td>
<td></td>
<td></td>
<td>Calcine 770 for 70 hours; sintered at 825 in O2 for 120 hours</td>
<td>Ca sub Z = .05 Y,95 Ca .05 Ba2 Cu4 O8</td>
<td>heat 920C for 1-4 minutes</td>
<td>Y123 +CuO by XRD</td>
</tr>
<tr>
<td>9C</td>
<td>75</td>
<td>(width 2)</td>
<td>powder mixed in mortar</td>
<td>Ca sub Z = .05 Y,95 Ca .05 Ba2 Cu4 O8</td>
<td>Calcine 775C vacuum for 60 hours; sinter 825C for 120 hours with O2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>lowest surface resistivity</td>
<td></td>
<td>Ca sub Z = .025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>powder mixed in mortar; axial press 3.45 x 10^7 Pa; isostatic 3.45 x 10^8 Pa</td>
<td>2 Ba F2 + ½ Y2 O3 + 4 Cu O</td>
<td>800C in 6 hours; hold 12 hours; cool 10 hours</td>
<td>XRD lattice constant contraction; XRD did not yield Y124; brown thin film; very large resistance; annealed at 800C for 2 hours in O2; XRD showed peaks of MgO and several small peaks which could be Y123 or Y124</td>
</tr>
<tr>
<td>12</td>
<td>68.9</td>
<td>59.8 (width 5.8)</td>
<td>powder mixed in mortar</td>
<td>Li sub X = .05</td>
<td>laser ablation 730C + pres 250 mTorr</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Ca sub gives low surface resistance 120 m Ω at 34K and 35 GHz.

Width is the spread in the temperature reading.
Samples #1-3 were prepared from the nitrate precursors. The dried gel for these samples was ground to a powder, placed in an alumina crucible, and fired in either oxygen (sample #1), helium (sample #2), or vacuum (sample #3). In general, samples #1-3 contained both the Y123 and Y124 phases. Sample #2, which was fired at 775-825°C for 20 hours, showed a T_C (RF) of 78.7K and a transition width of 6.6K. For the sample, the AC technique showed a T_C of 76.3K and a transition width of 3.4K. No T_C measurement of sample #3 was attempted because the X-ray Diffraction (XRD) showed that the primary phase was Y123.

Samples #4-12 were prepared from the constituent oxides and carbonates. For all of these samples, the powders were mixed by mortar and pestle, pressed into a disk in a uniaxial press at 5.52×10^7 Pa and calcined at 750°C for 48 hours and then calcined at 790°C for 48 hours. The disk was then reground with mortar and pestle, repressed with a uniaxial press to 5.52×10^7 Pa, pressed isostatically to 3.45×10^8 Pa and sintered at 825°C for 100 hours.

Samples #4-7 were prepared from a stoichiometric Y124 powder composition. Sample #4 was sintered in vacuum at 750°C for 48 hours, and then in flowing O$_2$ for 48 hours at 750°C, and then held at 800°C for 4 days. Sample #5A was mixed as a powder of precursors, pressed into a 1.59 cm disk and put into a furnace in an Al$_2$O$_3$ boat in flowing O$_2$; the temperature was raised in O$_2$ to 800°C and held for 66 hours. Our XRD measurements showed excellent agreement with XRD literature for Y124. This was the first complete synthesis of Y124. At best all preceding samples were a mixture of Y123 and Y124.

For sample #5B, the furnace was heated to 920°C and then an O$_2$ flow was initiated. The sample was then pulled from the cool end into the hot zone, held for 4 minutes at 920°C, removed from the hot zone and cooled to 750°C, held at 750°C for one minute. The sample was then pulled to the cool zone, the furnace was lowered to 450°C, the sample was held at 450°C for 2 hours in O$_2$ and then pulled to the cool zone and removed. XRD showed mostly Y123 with the possibility of some Y$_2$BaCuO$_2$ and CuO; the extra phases were difficult to detect because of the Y123 reflections.

Sample #6A was treated the same as Sample #5A except that it was heated to 825°C for 100 hours. Attempts to measure RF surface resistivity were unsuccessful. XRD gave Y124 as the compound. Sample #6B had XRD of Y124 with an RF resistivity resonance T_C of 74.0K.

Sample #6C: precursors were mixed in a boron carbide mortar and made into two 1.59 cm disks. The disks were put into an Al$_2$O$_3$ boat in O$_2$, heated 825°C for 100 hours. AC susceptibility measurements of T_C gave an average reading of T_C=79.2K. Sample #7, powder mixed in mortar, gave AC susceptibility T_C of 80K.

Sample #8 is Ca substituted Y124, $Y_{1-2}Ca_zBa_2Cu_4O_8$, $z = .025$. Loose powder was pressed into Al$_2$O$_3$ crucible and calcined to 790°C in vacuum; held for 48 hours then slowly cooled to 100°C. The powder was reground and was axially pressed into a 1.59 cm disk, and was sintered 100 hours at 825°C in O$_2$; subsequently it was slowly cooled to room temperature and removed. An AC susceptibility T_C of 73.5K was obtained.

For Sample #9A, Ca substituted, $z = .05$, $x = 0$, the AC susceptibility gave T_C average = 69.45K width 3.1K. A calcining of Sample #9A was done at 770°C in vacuum and a sintering was done at 825°C for 120 hours. A laser ablated thin film from a Y124 target, No AT-9, was deposited at 150 mTorr pressure of O$_2$. The film was shiny and exhibited a Y123 + CuO in XRD. The film was placed in an alumina boat in a quartz tube and was heated to 800°C in O$_2$. Subsequently the film was held for 48 hours at 800°C and cooled to 300°C in O$_2$, then held over the weekend at 300°C, then removed. The shiny film dulled somewhat. The film had retreated from the edges. (The left hand rectangle represents the film out to the edges; the right hand rectangles represent the film in the center pulled away from the edges.)
Sample #9B; Y124 (.05 Ca for Y), underwent calcining in vacuum at 770°C for 70 hours after which the sample was reground and made into disks 1.59 cm; then sintered at 825°C in O₂ for 120 hours.

Sample #9C is Y₁₋₂Ca₂Ba₂Cu₄O₈; z = .05, x = 0. The weighed out precursors of Sample #9C were mixed by hand in a boron carbide mortar and pestle (t = 1/2 hour). Sample #9C was packed into an alumina boat and was slowly raised to 775°C under vacuum; held for 60 hours; cooled slowly in O₂ till room temperature was reached and removed. The powder was reground and pressed into 1.59 cm disks and sintered at 825°C for 120 hours with O₂. Tc by AC susceptibility was 75K.

PREPARATION OF THIN FILM Y124 BY LASER ABLATION

Preparation of Y124 laser oblation target: 2BaF₂ + 1/2 Y₂O₃ + 4 CuO were weighed out.

Sample #10, Y124 (.025 Ca for Y) had the lowest surface resistivity to date.

Sample #11: After the usual mixing of the constituents the powder was pressed at 3.45 x 10⁷ Pa in an axial die into 3.18 cm disk; this was followed by isostatic pressing at 3.45 x 10⁸ Pa. The disk was heated to 800°C in 6 hours, then was held at 800°C for 12 hours and was cooled for 10 hours to room temperature.

Sample #12, YBa₂Cu₃.₉₅Li₅.₀₅O₈ was prepared in the usual way by mixing the powder by hand with boron carbide mortar and pestle. XRD gave Y124 with contraction of all the lattice parameters. Tc average as determined by AC susceptibility was 68.9K. Tc average as determined by RF surface resistivity measurements was 59.8K width 5.8. Sample #12 was used as a target for laser ablation of Y124 on a MgO substrate being held at 730°C during deposition and a pressure of 250 mTorr applied during ablation. The resulting film was brown, not shiny, and exhibited a very large resistance. The film was annealed for 2 hours at 800°C in O₂ flow and slowly cooled to room temperature in O₂. This pulsed laser ablated film then was examined by XRD and showed peaks of MgO (200) and several small peaks, some of which could be read as beginnings of Y123 or Y124.

CONCLUSIONS

Substitution of Ca for Y results in an increase in Tc. Y₁₋₂Ca₂Ba₂Cu₄O₈ with z = .05 gave the maximum rise in Tc = 3K from 82-85K followed by a reduction in Tc with increasing Ca. Li substituted for Cu causes enhanced sintering and increases the mechanical strength of Y₁₋₂Ca₂Ba₂Cu₄₋ₓLiₓO₈.

Ca substituted 124 yields a low surface resistance of about 120 mΩ at 34K and 35 GHz.

Thin films of Y₁₋₂Ca₂Ba₂Cu₄₋ₓLiₓO₈ have two principal advantages in microwave applications. They do not undergo a phase transition at 700°C as YBa₂Cu₃O₇ does and consequently show no twinning and stress defects. Secondly, Y₁₋₂Ca₂Ba₂Cu₄O₈ is stable with respect to oxygen loss up to the decomposition temperature of 850°C. Attempts to prepare thin films of Y124 on MgO substrata were unsuccessful. Perhaps a method of silk screening would afford a film of Y124.

We have been making thin films of Y123 routinely by laser ablation. Fabrication of Y123 targets by standard solid state ceramic technology is straightforward. We have prepared ceramic targets of Y124. Attempts to prepare thin films of Y124 from these targets have not been successful primarily because an oxygen pressure of 150 mTorr to 250 mTorr at 730°C is required for pulsed laser ablation.
REFERENCES

Defense Technical Information Center*
ATTN: DTIC-OCC
Cameron Station (Bldg 5)
Alexandria, VA 22304-6145
(*Note: Two copies will be sent from STINFO office, Fort Monmouth, NJ)

Director
US Army Material Systems Analysis Actv
ATTN: DRXSY-MP
(1) Aberdeen Proving Ground, MD 21005

Commander, AMC
ATTN: AMCDE-SC
5001 Eisenhower Ave.
Alexandria, VA 22333-0001

Director
Army Research Laboratory
ATTN: AMSRL-D (John W. Lyons)
2800 Powder Mill Road
(1) Adelphi, MD 20783-1145

Director
Army Research Laboratory
ATTN: AMSRL-DD (COL Thomas A. Dunn)
2800 Powder Mill Road
(1) Adelphi, MD 20783-1145

Director
Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783-1145
(1) AMSRL-OP-SD-TA (ARL Records Mgt)
(1) AMSRL-OP-SD-TL (ARL Tech Library)
(1) AMSRL-OP-SD-TP (ARL Tech Publ Br)

Directorate Executive
Army Research Laboratory
Physical Sciences Directorate
Fort Monmouth, NJ 07703-5601
(1) AMSRL-PS
(1) AMSRL-PS-T (M. Hayes)
(1) AMSRL-OP-RM-FM
(22) Originating Office

Advisory Group on Electron Devices
ATTN: Documents
2011 Crystal Drive, Suite 307
(2) Arlington, VA 22202
Deputy for Science & Technology Office, Asst Sec Army (R&D) (1)
Washington, DC 20310

Cdr, Marine Corps Liaison Office
ATTN: AMSEL-LN-MC (1)
Fort Monmouth, NJ 07703-5033

HQDA (DAMA-ARZ-D/Dr. F.D. Verderame) (1)
Washington, DC 20310

Director
Naval Research Laboratory
ATTN: Code 2627 (1)
Washington, DC 20375-5000

USAF Rome Laboratory
Technical Library, FL2810
ATTN: Documents Library
Corridor W, STE 262, RL/SUL
26 Electronics Parkway, Bldg 106
Griffiss Air Force Base (1)
NY 13441-4514

Dir, ARL Battlefield Environment Directorate
ATTN: AMSRL-BE
White Sands Missile Range (1)
NM 88002-5501

Dir, ARL Sensors, Signatures, Signal & Information Processing Directorate (S3I)
ATTN: AMSRL-SS
2800 Powder Mill Road (1)
Adelphi, MD 20783-1145

Dir, CECOM Night Vision/Electronic Sensors Directorate
ATTN: AMSG-RD-NV-D (1)
Fort Belvoir, VA 22060-5677

Dir, CECOM Intelligence and Electronic Warfare Directorate
ATTN: AMSG-RD-IEW-D
Vint Hill Farms Station
Warrenton, VA 22186-5100