IMPROVED METHOD FOR CALCULATING EXACT GEODE蒂C LATITUDE AND ALTITUDE

BY ISAAC SOFAIR

STRAEGIC AND SPACE SYSTEMS DEPARTMENT

APRIL 1995

Approved for public release; distribution is unlimited.
FOREWORD

The work described in this report was performed in the Fire Control Formulation Branch (K41), Submarine Launched Ballistic Missile (SLBM) Research and Analysis Division, Strategic and Space Systems Department, and was authorized under Strategic Systems Program Office Task Assignment 36401. This work was necessitated by the need to formulate an exact method of computing geodetic latitude and altitude whose chief attribute is the absence of singularities in the results.

This report is a refined version of NSWC TR 85–85, dated April 1985 and revised May 1986. NSWC TR 85–85 should be discarded.

This report has been reviewed and approved by Davis Owen; Johnny Boyles; Carol Rose, Head, Fire Control Formulation Branch; and Dr. David Lando, Head, SLBM Research and Analysis Division.

Approved by:

R. L. SCHMIDT, Head
Strategic and Space Systems Department
INTRODUCTION

A simple and efficient model is presented for calculating the exact geodetic latitude and altitude of an arbitrary point in space, given the coordinates of that point. The model assumes the Earth to be an oblate spheroid; i.e., an ellipsoid of revolution whose semimajor axis ‘a’ is the radius of the circle described by the equatorial plane, and whose semiminor axis ‘b’ is a line joining its center and one of its poles. The point in question can be either inside or outside the Earth ellipsoid, excluding a small open region bounded by a prolate spheroid that is concentric with and contained within the Earth ellipsoid. The cardinal merit of this model is the absence of singularities in the results.

FORMULATION

Choose an Earth-fixed Cartesian coordinate system whose origin coincides with the center of the Earth ellipsoid. The unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} coincide with the x, y, and z axes, respectively. The +z axis points in the direction of the North Pole. The +x axis is the line of intersection of the equatorial plane with the plane of zero longitude. The +y axis completes a right-handed coordinate system.

An equation of the ellipsoid in this frame is

$$\frac{r^2}{a^2} + \frac{z^2}{b^2} = 1, \text{ where } r = \sqrt{x^2 + y^2}.$$

Let $P(x_0, y_0, z_0)$ be the coordinates of the given point. It is desired to find the nearest point $P'(x, y, z)$ to P on the surface of the ellipsoid.

The slope of a normal to the ellipsoid at any point on its surface is given by

$$-\frac{dz}{dr} = \frac{a^2 z}{b^2 r}, \text{ where } \frac{r^2}{a^2} + \frac{z^2}{b^2} = 1.$$

(2)

Therefore, the slope of a normal from P is

$$\frac{z_0 - z}{r_0 - r} = \frac{a^2 z}{b^2 r}, \text{ where } r_0 = \sqrt{x_0^2 + y_0^2};$$

i.e.,

$$(r_0 - r)a^2 z = (z_0 - z)b^2 r,$$
or

\[r_0a^2z = r\left\{(a^2 - b^2)z + b^2z_0\right\}. \]

Squaring both sides and expressing \(r \) in terms of \(z \),

\[a^2b^2r_0^2z^2 = \left(b^2 - z^2\right)\left\{(a^2 - b^2)z + b^2z_0\right\}^2. \]

Writing the above equation in descending powers of \(z \), the following quartic in \(z \) is obtained:

\[\left(a^2 - b^2\right)z^4 + 2b^2\left(a^2 - b^2\right)z_0z^3 + b^2\left(a^2r_0^2 + b^2z_0^2 - \left(a^2 - b^2\right)^2\right)z^2 - 2b^4\left(a^2 - b^2\right)z_0z - b^6z_0^2 = 0. \]

Since \(z \) is either positive or negative and \(\text{sign } z = \text{sign } z_0 \), the above quartic can be expressed in terms of \(|z| \). The result is

\[|z|^4 + 2p|z|^3 + q|z|^2 - 2pb^2|z| - p^2b^2 = 0, \]

where

\[p = \frac{b^2|z_0|}{a^2 - b^2} = \frac{|z_0|}{e^2}, \]

\[q = \frac{b^2\left(a^2r_0^2 + b^2z_0^2 - \left(a^2 - b^2\right)^2\right)}{(a^2 - b^2)^2} = p^2 - b^2 + \frac{r_0^2}{e^2e'^2}, \]

where

\[e^2 = 1 - \frac{b^2}{a^2}, \quad e'^2 = \frac{a^2}{b^2} - 1. \]

Two of three powerful theorems in the Theory of Equations will now be employed to expose the nature of the roots of Equation (3). The third theorem will be needed later on. These theorems are found in the reference.

I. An equation \(f(x) = 0 \) cannot have more positive roots than there are changes of sign in \(f(x) \), and cannot have more negative roots than there are changes of sign in \(f(-x) \).

II. Every equation that is of an even degree and has its last term negative has at least two real roots, one positive and one negative.

III. Every equation of an odd degree has at least one real root whose sign is opposite to that of its last term.

By observing Equations (3), (4), and (5), the following conclusions are deduced:

(i) Since the last term of Equation (3) is negative, there are at least two real roots of opposite sign (using II).

(ii) Since there is only one change of sign in Equation (3), there is at most one positive root (using I).

From (i) and (ii), it is seen immediately that Equation (3) has exactly one positive root, and this is the root that is sought.

The solution of Equation (3) is effected by a standard method known as Ferrari’s method\(^1\). In the equation

\[
|z|^4 + 2p|z|^3 + q|z|^2 - 2pb^2|z| - p^2b^2 = 0 ,
\]

add to each side \((c|z|+d)^2\), the quantities c and d being determined so as to make the left-hand side a perfect square; then

\[
|z|^4 + 2p|z|^3 + (q + c^2)|z|^2 + 2(cd - pb^2)|z| + d^2 - p^2b^2 = (c|z| + d)^2 .
\]

Suppose that the left side of the equation is equal to \((|z|^2 + plz + t)^2\), then comparing the coefficients,

\[
p^2 + 2t = q + c^2, \quad pt = cd - pb^2, \quad t^2 = d^2 - p^2b^2 . \tag{6}
\]

Eliminating c and d from these equations,

\[
p^2(t + b^2)^2 = (2t + p^2 - q)(t^2 + p^2b^2) ,
\]

or

\[
2t^3 - qt^2 - p^2b^2(q - p^2 + b^2) = 0 ,
\]

or

\[
2t^3 - qt^2 - \frac{p^2b^2 + q^2}{e^2e'^2} = 0, \text{ using Equation (5)}
\]

or

\[
2t^3 - qt^2 - \frac{a^2b^2 + \epsilon^2}{e^2} = 0 . \tag{7}
\]

Applying Theorems I and III to Equation (7), we see that Equation (7) has exactly one positive root. The solution of Equation (7) is accomplished by a standard method known as Cardan’s Solution\(^1\). Eliminating the \(t^2\) term in Equation (7) by making the substitution

\[
t = t' + \frac{q}{6} ;
\]
i.e.,

\[2 \left(t' + \frac{q}{6}\right)^3 - q \left(t' + \frac{q}{6}\right)^2 - \frac{a^2 r_0^2 z_0^2}{\varepsilon^8} = 0 , \]

then

\[t'^3 + Ft' + H = 0 , \]

where

\[F = -\frac{q^2}{12}, \quad H = -\frac{q^3}{108} - \frac{a^2 r_0^2 z_0^2}{2\varepsilon^8} . \]

The solution of Equation (8) is

\[t' = \left(\sqrt[3]{\frac{H^2}{4} + \frac{F^3}{27}} - \frac{H}{2}\right)^{\frac{1}{3}} - \left(\sqrt[3]{\frac{H^2}{4} + \frac{F^3}{27}} + \frac{H}{2}\right)^{\frac{1}{3}} . \]

Equation (9) is valid provided that

\[\frac{H^2}{4} + \frac{F^3}{27} \geq 0 . \]

We have

\[H = -\frac{q^3}{108} - \frac{a^2 r_0^2 z_0^2}{2\varepsilon^8} = -\frac{2}{6^3} (q^3 + 2P) , \]

where

\[P = \frac{27a^2 r_0^2 z_0^2}{\varepsilon^8} . \]

\[\frac{H^2}{4} + \frac{F^3}{27} = \frac{1}{6^3} (q^3 + 2P)^2 - \frac{q^6}{6^6} = \frac{4}{6^6} P (P + q^3) . \]

If

\[\frac{H^2}{4} + \frac{F^3}{27} \geq 0 , \]

then

\[P + q^3 \geq 0 , \]

which is satisfied when \(q \geq 0 \); i.e., when \(a^2 r_0^2 + b^2 z_0^2 \geq (a^2 - b^2)^2 \), which represents all space excluding the open region bounded by the ellipsoid.
\[
\frac{t_0^2}{a^2 e^{z_0}} + \frac{z_0^2}{b^2 e^{z_0}} = 1.
\]

Since \(a e^2 < b e^2 < 43 \text{ km}\), this region is of no practical interest. Therefore, \(q \geq 0\) will be the constraint. Applying Theorem I to Equation (7) with \(-t\) substituted for \(t\), we see that Equation (7) has no negative roots. Hence, Equation (7) has only one real root and it is positive.

\[
\sqrt{\frac{H^2}{4} + \frac{F^3}{27}} - \frac{H}{2} = \frac{2}{6^3} \sqrt{P(P + q^3)} + \frac{1}{6^3} \left(2P + q^3 + 2\sqrt{P(P + q^3)}\right) = \frac{1}{6^3} \left(\sqrt{P + q^3} + \sqrt{P}\right)^2.
\]

\[
\therefore \left(\sqrt{\frac{H^2}{4} + \frac{F^3}{27}} - \frac{H}{2}\right)^\frac{1}{3} = Q,
\]
where
\[
Q = \left(\sqrt{P + q^3} + \sqrt{P}\right)^\frac{1}{3}.
\]

Similarly,
\[
\left(\sqrt{\frac{H^2}{4} + \frac{F^3}{27}} + \frac{H}{2}\right)^\frac{1}{3} = Q',
\]
where
\[
Q' = \left(\sqrt{P + q^3} - \sqrt{P}\right)^\frac{1}{3}.
\]

(Note that \(Q' = \frac{q^2}{Q}\). However, putting \(Q'\) in this form is undesirable as it introduces a singularity when \(Q = 0\), which occurs when either both \(q\) and \(r_0\) equal zero or both \(q\) and \(z_0\) equal zero.)

Substituting these values into Equation (9),
\[
t' = \frac{1}{6}(Q + Q') \Rightarrow t = \frac{1}{6}(q + Q + Q').
\]

It will now be shown that \(q \leq 2t \leq q + b^2\), where the left-hand equality occurs when either \(r_0 = 0\) or \(z_0 = 0\) and the right-hand equality occurs when \(ar_0 = blz_0\).

Rewriting Equation (7) in the form
\[
t^2(2t - q) = \frac{a^2 t_0^2 z_0^2}{e^{z_0}},
\]
the lower bound of \(t\) is deduced at once. Now let
\[g = \tau^3 - q \tau^2 - \frac{4a^2 r_0^2 z_0^2}{e^8}, \]

where \(\tau \geq q \). Then

\[\frac{dg}{d\tau} = \tau(3\tau - 2q) \geq 0. \]

Thus, \(g \) is a monotonically increasing function of \(\tau \) for all \(\tau \geq q \). Since \(2t \geq q \) and \(g = 0 \) when \(\tau = 2t \), it follows that \(g \geq 0 \) when \(\tau \geq 2t \). Putting \(\tau = q + b^2 \) in the expression for \(g \),

\[g|_{\tau=q+b^2}^2 = b^2(q + b^2)^2 - \frac{4a^2 r_0^2 z_0^2}{e^8} = b^2\left(p^2 + \frac{r_0^2}{e^2 e'^2} \right)^2 - \frac{4b^2 p^2 r_0^2}{e^2 e'^2}, \]

using Equation (5)

\[= b^2\left(p^2 - \frac{r_0^2}{e^2 e'^2} \right)^2 \geq 0 \]

\[\Rightarrow 2t \leq q + b^2, \text{ equality occurring when } p = \frac{r_0}{ee'}; \text{ i.e., when } \frac{r_0}{e} = \frac{|z_0|}{e'}, \text{ or when } ar_0 = b |z_0|, \text{ in which case,} \]

\[q = 2p^2 - b^2, \ t = \frac{1}{2} (q + b^2) = p^2. \]

Solving for \(c \) and \(d \) from the system of equations (6),

\[c = \sqrt{p^2 - q + 2t}, \ d = \frac{P}{c} (t + b^2) = \sqrt{t^2 + p^2 b^2}. \]

(10)

Since \(2t \geq q \), it follows that \(c \geq p \). Now, \((|z|^2 + p|z| + t)^2 = (clz + d)^2 \) implies \(|z|^2 + p|z| + t = \pm (clz + d)\), from which the following two quadratics in \(|z|^2\) are obtained:

\[|z|^2 + (p - c)|z| + t - d = 0, \]

(11)

and

\[|z|^2 + (p + c)|z| + t + d = 0. \]

(12)

It has already been shown that Equation (3) has exactly one positive root. Furthermore, since \(t^2 - d^2 = -p^2 b^2 \leq 0 \) and \(d \geq 0 \), it follows that \(t - d \leq 0 \leq t + d \). Now, \(t - d \) is the last term of Equation (11) and has just been shown to be negative. Hence, by applying Theorem II to Equation (11), we see immediately that Equation (11) must contain the required positive root. Hence,
This solution is free of singularities. It is easy to show that \(\lim_{z \to 0} |z| = 0 \) and \(\lim_{z \to \infty} |z| = b \). We have

\[
\begin{align*}
\lim_{x_0 \to 0} p &= 0, \quad \lim_{x_0 \to 0} P &= \lim_{r_0 \to 0} P = 0 \Rightarrow \lim_{x_0 \to 0} Q = \lim_{r_0 \to 0} Q' = \lim_{x_0 \to 0} Q = \lim_{r_0 \to 0} Q' = q \\
\Rightarrow \lim_{x_0 \to 0} t &= \lim_{r_0 \to 0} t = \frac{q}{2} \Rightarrow \lim_{x_0 \to 0} c = 0, \quad \lim_{r_0 \to 0} c = p.
\end{align*}
\]

\[
\therefore \lim_{z \to 0} |z| = \frac{1}{2} \sqrt{-2q + 2q} = 0,
\]

\[
\lim_{z_0 \to 0} |z| = \frac{1}{2} \sqrt{2p^2 - 2q - 2p^2 + 4\sqrt{\frac{q^2}{4} + p^2b^2}}
\]

\[
= \frac{1}{2} \sqrt{-2(p^2 - b^2) + 4\sqrt{\frac{1}{4}(p^2 - b^2)^2 + p^2b^2}}
\]

\[
= \frac{1}{2} \sqrt{-2(p^2 - b^2) + 2(p^2 + b^2)} = b.
\]

Proceeding with the derivation,

\[
r = a \sqrt{1 - \frac{z^2}{b^2}}, \quad x = x_0 \frac{r}{r_0}, \quad y = y_0 \frac{r}{r_0}, \quad \text{and} \quad \lambda = \tan^{-1} \frac{y_0}{x_0},
\]

where \(r_0 \neq 0 \). (Here, \(\lambda \) is the longitude at \(x, y \).)

To compute the geodetic latitude and altitude at \(P'(x, y, z) \), it is desirable to introduce a geometric term, \(N_e \), which is never zero. \(N_e \) is defined to be the distance along the ellipsoidal normal from the surface of the ellipsoid to the z-axis (see Figure 1).
From Figure 1,

\[\cos \phi = \frac{r}{N_e}. \]

Also, \(\tan \phi = \frac{a^2 z}{b^2 r} \), from Equation (2)

\[\Rightarrow \frac{h}{\cos \phi} = \frac{r \sqrt{1 + \tan^2 \phi}}{N_e} = \frac{r}{N_e} \sqrt{1 + \frac{a^4 z^2}{b^4 r^2}} = \frac{r}{N_e} \sqrt{1 + \frac{a^4 z^2}{b^4}} \]

\[= \sqrt{a^2 \left(1 - \frac{z^2}{b^2}\right) + \frac{a^4 z^2}{b^4}} = \frac{a^2}{b^2} \sqrt{1 + \frac{a^2 - b^2}{b^4} z^2} = \frac{a^2}{b^2} \sqrt{1 + \frac{e^2 z^2}{b^4}}. \] (13)

and

\[\sin \phi = \cos \phi \tan \phi = \frac{a^2 z}{b^2 N_e} \Rightarrow \phi = \sin^{-1} \frac{a^2 z}{b^2 N_e}, \]

which is the desired expression for the geodetic latitude.

Also from Figure 1,

\[h \cos \phi = r_0 - r = r_0 - N_e \cos \phi, \]
\[h \sin \phi = z_0 - z = z_0 - \frac{b^2}{a^2} N_e \sin \phi. \]

Multiplying the first equation by \(\cos \phi \) and the second by \(\sin \phi \) and adding,

\[h = r_0 \cos \phi + z_0 \sin \phi - N_e \left(\cos^2 \phi + \frac{b^2}{a^2} \sin^2 \phi \right). \]

Now

\[\tan^2 \phi = \frac{a^4 z^2}{b^4 r^2} = \frac{a^2 z^2}{b^2 (b^2 - z^2)} \]

\[\Rightarrow \cos^2 \phi + \frac{b^2}{a^2} \sin^2 \phi = \frac{1 + \frac{b^2}{a^2} \tan^2 \phi}{1 + \tan^2 \phi} = \frac{1 + \frac{z^2}{a^2 z^2}}{1 + \frac{b^4}{b^2 (b^2 - z^2)}} = \frac{b^4}{b^4 + (a^2 - b^2) z^2} \]

\[= \frac{1}{1 + \frac{a^2}{N_e^2}}, \text{ using Equation (13).} \]

Hence

\[h = r_0 \cos \phi + z_0 \sin \phi - \frac{a^2}{N_e}, \]

which is the desired expression for the geodetic altitude.

To recapitulate, given \(a, b, x_0, y_0, \) and \(z_0, \) the algorithm is as follows:

\[e^2 = 1 - \frac{b^2}{a^2}, \quad e'' = \frac{a^2}{b^2} - 1, \quad r_0 = \sqrt{x_0^2 + y_0^2}, \quad p = \frac{|z_0|}{e''}, \quad q = p^2 - b^2 + \frac{r_0^2}{e'' e'^2}. \]

If \(q \geq 0, \) then

\[P = \frac{27a^2 r_0^2 z_0^2}{e'^2}, \quad Q = \left(\sqrt{P + q^3} + \sqrt{P} \right)^2, \quad Q' = \left(\sqrt{P + q^3} - \sqrt{P} \right)^2, \quad t = \frac{1}{6} (q + Q + Q'), \]

\[c = \sqrt{p^2 - q + 2t}, \quad z = \frac{1}{2} \left(c - p + \sqrt{2p^2 - q - 2t - 2pc + 4\sqrt{t^2 + p^2 b^2}} \right) \text{sign } z_0, \]

\[N_e = a \sqrt{1 + \frac{e''^2 z^2}{b^2}}, \quad \phi = \sin^{-1} \frac{a^2 z}{b^2 N_e}, \quad h = r_0 \cos \phi + z_0 \sin \phi - \frac{a^2}{N_e}. \]
CONCLUSION

An efficient model for transforming Earth–centered, Earth–fixed coordinates to geodetic coordinates has been presented. The model systematically derives exact expressions for the geodetic latitude and altitude, which are free of singularities. To the author’s best knowledge, no such expressions exist in the literature.
DISTRIBUTION

<table>
<thead>
<tr>
<th>DOD ACTIVITIES (CONUS)</th>
<th>INTERNAL</th>
<th>COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN SP231</td>
<td>E282 SWANBURG</td>
<td>1</td>
</tr>
<tr>
<td>STRATEGIC SYSTEMS PROGRAMS</td>
<td>K10</td>
<td>3</td>
</tr>
<tr>
<td>DEPARTMENT OF THE NAVY</td>
<td>K104 FELL</td>
<td>1</td>
</tr>
<tr>
<td>WASHINGTON DC 20376-5002</td>
<td>K12 CARR</td>
<td>1</td>
</tr>
<tr>
<td>DEFENSE TECHNICAL INFORMATION CENTER</td>
<td>K12 O'TOOLE</td>
<td>1</td>
</tr>
<tr>
<td>CAMERON STATION</td>
<td>K13 EVANS</td>
<td>1</td>
</tr>
<tr>
<td>ALEXANDRIA VA 22304-6145</td>
<td>K407 GATES</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>K41 SOFAIR</td>
<td>10</td>
</tr>
<tr>
<td>ATTN CODE E29L (TECHNICAL LIBRARY)</td>
<td>K42</td>
<td>1</td>
</tr>
<tr>
<td>COMMANDING OFFICER</td>
<td>K43</td>
<td>1</td>
</tr>
<tr>
<td>CSSDD NSWC</td>
<td>K44</td>
<td>1</td>
</tr>
<tr>
<td>6703 W HIGHWAY 98</td>
<td>K52</td>
<td>1</td>
</tr>
<tr>
<td>PANAMA CITY FL 32407-7001</td>
<td>N74 (GIDEP)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NON-DOD ACTIVITIES (CONUS)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN GIFT AND EXCHANGE DIVISION</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>LIBRARY OF CONGRESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASHINGTON DC 20540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE CNA CORPORATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO BOX 16268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALEXANDRIA VA 22302-0268</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ATTN RICHARD RAPP</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DEPARTMENT OF GEODETIC SCIENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND SURVEYING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>404 COCKINS HALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958 NEIL AVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLUMBUS OH 43210-1247</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1)
An efficient model for transforming Earth-centered, Earth-fixed coordinates to geodetic coordinates is presented. The model systematically derives exact expressions for the geodetic latitude and altitude, which are free of singularities. To the author's best knowledge, no such expressions exist in the literature.
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and its title page. Instructions for filling in each block of the form follow. It is important to **stay within the lines** to meet **optical scanning requirements**.

| Block 1. Agency Use Only (Leave blank). |
| Block 2. **Report Date.** Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year. |
| Block 3. **Type of Report and Dates Covered.** State whether report is interim, final, etc. *(If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).* |
| Block 4. **Title and Subtitle.** A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses. |
| Block 5. **Funding Numbers.** To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels: |
| C - Contract PR - Project |
| G - Grant TA - Task |
| PE - Program WU - Work Unit |
| Element Accession No. |
| Block 6. **Author(s).** Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s). |
| Block 7. **Performing Organization Name(s) and address(es).** Self-explanatory. |
| Block 8. **Performing Organization Report Number.** Enter the unique alphanumeric report number(s) assigned by the organization performing the report. |
| Block 9. **Sponsoring/Monitoring Agency Name(s) and Address(ea).** Self-explanatory. |
| Block 10. **Sponsoring/Monitoring Agency Report Number.** *(If Known)* |
| Block 11. **Supplementary Notes.** Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in... . When a report is revised, include a statement whether the new report supersedes or supplements the older report. |
| Block 12a. **Distribution/Availability Statement.** Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR). |
| **DOD** - See DoDD 5230.24, "Distribution Statements on Technical Documents" |
| **DOE** - See authorities. |
| **NASA** - See Handbook NHB 2200.2 |
| **NTIS** - Leave blank |
| Block 12b. **Distribution Code.** |
| **DOD** - Leave blank. |
| **DOE** - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports. |
| **NASA** - Leave blank. |
| **NTIS** - Leave blank. |
| Block 13. **Abstract.** Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report. |
| Block 14. **Subject Terms.** Keywords or phrases identifying major subjects in the report. |
| Block 15. **Number of Pages.** Enter the total number of pages. |
| Block 16. **Price Code.** Enter appropriate price code *(NTIS only).* |
| Block 17-19. **Security Classifications.** Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of this page. |
| Block 20. **Limitation of Abstract.** This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited. |