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Abstract 

An overview of current unstructured mesh generation and adaptivity techniques is given. 

Basic building blocks taken from the field of computational geometry are first described. 

Various practical mesh generation techniques based on these algorithms are then constructed 

and illustrated with examples. Issues of adaptive meshing and stretched mesh generation 

for anisotropic problems are treated in subsequent sections. The presentation is organized 

in an educational manner, for readers familiar with computational fluid dynamics, wishing 

to learn more about current unstructured mesh techniques. 
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1     Introduction 

The generation of unstructured meshes for computational fluid dynamics problems has evolved 
rapidly over the last ten years. In fact, it has been stated recently that unstructured mesh generation 
has reached such a level of maturity that it can be considered a solved problem. Certainly, the 
generation of unstructured meshes about arbitrarily complex three-dimensional configurations can 
be routinely performed on present-day workstations, with currently available techniques. In fact, 
a reader with good programming skills and persistence should be able to create his/her own mesh 
generation code from the information contained in these notes. However, it would be premature to 
state that further improvements are not needed in this field. Of the various techniques described in 
these notes, each has its particular strengths and weaknesses. Further improvements in efficiencv. 
and especially robustness are surely needed. A good definition of an optimal mesh, as this relates 
to numerical properties of the solution scheme is still lacking, and with it, appropriate techniques 
for constructing such optimal meshes, particularly for anisotropic or stretched-mesh generation. 

Many of the successful algorithms in unstructured mesh generation have found their roots in 
the field of computational geometry. Computational geometry is the theoretical science concerned 
with defining or postulating the existence of specific geometrical constructs (i.e., particular tri- 
angulations in our case), devising algorithms for generating these constructs, and analyzing the 
complexity of these algorithms (usually asymptotic worst case complexities). For example, the 
Delaunay triangulation represents a fundamental computational geometrical construct for which 
many construction algorithms have been devised and analyzed [1. 2]. Unfortunately, much of the 
computational geometry work has been confined to two-dimensional triangulations. which consti- 
tute planar graphs, and are thus easier to analyze. Also, the concept of an optimal triangulation 
or algorithm from a computational geometry point of view does not always coincide with the view 
from a computational-fluid-dynamics point of view, and thus many of the computational geom- 
etry results have found little use in the area of unstructured mesh generation. Great progress 
in unstructured mesh generation has been made by devising heuristic algorithms combined with 
empirical experience. In some sense, the engineering field of mesh generation has outstriped the 
more theoretical field of computational geometry, particularly for three-dimensional constructions. 
However, while heuristic algorithms may work well for most cases encountered in practice, the 
lack of any sound theoretical justification of these algorithms leaves the door open for possible 
situations which may result in failure or greatly increased complexity of the algorithm. Hence, the 
construction of efficient and particularly robust mesh generation techniques can only be achieved 
through algorithms with solid theoretical justification. 

The purpose of these notes is to familiarize the reader with current techniques for unstruc- 
tured mesh generation, while exposing their individual strengths and weaknesses. A preliminary 
discussion of selected computational geometry algorithms which are most relevant to mesh gen- 

eration techniques is first given. Once these essentials have been outlined, a critical description 
of various mesh generation approaches in both two- and three-dimensions is given. The issue of 
mesh adaptation is discussed in a following section. In the final section, modifications to the de- 

scribed algorithms as well as alternate strategies for generating anisotropic or stretched meshes are 
described. 

The data-structures required for efficient implementation of many of these algorithms are not 
discussed in detail. Their description and analysis can be found in appropriate computer science 
text books. The main data-structures employed in the algorithms of this chapter are the heap-list, 
and the region quadtree. The heap-list represents a particular implementation of a priority queue, 
which enables the ordering of elements based on a key [3]. The region quadtree, or octree in three 
dimensions, is a spatial decomposition data-structure, which enables efficient implementation of 
spatial search operations such as proximity searches. Quadtrees are discussed in detail in [4]. Both 
the quadtree and the heap-list are dynamic data-structures, i.e., they enable simple operations 



such as insertion and deletion of elements, and are thus particularly well suited for mesh generation 

and adaptation purposes. 

2    Computational Geometry Constructs and Algorithms 

2.1     The Delaunay Triangulation 

Given a set of points {P} in a plane, there exists many ways to join the points together to form a 
set of non-overlapping triangles which completely covers the domain. The Delaunay triangulation 
represents a particular construction of this type which has various well defined properties. For 
example, the Delaunay triangulation is the dual of the Voronoi Tessalation. A Voronoi Tessalation 
is the graph obtained by drawing the median line-segments which separate the plane into regions 

which are closer to a given point of {P} than to any other point in the set {P}, as shown in Figure 

1. 

Figure 1: Voronoi tessalation and corresponding Delaunay triangulation of a set of points 
in the plane, illustrating the empty circumcircle property. 

If we draw a line segment between any two points which are neighbors in this Voronoi diagram, we 

obtain the Delaunay triangulation of these points. 
Another property of the Delaunay triangulation is known as the empty circumcircle property. 

This states that no point of the forming set {P} can be contained inside the circumcircle of any 

triangle, as shown in Figure 1. 
It is also well known that the Delaunay triangulation corresponds to a max-min triangulation, 

i.e., out of all the possible triangulations of a given set of points, it is the triangulation which 
incurs the largest minimum angle for all triangular elements. Thus, a Delaunay triangulation may 
be expected to result in "well-shaped" elements, without very small angles. 

While there are many other properties associated with the Delaunay triangulation [1, 2], the 

above are the most useful for mesh generation purposes. 
The empty circumcircle property, in particular, is attractive, since it extends readily to three 

dimensions, by considering the circumsphere associated with each tetrahedron. The empty circum- 
circle/sphere property forms the basis for several Delaunay triangulation algorithms in both two 

and three dimensions, which are described below. 

2.1.1     Bowyer-Watson Algorithm 

This is an incremental algorithm which assumes new points are added sequentially to an existing 
Delaunay triangulation [5, 6]. When a new point is inserted into the triangulation, the first task 



is to identify all existing triangles whose circumcircle is intersected by the new point, as shown 
in Figure 2. This can be achieved by first locating the triangle which contains the new point. 
The circumcircle of this triangle must certainly be intersected by the new point. The remaining 
intersected triangles can be identified by first searching the neighbors of the containing triangle, 
and then the neighbors of these neighbors, in a breadth-first type search, abandoning the search 
along any neighbor path where the test result is negative. Properties of the Delaunay triangulation 
guarantee that such a neighbor search is sufficient to locate all intersected triangles. The union of 
these intersected triangles is then removed from the current triangulation. thus creating a convex 
cavity which contains the new point, as shown in Figure 2. A new triangulation is then constructed 
by joining the new point to all vertices on the boundary of the polygonal cavity. The algorithm 
extends naturally to three dimensions by considering the circumspheres of tetrahedra and results 

in the retetrahedralization of a convex polyhedral cavity. Proofs of the convexity of the resulting 
cavity, and the validity of the retriangulation of this cavitv have been formulated in the literature 
[6. 7]. 

Figure 2:  Illustration of the Bowyer/Watson algorithm for constructing Delaunay trian- 
gulations. 

In order to construct the Delaunay triangulation of a set of points using this algorithm, an initial 
triangulation is constructed, either by forming the triangulation of the convex hull of the points 
[2], or more simply by creating a large initial triangulation, using three or four auxiliary points (in 
two dimensions), which contains all of the points to be triangulated. The points of the set to be 
triangulated are then put in a list, and inserted sequentially into the evolving triangulation. 

The Bowyer-Watson algorithm has proven to be very useful for unstructed mesh generation. It 
has been shunned by the computational geometry field, mainly due to its poor worst-case cornplex- 
ity of 0(N2) (imagine the case where each newly inserted point intersects all existing triangles). 
However, for unstructed mesh generation, near linear O(N) performance has been reported for both 
two- and three-dimensional applications [7, 8, 9]. More recently, it has been shown that the poor 
worst-case complexity of this algorithm represents a pathological case which can easily be avoided 
by randomizing the order in which the points are inserted [10]. 

2.1.2     Green-Sibson Algorithm 

This algorithm is similar to the Bowyer-Watson algorithm in that it is based on sequential point- 
insertion into an existing triangulation, and also relies on the empty circumcircle property [11]. To 
insert a new point into the triangulation, the triangle which encloses this new point is first located. 
The point is then inserted into the triangulation simply by joining it to the three vertices of the 
enclosing triangle, as shown in Figure 3.   (In the case where the point falls on a mesh edge, the 



edge is split and the point is joined to four mesh vertices; situations in three dimensions involving 
split faces and edges are treated analogously). 

Figure 3: Illustration of the Green-Sibson algorithm for constructing Delaunay triangula- 

tions. 

The resulting triangulation, although valid, is not necessarily Delaunay, and the remaining task 
is to transform it into the Delaunay triangulation by rearranging the mesh connectivity in the 
vicinity of the new point. This is accomplished by examining the three (or four) newly formed 
triangles. If their circumcircles are all empty, then the triangulation is indeed Delaunay. and no 
further modifications are required. In the event one of these circumcircles contains a vertex, the 
edge of the triangle which borders on an "outer" neighbor (i.e., one which does not touch the 
newly inserted point), is reconfigured or swapped as shown in Figure 3. The reason only these 
outer edges need be considered is that the initial three (or four) edges which touch the newly 
inserted point can always be shown to be part of the final Delaunay triangulation (i.e., consider 
how they may appear in the Bowyer-Watson algorithm). Each time an edge is swapped, two 
triangles are altered, and these must therefore be checked for the Delaunay criterion. However, 
each edge that is swapped can be shown to be included in the final Delaunay construction, and 
thus the only edges which need be considered for swapping are those which border on a modified 
triangle and an "outer" untouched triangle. The edge swapping procedure begins with the outer 
edges of the newly formed triangles (which contain the new point as a vertex), and propagates 
outwards, never reexamining the previously swapped edges, until the procedure terminates when 
no further edges need be swapped. There are certain practical advantages associated with the 
Green-Sibson algorithm over the Bowyer-Watson algorithm, for constrained triangulations, as well 
as for generating triangulations other than Delaunay, as will be demonstrated. 

2.1.3     Tanemura-Merriam Algorithm 

While the previous algorithms represent a top-down approach, a bottom-up approach to construct- 
ing the Delaunay triangulation of a given set of points is afforded by the advancing-front Delaunay 
algorithm. This technique has apparently been rediscovered several times in various fields through- 
out the literature [12, 13, 14, 15]. The idea is to construct the triangulation one triangle at a 

time, beginning at the boundaries of the domain, thus advancing or sweeping a front throughout 
the domain. The initial front is composed of the set of edge segments which define the convex 
hull of the point-set to be triangulated (or, for mesh generation purposes, the set of edges which 
define all physical boundaries of the domain). We begin by choosing an edge of this front. The 
problem consists of determining the particular point to which the two end points of this edge must 
be joined in order to construct the unique Delaunay triangle for this edge, which will be present 



in the final triangulation. This may be solved in a simple iterative manner. An arbitrary interior 
point (interior with respect to the orientation of the front) is chosen, and the triangle formed by the 
two end-points of the front edge and the interior point is constructed. If this triangle contains any 
other points within its circumcircle, it cannot be a valid Delaunay triangle, and thus an alternate 
point is chosen: i.e. the point contained inside the newly formed circumcircle which is closest to 
its circumcenter. 

Figure 4: Iterative procedure for determining appropriate point for constructing the next 
triangle in the advancing-front Delaunay triangulation algorithm. 

By iterating on this procedure, as shown in Figure 4, the appropriate point which produces a 
triangle containing no points interior to its circumcircle is eventually found. This new triangle is 
therefore accepted, and the front is advanced by removing the current edge from the front, which 
is now obscured by the new triangle, and adding the new edges to the front. (There may be 0, 1, or 
2 new edges depending on whether the chosen point is interior to, or on the front). The algorithm 
terminates once all edges have been deleted from the front, i.e., when the entire domain has been 
swept out. 

2.1.4     Constrained Delaunay Triangulations 

A triangulation of a given set of points which is forced to include as a subset of predetermined edges, 
is known as a constrained triangulation. Loosely speaking, a constrained triangulation which is as 
close as possible to a Delaunay triangulation is called a constrained Delaunay triangulation. A more 
formal definition of a constrained Delaunay triangulation is given by Chew [16]: it is a triangulation 
which contains a set of prescribed edges, and such that the circumcircle of each triangle contains 
no other vertex of the mesh which is visible to it. A vertex is visible to a triangle if the line joining 
the vertex to any point interior to the triangle does not intersect one of the prescribed edges of the 
mesh. An example of a constrained Delaunay triangulation is given in Figure 5. The existence of 
constrained Delaunay triangulations ensures the validity of the Tanemura-Merriam algorithm for 
arbitrary initial (possibly non-convex) fronts. It also guarantees the possibility of modifying an 
existing Delaunay triangulation to include a set of edges which define the boundaries of the domain 
to be triangulated. 



Figure 5: Illustration of constrained Delaunay triangulation. 

This is an important consideration for practical mesh generation algorithms, where non-convex 
and multiply connected domains are often considered. Unfortunately, an equivalent definition for 
constrained Delaunay triangulations in three dimensions is not available. Thus, the construction 
and modification of three-dimensional Delaunay triangulations, which conform to a prescribed 
surface triangulation, has proved to be a non-trivial problem. 

2.2     Other Triangulations and Transformation Algorithms 

The Delaunay Triangulation is but one of a large number of possible triangulations of a given set 
of points. Other possible triangulations include the minimum total edge-length triangulation, or 
minimum weight triangulation, and the minimum maximum-angle triangulation [2]. In fact, any 
criterion for describing an optimum triangulation may be constructed, even one based on possible 
variable data-values stored at the vertices of the triangulation, such as in the data-dependent tri- 
angulations of [17], and an algorithm for transforming the current triangulation to the so-defined 
optimum triangulation devised. In practice, an algorithm capable of constructing the global opti- 
mum may be difficult to formulate, and local optima, or improvements from an initial mesh are 
often produced. 

2.2.1     Two-Dimensional Edge-Swapping 

A method for transforming a 2D triangulation into another 2D triangulation is given by the edge- 
swapping procedure of Lawson [18]. The algorithm is based on the fact that there are at most two 
ways of triangulating a set of four points, as shown in Figure 6. For each pair of triangles in tue 
mesh which forms a convex quadrilateral, the original triangulation is compared to the alternative 
triangulation obtained by swapping the position of the internal diagonal, as shown in Figure 6. If the 
alternative triangulation is found to better optimize the triangulation criterion, then the diagonal is 
swapped. By iterative appfication of this simple diagonal swapping primitive over the entire mesh, 
the triangulation is eventually transformed into a more optimal triangulation, as defined by the 
criterion. In [19] it is proven that any given 2D triangulation may be recovered from any initial 2D 
triangulation through repeated application of the diagonal-swapping primitive, although a general 
algorithm for achieving this is not given. In general, it is found that a straight-forward application 
of the edge-swapping procedure gets stuck in local optima, and is often incapable of producing the 
global optimum mesh. 



Figure 6: Two possible configurations for the diagonal of a convex pair of triangles in the 

edge-swapping algorithm. 

Furthermore, depending on the order in which the edges are swapped, different local optima may 
be achieved. A notable exception is the construction of a max-min or Delaunay triangulation. It 
can be shown that repeated application of the edge-swapping technique based on maximizing the 
minimum angle always converges to the globally optimum mesh, which is the Delaunay triangula- 
tion, regardless of the initial mesh, and the order in which the edges are swapped. The complexity 

of this procedure is O(NlogN), where N represents the number of vertices. 
The globally optimum min-max triangulation, on the other hand, is not generally attainable 

with this algorithm. A more sophisticated technique, known as the edge-cutting algorithm [20], is 
capable of transforming any triangulation into the globally optimum min-max triangulation. The 
algorithm may be interpreted as a generalization of the edge-swapping procedure. The first step 
consists of locating the maximum angle in the current triangulation. Let prq be the triangle which 
contains this maximum angle, which is situated at point p, as depicted in Figure 7. 

Figure 7:   Illustration of the edge-cutting algorithm for constructing min-max triangula- 

tions. 

In an attempt to reduce this angle, a new point s is chosen, and the edge ps is drawn. The first 
candidate for the point s is the point of the neighboring triangle rsq. If the two angles at q and r 
are both smaller than the original angle at p, then the swap is successful, and the procedure may 

be continued by searching for the next largest angle in the mesh. However, if the angles at q and r 
are both larger than the original angle at p. no improvements are possible. In the event the angle 

at q is larger, but the angle at r is smaller than the original angle at p, it can be shown that the 
optimum new edge must intersect the edge rs. Thus we choose a new point s' in the neighboring 
triangle of rsq. This procedure may be applied recursively to the neighbors of these neighbors, until 
a suitable point is found, perhaps several neighbor distances away. The edge ps' is then inserted 
into the triangulation, and all edges which intersect ps' are removed, as shown in Figure 7. This 
defines two empty polygons, which are then retriangulated. This is achieved by iteratively defining 
consecutive vertices of each polygon boundary which form a triangle with all angles smaller than 

the maximum angle of the original triangulation. 



The insertion of edges such as ps', which may intersect many existing edges, involves addi- 
tional non-local information which enables the algorithm to avoid getting stuck in local optima, 
However, the complexity of the edge-cutting algorithm is 0(N2logN), and no three-dimensional 
extensions have been reported. These are the probable reasons why this algorithm has seldom been 

implemented for mesh generation applications. 

2.2.2     Three-Dimensional Edge-Face Swapping 

Three-dimensional tetrahedralization algorithms based on simple edge-face swapping primitives are 
also possible. These primitives are based on the fact that, in d dimensions, d + 2 points may be 
triangulated in at most two ways, as stated by Lawson [21]. Thus, in three dimensions, a set 
of five points may be triangulated in at most two manners. Depending on the configuration of 
these five points, either a unique triangulation exists, in which case the configuration is called 

non-swappable, or two different triangulations are possible, in which case swapping between the set 
of two constructs is possible. In general, the triangulation of five points in three dimensions may 

result in 2, 3, or 4 tetrahedra, as shown in Figure 8. 

(a) (b) (b) 

Figure 8: Possible tetrahedralizations of a set of 5 points in three dimensions (neglecting 

degenerate cases. 

This is in contrast to the two-dimensional case, where the number of triangles and edges are identical 
for all possible triangulations of a given point-set. However, the triangulation of three-dimensional 
point-sets no longer represents a planar graph, and Euler's formula no longer relates the number 
of cells to the number of vertices [22]. Thus, various triangulations of the same point-set in 3D 
can be expected to contain different numbers of cells, faces, and edges, and the face-edge swapping 

primitives can be expected to modify these numbers. 
In the case where five vertices are triangulated with four tetrahedra, (i.e., case (a) of Figure 8), 

one of the five points is interior to the convex hull of the other four points, and no other triangulation 
of this configuration is possible. This is a non-swappable configuration. In the case where the five 
vertices are triangulated with two tetrahedra, (i.e., case (b) of Figure 8), the configuration is 
swappable provided it is convex. A sufficient condition for convexity is that the line de intersect 
the face abc in Figure 8 (b). If this is the case, then the two-tetrahedron configuration of Figure 8 
(b) may be swapped into the three-tetrahedron configuration of Figure 8 (c) by removing face abc 
and inserting the edge de (and thus faces ade, bde, cde). If the initial two-tetrahedron configuration 
is non-convex, then it is non-swappable. (In this case, it corresponds to the configuration in Figure 



8 (c), where one of the tetrahedra is missing). Similarly, in the case where the five vertices are 
triangulated with three tetrahedra. as in Figure 8 (c). the configuration is swappable into the 
two-tetrahedron configuration of Figure 8 (b), provided it is convex. To determine if the three- 
tetrahedron configuration is convex, the convexity test may be applied directly to the anticipated 
two-tetrahedron swapped configuration, which yields the same result. A complete algorithm for 
transforming three-dimensional triangulations may be given as follows: 

Step 1: Tag all mesh faces as candidates for swapping. 

Step 2: Choose a pair of neighboring tetrahedra in the mesh which share a candidate face. This 
defines five vertices, three of which form the face common to both tetrahedra, and two others which 
form the end points of the two tetrahedra. 

Step 3: By searching through neighboring tetrahedra, locate all other elements which contain four 
of the five vertices. 

Step 4: If the number of elements is four, the configuration is non-swappable. Go to step 8. 
Step 5: Check for convexity. If the configuration is non-convex, go to step 8. 

Step 6: Compare the swapped configuration with the original configuration. Choose the configu- 
ration which "improves" the triangulation based on the given criterion. 

Step 7:   Tag the swapped faces as optimal, and the neighboring faces as future candidates for 
swapping. 

Step 8: If future candidates for swapping exist, go to step 2, else end. 

As in the two-dimensional case, these local transformation techniques most often terminate in 
local optima, with the result that the global optimum triangulation for a given criterion is usually 
not achieved. While convergence to the globally optimum max-min or Delaunay triangulation is 
assured in two dimensions, a similar result does not hold in three dimensions. In fact, the max- 
min and Delaunay triangulation are not equivalent in three dimensions, and three-dimensional 
Delaunay triangulations must be characterized by the empty-circumsphere property. Using the 

empty-circumsphere test as a measure of optimality, Joe [23] has shown that local transformations 
of an arbitrary triangulation are not guaranteed to converge to the Delaunay triangulations. Only 
under special conditions, such as the addition of a new vertex to an existing Delaunay triangulation 
following the Green-Sibson algorithm, can the application of local transformations be guaranteed 
to converge to the Delaunay triangulation [23. 24, 25]. 

3    Practical Mesh Generation Algorithms 

The algorithms described in the previous section can be used to triangulate an existing set of 
points, or to modify an existing triangulation. As such, they do not constitute mesh generation 
techniques, but rather form basic building blocks, which can be used in conjunction with other 
techniques to devise mesh generation strategies. In general, the generation of unstructured meshes 
involves the creation of both the mesh points and their connectivity. This can be performed either 
sequentially (pre-generation of mesh points, followed by a triangulation phase), or simultaneously 
using an advancing-front technique, or a Steiner triangulation technique. (Steiner triangulations 
refer to the insertion of additional points into an existing triangulation in order to improve the 
quality of the triangulation.) The problem of mesh generation includes several well defined phases 
which can be summarized as follows: 

• Definition of boundaries of physical domain. 

• Definition of element-size distribution as a function of spatial location (element shape distri- 
bution is also required in the case of stretched meshes). 

10 



• Generation of boundary conforming mesh using a suitable approach. 

• Optional mesh post-processing to improve element quality. 

The boundaries of the physical domain are usually defined through some CAD-type data-base, 
which most often involves the use of piecewise spline curves in 2D, and assemblies of trimmed 
(i.e., possibly intersecting) spline surface patches in 3D. This initial boundary description must be 
discretized as a set of line segments in 2D or a collection of planar faces in 3D, for mesh generation 
purposes. This may be achieved prior to, or simultaneously with, the construction of the mesh. The 
mesh generation procedure must be capable of guaranteeing boundary integrity: in two dimensions 
this corresponds to generating triangulations which contain the subset of edges which define the 

domain boundaries (c.f. Figure 9), 

Figure 9:   Illustration of non-boundary conforming Delaunay triangulation for a simple 
airfoil geometry. 

while in three dimensions this corresponds to generating tetrahedralizations which contain the 
subset of triangular faces which define the discretized boundary surfaces. The problem of matching 
a prescribed surface triangulation in the construction of a three-dimensional volume grid can be 
considerably involved. A slightly less stringent approach to three dimensional boundary integrity is 
that of generating a tetrahedralization which contains a possibly arbitrary boundary triangulation 
which nevertheless does not violate the boundary surface integrity i.e. a surface triangulation which 
does not intersect or cut through the original boundary surface definition. Boundary integrity is 
extremely important in mesh generation, for if the boundary surfaces cannot be recovered in the 
mesh, no numerical simulation is possible. 

The definition of the element-size distribution may be accomplished either implicitly or ex- 
plicitly. An implicit definition may involve inferring a value for the element-size in the interi ir 
of the mesh from the boundary discretization {i.e., by interpolation from the closest boundaries). 
Another possibility is the use of an analytic mapping function for generating sets of points with 
desired spacings {i.e., the use of structured 0- or C-meshes for generating point sets) which are 
subsequently triangulated. Explicit definitions of the element-size distribution involve the con- 
struction of a function s = f(x,y.z) valid over the entire physical domain. This function may be 
constructed analytically, or using a small set of discrete sources such as: 

N 

k=l 

1 + 
r(x) 

ik *)' 
(1) 

where the summation is over all N sources, and r(x) denotes the position vector. The source 
parameters Sk and r*. represent the prescribed element size at the source, and the location of the 
source, and Tk as well as 7*. define the relative region of influence of the source. 

11 



Alternatively, a background grid may be employed, where at each vertex a value of the ele- 
ment size is defined, and values in between vertices are obtained by linear interpolation. These 
background meshes may be unstructured [26. 27] (triangular, tetrahedral), cartesian [28], or even 
quadtree-based [29]. In practice, an effective approach is to construct an (elliptic) partial differen- 
tial equation with the aid of source terms defined in a similar manner to those of equation (1), and 
to solve this equation on the supporting background grid. The source terms can be prescribed in- 
teractively, and correspond to prescribed mesh spacings at these physical locations. This approach 
is particularly attractive, since the elliptic construction ensures a smooth element-size distribution 
function, which is desirable for the generation of high quality meshes. 

While mesh quality is usually defined somewhat heuristically, this usually entails the notion of 
well shaped elements with small changes of element size between neighboring elements. Regardless 

of the triangulation scheme employed (Delaunay, min-max, etc..) it is now well known that accept- 
able mesh quality cannot be achieved by optimizing mesh connectivity alone, but is necessarily the 
result of a close matching between the mesh-point distribution and the mesh connectivity employed 
in the construction of the mesh. (This is even more important in the case of stretched or anisotropic 

meshes). Post-processing techniques may be employed for improving mesh quality. These often in- 
clude minor redistribution of the mesh points through Laplacian-type smoothing techniques, often 
followed by reconfiguration of the mesh connectivity. While these techniques are often successful in 
improving grid quality by removing minor irregularities, they seldom adequately correct for serious 
deficiencies in grid quality. Thus the ability to generate a high quality mesh from the outset is of 
the utmost importance. Finally, mesh generation procedures must be robust. This not only means 
that they must use proven constructs and exact algorithms, but they must be designed to avoid 
and/or deal with ambiguous situations which typically arise in computational geometry problems. 
The use of exact arithmetic [30] is perhaps the best approach to resolving such issues. 

3.1 Quad/Octree Based Mesh Generation 

One of the earliest and simplest methods for generating unstructured meshes involves the use of 
quad and octrees in two and three dimensions respectively. Considering a two-dimensional example 
for simplicity, an initial quad is formed which is large enough to cover the entire domain. Assuming 
a mesh element-size distribution function exists, the quadtree is recursively subdivided until all 

leaf quads are no larger than the local value of the element-size distribution function. If this 
function is only defined on the domain boundaries, the quadtree may be initially subdivided along 
the boundaries. Subdivision in the domain interior can then proceed by ensuring that jumps in 
the sizes of neighboring leaf elements never exceeds 2:1. Triangular elements can be generated 
by forced subdivision of the quad elements [31], or by using the quadtree vertices in a Delaunay 
point-insertion algorithm [32]. At the physical boundaries, the quadtree must be made boundary 
conforming. This is usually accomplished by warping the mesh, i.e., displacing the closest quadtree 
vertices to coincide with the boundary curve. Quad/octree methods are relatively simple and 
efficient. Their main deficiencies relate to the quality of the mesh near boundaries due to the 
warping procedure. 

3.2 Advancing-Front Methods 

Advancing-front methods involve the simultaneous generation of mesh points and their connectivity. 
The idea is to build the mesh element by element, adding new elements to previously generated 
elements, thus sweeping out a front across the entire domain. They usually rely on an explicitly 
defined element-size distribution function, which is most often constructed using a background grid 
[26, 27, 33]. 
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Advancing-front techniques begin with a discretization of the domain boundaries as a set of edges 
in two dimensions. This is accomplished by placing points along the boundary curves governed 
by the local values of the element-size distribution function, as shown in Figure 10. These edges 
form the initial front which is to be advanced out into the field. A particular edge of this front is 
selected, and a new triangle is formed with this edge as its base, by joining the two ends of the 
current edge either to a newly created point, or to an existing point on the front. The current 
edge is then removed from the front, since it is now obscured by the new triangle. Similarly, the 
remaining two edges of the new triangle are either assigned to the front or removed from the front, 

depending on their visibility, as shown in Figure 11. 

Figure 10: Initial boundary discretization for the advancing-front method. 

The front thus constitutes a stack (or priority queue), and edges are continuously added to, or 
removed from, the stack. The process terminates when the stack is empty, i.e., when all fronts 

have merged upon each other and the domain is entirely covered. 
The selection of the next edge in the front may be based on various criteria. A good strategy 

is to always choose the smallest edge in the front, thus ensuring the front grows from regions of 
small cells towards regions of large cells. This has been found to yield smooth high-quality element 
distributions. Such a strategy can easily be implemented by encoding the front as a heap-list of 

edges, with the edge-length as the heap ordering key [3]. 

Figure 11: Generation of new triangle using new point (a), or existing front point (b), in 

advancing-front method. 

One of the critical features of such methods is the placement of new points. Upon generating a 
new triangle, a new point is first placed at a position which is determined to result in an optimal 
size and shape triangle i.e., along the median of the front edge, at a distance defined by the local 
value of the element-size distribution function, as shown in Figure 12. The triangle generated with 
this new point may result in a cross-over with other front edges, and thus may be rejected. This is 
determined by computing possible intersections with "nearby" front edges. Alternately, an existing 
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point on the front may coincident ally be located very close to the new point, and thus should be 
employed as the forming point for the new triangle, to avoid the appearance of a triangle with a 
very small edge at some later stage. Thus, all front points within a certain distance of the new 
point must be located. This involves the determination of an appropriate length scale for defining 
the search region. A typical example of a length scale and search region often employed is shown 
in Figure 12. The final accepted triangle will be the triangle formed from the current front edge 

and the new point, or one of the "nearby" front points, which does not intersect any front edges. 
and best conforms to the local element-size distribution function. 

Figure 12:   Placement of new point 
in advancing-front method. 

Figure 13: Possible failure of 
advancing-front method for merging 

fronts of dissimilar sizes. 

The determination of the set of "nearby" front points involves a proximity search which is 
usually implemented using a quadtree data-structure [4]. Thus, a quadtree based on the front 
points must be maintained dynamically, with points inserted and deleted as the front advances. 
The front is thus simultaneously represented as a heap and a quadtree. 

The space requirements for such an algorithm are lower than may be expected. Since this 
is essentially a greedy triangulation [2], i.e., formed elements are never subsequently modified, 
all points, edges and triangles which lie behind the front need no longer be considered in the 
generation process. Thus the only active portion of the data is the front. Since a front has one 
lower dimension than the domain to be discretized, the required space for such an algorithm in 
two dimensions is 0(\/N), where N is the final number of grid points generated. Since N points 
are added sequentially, the complexity is at most 0(N\/N). However, by employing sophisticated 
searching techniques such as spatial quad-trees, this complexity is easily lowered to 0(Nlogy/N) 
which is asymptotically equivalent to O(NlogN). Optimal space usage has not in general been 
achieved, due to the difficulty in continuously dumping out generated elements. However, restart 
capabilities are easily implemented [34, 29], which can greatly reduce the required working size for 
a large mesh generation job. 

One of the advantages of such an approach is the automatic point placement strategy, which 
generally results in high-quality elements throughout most of the flow-field, due to the optimum 
positioning of these new points. Additionally, all real operations performed (such as intersection 
checking) are of a local nature; i.e.. intersection checks are performed with neighboring edges of 
similar length, thus reducing the chances for round-off error induced failure. Finally, boundary 
integrity is guaranteed, since the boundary discretization constitutes the initial condition. 

The disadvantages of advancing-front techniques mainly relate to their efficiency. The inter- 
section checking phase is a rather brute-force technique for ensuring the acceptability of a new 
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triangle, which is relatively expensive. Additionally, for each generated triangle, the quad-tree 
data-structure must be traversed from top to bottom (O(logN) steps) in order to locate "nearby" 
points and edges. Another contributing factor is the fact that advancing-front techniques construct 
the mesh one triangle at a time. Since in two dimensions there are asymptotically twice as many 
triangles as points, a more efficient strategy would be to construct the mesh one point at a time. 
Thus, each time a new point is generated, efficiency could be gained by determining all the potential 
triangles which join this new point to the existing front with a single traversal of the quad-tree 
data-structure. In three dimensions, the savings are even greater, since there exists on average 5 

to 6 times more tetrahedra than vertices. 
Finally, even though advancing-front techniques rely only on local operations, they may still 

suffer from robustness problems. Central to the issue of determining acceptable triangles and "best" 
points, is the determination of a local length scale which defines the region of "nearby" points 
and edges. This length scale is generally obtained from the field function (which may employ a 
background grid). In the case of two merging fronts, if the field function varies rapidly over the 
region between the merging fronts, the relative sizes of the edges on one front may be much larger 
than those on the other front. If a search is initiated from the front with the smaller length scale, 
the region of "nearby" edges may not contain the appropriate edges and points of the other front. 
and failure will occur, as shown in Figure 13. Thus, the success of the advancing-front technique 
relies on the existence of a smoothly varying field function. 

3.3    Delaunay Point-Insertion Methods 

Delaunay-based methods offer the possibility of constructing mesh generation strategies based 
on proven computational-geometry algorithms (although this does not in itself guarantee a more 
efficient/robust overall approach). 

Some of the earliest Delaunay-based mesh generation strategies relied on predetermined mesh- 
point sets [8, 7, 35, 36]. For multi-component geometries, each component represents a simple 
configuration which can be fitted locally with a simple structured mesh (i.e., for example using 
a structured O-mesh about each element of a multi-element airfoil. By constructing a set of 
overlapping structured meshes in this manner, and discarding the connectivity of these meshes, as 
well as the points which fall outside of the physical domain, a set of points is obtained which may be 
used as the basis for a Delaunay triangulation mesh generation strategy, using the Bowyer/Watson 
or Green-Sibson algorithms. 

In one particular approach [8, 35], an initial Delaunay mesh is constructed by joining one of the 
inner boundary points to all of the outer boundary points in a hub and spoke type arrangement. 
The inner boundary points are then inserted into the triangulation using the Bowyer/Watson algo- 
rithm. After all inner boundary points are inserted, a check for boundary integrity is performed. If 
boundary violations are encountered, additional boundary mesh-points can be inserted to remedy 
the situation. Once boundary integrity has been recovered, triangles exterior to the domain are 
removed, thus effectively freezing all boundary defining edges, and all interior points are inserted 
and triangulated using the Bowyer/Watson algorithm. Due to the overlapping mesh construction 
of the point-set, coincidentally close mesh points may be produced, and mesh smoothing is em- 
ployed as a post-processing operation in order to relieve effects caused by local irregularities in the 
final mesh spacing, as seen in Figure 14. Mesh-point filtering techniques may also been employed 
to restore smooth mesh-point distributions [37]. These techniques have also been employed for 
three-dimensional mesh generation about aircraft-type configurations by Baker [7, 38]. Although 
predetermined mesh-point set techniques have been very successful for certain classes of geome- 
tries, the simultaneous mesh-point generation and triangulation techniques embodied in Steiner 
triangulations offer improved flexibility and automation for arbitrary geometries. A Steiner tri- 
angulation is a triangulation whose additional points are inserted in order to improve the quality 
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of the triangulation. Assuming an initial triangulation and an element-size distribution function 
exist, the triangulation can be incrementally modified by continually inserting new points until the 
final mesh closely matches the prescribed element-size distribution function in all regions of the 
domain. A particularly effective strategy is to insert the new mesh points at the circumcenters of 
the triangles which are flagged for improvement [39, 40, 41, 9, 25]. 
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Figure 14: Delaunay triangulation of mesh-point distribution generated from overlapping 
structured meshes, before and after application of smoothing. 

This strategy can be proved to result in triangulations where the angles are all bounded between 
30° and 120°, neglecting boundary effects [16, 42]. This result is a consequence of the fact that the 
circumcenter, where the new point is placed, is equidistant from the three vertices of its forming 
triangle, which represent the closest points to the new point, since the circle is necessarily empty by 
the Delaunay criterion. An effective mesh generation strategy using this approach can be formulated 
as follows: 

Step 1: Construct an element-size distribution function s = f(x,y,z). 
Step 2:  Discretize all boundary curves based on the above function. 
Step 3:    Construct an initial triangulation which covers the entire domain (usually by forced 
triangulation of a large quadrilateral in 2D or hexahedron in 3D). 
Step 4: Insert all the boundary points into the triangulation using the Bowyer/Watson or Green- 
Sibson algorithm. 

Step 5:   Construct a heap-list of all triangles in the mesh which are larger than the local value 
specified by the element-size distribution function (usually all existing triangles at this initial stage); 
the heap-list is ordered by some measure of triangle size {i.e., circumradius) or quality (maximum 
angle). 

Step 6: Pull the first triangle off the top of the heap-list, insert a new point at its circumcenter and 
retriangulate using the Bowyer/Watson or Green-Sibson algorithm. For each of the newly formed 
triangles, which are larger than the local value specified by the element-size distribution function, 
insert them into the heap-list. 
Step 7: If the heap-list is empty, stop, else go to step 6. 
Step 8:  Recover the boundary integrity. 

The heap-list empties out when the triangulation converges to the element-size distribution pre- 
scribed by the function s = f(x,y,z).   This method results in a very efficient mesh generation 
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technique. Since the identity of the originating triangle for the circumcenter point-insertion opera- 
tion is initially known, the search for the containing triangle in the Delaunay algorithm is initiated 
with this triangle. In most cases, this corresponds to the containing triangle, and in all other cases, 
the containing triangle is only several neighbors away. Thus, the union of intersected triangles 
in Watson's algorithm can usually be found very rapidly, in constant time. Since the heap-list 
operations (insert/delete) can all be performed in O(logN) time, the space and time requirements 
of this algorithm are O(NlogN). In practice, this method has produced some of the most efficient 
mesh generation codes available today, capable of generating 1 million three-dimensional elements 

per hour on present-day workstations [43]. 
In the above description of the algorithm, the boundary recovery procedure is performed as a 

final step, after all mesh points have been inserted. In practice, this procedure may be performed 
either in the final stages of the algorithm, or earlier on, just after the boundary points have been 
inserted, i.e., between steps 4 and 5. Recovering the boundary integrity in the final stages of the 
algorithm enables the boundaries to be neglected and the domain to be treated as convex, during 
the point-insertion phase. This permits a straight-forward application of the Delaunay insertion 
algorithm at this stage. Furthermore, mesh quality is much higher at the end of the point-insertion 
procedure, which may result in a more robust boundary recovery phase. On the other hand, new 
points may be introduced arbitrarily close to the eventual boundary surfaces, during the point- 
insertion process, which may result in a poor quality mesh after the boundary recovery operation. 

If the boundary recovery is performed just after the insertion of the boundary points, interior 
mesh points near the boundary may be positioned more optimally (see for example section 3.5). 
However, this requires boundary integrity be maintained subsequently throughout the remainder 
of the grid generation process, and implies the application of Delaunay point-insertion algorithms 
in non-convex domains for step 6. In two dimensions, the existence of a constrained Delaunay 
triangulation guarantees that the point-insertion algorithms can be extended by terminating the 
search for intersected triangles in the given direction, when a boundary is encountered. In three 
dimensions, although similar techniques have been employed, there is no guarantee that a valid tri- 
angulation will result, since no three-dimensional definition of a constrained Delaunay triangulation 

is available. 

One way of recovering the boundary integrity, either at the end of the mesh generation process, 
or after the insertion and triangulation of the prescribed boundary points, is to insert a sufficient 
number of additional boundary points until the Delaunay triangulation conforms to the boundary. 
A more elegant approach consists of modifying the existing Delaunay triangulation using the edge 
swapping (in 2D) and face-edge swapping (in 3D) primitives discussed in section 2.2 to produce 
a locally modified triangulation which conforms to the boundary. This approach also offers the 
possibility of matching exactly a predetermined boundary discretization. In two dimensions, each 
edge of the prescribed boundary discretization is searched for, in the Delaunay mesh. If one of 
these edges is not found, but the two endpoints of the edge are located in neighboring triangles, 
then a simple edge swap, as depicted in Figure 6, is sufficient to recover the missing edge. In the 
event these endpoints are located in non-neighboring triangles, then all triangles which the missing 
edge intersects are first located. These triangles are all removed, and the missing edge is inserted, 
as shown in Figure 15. This creates two polygons, on either side of the new edge, which are then 
triangulated, using, for example, the Tanemura-Merriam algorithm. 

The situation in three dimensions is somewhat more complex. The procedure is usually divided 
into two phases for a prescribed boundary surface triangulation: firstly the recovery of the boundary 
edges, and secondly the recovery of the boundary faces. The face-edge swapping primitives of section 
2.2 are utilized to transform the Delaunay triangulation into one which contains the boundary 
edges and faces. However, contrary to the two-dimensional case, the insertion of additional points 
is often required to enable the completion of the boundary recovery procedure in three dimensions. 
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Weatherill [40] has categorized all possible boundary edge and face intersection types, and lists 
rules for inserting new points to enable recovery of these boundary elements. Generally speaking, 
he advocates the creation of new points on the surface, at the point of intersection with the existing 
grid element. Once all boundary edges and faces have been recovered, the new surface points may 
be removed in an attempt to recover the original surface discretization. However, in some cases, 
the removal of these point may result in cavities which cannot be re-tetrahedralized. 

Figure 15:  Illustration of the insertion of a missing boundary edge into an existing De- 
launay triangulation, and the resulting empty polygons which must be retriangulated. 

In [9], a similar method which introduces new points off the surface is developed, thus permitting 
the recovery of the original surface discretization. 

The mesh-point distribution produced by the circumcenter point-placement strategies, while 
certainly acceptable, are somewhat irregular and lack the high degree of smoothness produced 
by the advancing-front method. This is perhaps due to the fact that Steiner triangulations are 
top-down approaches, which seek to improve existing triangulations through refinement. A more 
serious difficulty with Delaunay point-insertion methods relates to robustness problems due to 
round-off error. Particularly in the initial phases, when the boundary points are inserted, highly 
distorted triangular/tetrahedral elements are formed. The finite precision real arithmetic utilized 
to compute all quantities (i.e.. cell volume, circumcenter, etc.) may lead to failure of the algorithm 
simply due to insufficient accuracy (even in 64 bit arithmetic). One remedy is to alter the order 
in which the points are inserted, or to employ auxiliary (possibly temporary) points to avoid the 
creation of highly skewed elements. However, this may also have the effect of modifying the resulting 
triangulation. Ultimately, the best technique for ensuring robustness is to resort to infinite precision 
arithmetic using integer programming techniques [30], perhaps in combination with some of the 
above strategies. 

3.4    Advancing-Front Delaunay Triangulation 

In an effort to alleviate some of the drawbacks of point-insertion Delaunay triangulation methods, an 
advancing-front Delaunay triangulation algorithm was recently developed by the author [29]. This 
method enjoys the smooth point distribution and guaranteed boundary integrity of the traditional 
advancing-front methods, while using the well founded principles of Delaunay triangulation to 
replace the heuristics present in the reconnection phase of traditional advancing-front methods. 
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Robustness without the use of high accuracy arithmetic is assured by only constructing triangular 
elements which are acceptable in size and shape, as determined by the background spacing function, 
i.e., the highly skewed triangles which appear temporarily in the point-insertion methods are never 

formed. 
A background spacing function s = f(x,y) is used to determine the maximum permissible 

circumradius p of a triangle as a function of spatial location. Each time a new point is added ahead 
of the front, it is desired to construct all Delaunay triangles which contain this new point, but which 
do not violate the local circumradius bound. Triangles which violate the local circumradius bound 
should not be constructed, even temporarily, for this may require non-local operations and the 
possibility of round-off induced error. One method of constructing these triangles is simply to join 
the new point to every possible pair of points in the grid and preserve each potential triangle which 
does not violate the Delaunay criterion and the circumradius bound. A more efficient technique 
is to determine a subset of the grid points which is sufficient for locating all acceptable triangles. 

Such a subset can be formed by considering all front points which are less than 2p away from the 
new point. The advancing-front Delaunay triangulation algorithm for fixed point sets (Tanemura- 
Merriam) described in section 2.1.3 [14, 15] can then be employed to construct the Delaunay 
triangles between these front points and the new point. As in the traditional advancing-front 

algorithm, it is possible that a new triangle may be formed from the current front edge with an 
existing front point. Such cases are automatically detected by the Tanemura-Merriam algorithm, 
and the new point is rejected. Finally, when anew point is introduced, it is possible that it intersects 
circumcircles of existing triangles. If this is the case, these triangles must be deleted prior to the 
formation of new triangles, since they are in violation of the Delaunay criterion. The method is 
set up similarly to the traditional advancing-front procedure. A background spacing function is 
defined, and the boundaries are discretized and constitute the initial front. The basic algorithm 

can be summarized as follows: 

Step 1: Construct the original front as a set of boundary edges. 
Step 2: Choose a particular edge from the front, according to some criteria such as minimum edge 

length. 
Step 3:   Locate all front points which are less than 2p away from either end point of this edge, 
where p is the local circumradius bound determined from the field function. 
Step 4: Use the Tanemura-Merriam algorithm to determine the Delaunay triangle formed between 
this edge and the set of candidate points, if such a triangle exists. 
Step 5: If this triangle exists and is acceptable (circumradius smaller than p), form a new triangle, 
update the front, and proceed to step 12. Otherwise create a new point at the appropriate location. 
Step 6: Determine all front triangles whose circumcircles are intersected by the new point. 
Step 7:   Using a neighbor search initiated at the intersected front triangles, locate all interior 
triangles whose circumcircles are intersected by the new point. 
Step 8: .Remove all such triangles and update the front. Any new front points which result from 
this operation are added to the list of "close" points. 
Step 9:  If the circumradius of any of the new intersected triangles is larger than the previously 
determined maximum permissible value />, replace the old value by this new maximum, and locate 
any additional front points which are less than 2p away from the new point. 
Step 10: Form all possible Delaunay triangles which contain the new point and two other points 
in the list of "close" points, and which do not violate the local circumradius bound. Such triangles 
are found using the Tanemura-Merriam algorithm. 
Step 11: Add these triangles to the mesh and update the front. 
Step 12: If the front queue is empty, stop, otherwise go to step 2. 
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As in previous advancing-front algorithms, the front is stored as a heap-list in order to facilitate 
the choice in step 2. A front-based quadtree is also used to perform the search for "close" points in 
step 3. A second quadtree is also employed in the search for intersected front triangle circumcircles. 
(The construction of quadtrees for geometric entities other than points, such as circles, is described 
in [4]). 

In most cases when a new point is inserted ahead of the front, no intersected circumcircles are 
detected, and few if any other front points are within the critical 2/? distance of the new point, thus 
the construction of new triangles is quite simple. When fronts merge upon each other, the situation 
becomes more complex. Triangle circumcircles from the opposing front are usually intersected. This 
alerts the front being advanced to the proximity of the neighboring front and provides an extra 
length scale (the circumradius of the intersected triangle) which is utilized effectively in mending 
the two fronts as shown in Figure 16. 

Figure 16: Illustration of the use of the front triangle circumcircle to detect the proximity 
of a front, (compare with the situation depicted in Figure 13). 

The Delaunay construction naturally results in additional information which is essential for merging 
two fronts of dissimilar length scales. This is precisely the information which is missing in the 
traditional advancing-front algorithms, which are prone to failure when fronts of dissimilar scales 
are encountered. Although a smoothly varying background function can reduce the likelihood of 
having to merge dissimilar fronts, this cannot be guaranteed. The extra information inherent in 
the Delaunay-based algorithm permits the merging of arbitrarily dissimilar fronts, thus increasing 
robustness. 

The space requirements and computational efficiency of the present algorithm lie in between 
those of traditional advancing-front algorithms and the Bowyer/Watson algorithm for Delaunay tri- 
angulation. As opposed to the advancing-front algorithms, the present approach does not represent 
a true greedy algorithm [2], i.e., triangles behind the front may be subsequently modified. However, 
the only such triangles which may be modified are those whose circumcircle extends ahead of the 
front into the ungridded region into which new points are placed. Assuming a relatively smooth 
distribution of elements behind the front, the number of such non-frozen elements is a constant 
times the size of the front. Thus, we can expect a space requirement of 0{ \fN), although the worst 
case estimate is more likely O(N). On the other hand, it is a simple matter to create a restart 
facility which dumps out the generated portion of the grid after a prescribed number of elements 
have been produced, and reinitializes the generation process using the front of the previous mesh 
as the initial condition. If no old elements behind the front are considered in the restart process, 
the resulting mesh may contain regions of locally non-Delaunay triangles along the fronts present 
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at each restart phase. If a true Delaunay triangulation is required, these regions may be converted 
using the edge-swapping algorithm in a postprocessing phase. 

The current algorithm exhibits a worst case complexity of 0(N2), just as the Bowyer/Watson 
algorithm for Delaunay triangulation. This occurs when the circumcircles of all existing triangles 
are intersected by each new point, or when all front points must be included in the list of "nearby" 
points which are candidates for forming a new element. However, for the smooth element and point 
distributions which are sought in the context of mesh generation, the number of points within the 
characteristic distance of a newly inserted point and the number of intersected triangles should 
approach a constant. When the logN term from the quad-tree data-structures employed for the 
search routines on the front is included, a complexity of O(NlogN) can be expected. This is 
the same complexity exhibited by other advancing-front algorithms under the same assumptions. 
However, the present algorithm can be expected to run significantly faster than other advancing- 
front algorithms, since the mesh is generated one point at a time, rather than one triangle at a 
time. In two dimensions, the differences may be small, especially since two length scales and thus 
two searches on the front are required for robustness (an additional one for the intersected front 
triangle circumcircles). However, in three dimensions where there are on the average 5 to 6 times 
more tetrahedra than vertices, the O(logN) cost of traversing the octree data-structures may be 
amortized over all elements generated about each newly inserted mesh point. 
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Figure 17: Illustration of advancing-front Delaunay triangulation procedure, (i) Quadtree 
of initial boundary discretization, (ii) Grid at intermediate stage of generation, (iii) Final 
generated mesh prior to the application of smoothing, (iii) Final smoothed mesh. 
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On the other hand, the present algorithm will probably not achieve the efficiency exhibited by 
Delaunay-triangulation point-insertion methods, due to the need to traverse the quad-tree data- 
structures, which are not present in these other methods, and the need to consider a sufficient but 
not necessary list of candidate points for triangulation at each point-insertion process. This cost, as 
well as the increased coding complexity, is viewed as the price required for additional robustness. An 
example of the mesh generation process using the advancing-front Delaunay triangulation algorithm 
is depicted in Figure 17. The initial front quadtree is shown in the first part of the figure. Two copies 
of this quadtree are kept. The first is static and forms the supporting structure for the background 
spacing function. In order to evaluate this function at a given spatial location s = f(x,y)< the 
quadtree is descended to the leaf quad which contains the particular (x, y) location, and the function 
value is obtained by bilinear interpolation of the values at the four quad vertices. The second copy 
of this quadtree is dynamic, and is advanced along with the front throughout the mesh generation 
process. This quadtree is employed for the spatial searches required by the algorithm. The second 
part of the figure illustrates an intermediate stage of the mesh generation process, while the final 
mesh is depicted in the third part of the figure, and the smoothed mesh in the fourth part of 

the figure. It is noteworthy that the final mesh generated in this fashion exhibits a very regular 
distribution of elements, even before the application of post-processing techniques. (Compare this 

with the first part of Figure 14, for example). 

3.5     Advancing-Front Point-Insertion Methods 

Another option for combining the advantages of Delaunay triangulation with those of advancing- 
front techniques is to employ the point-insertion algorithms (e.g. Bowyer/Watson or Green-Sibson) 
in conjunction with an advancing-front type point-placement strategy. The advantages of such 
methods are the smooth point distributions associated with advancing-front methods, coupled 
with the efficiency and ease of implementation of the Delaunay point-insertion methods. The 
disadvantages are the same as those described for the circumcircle point-insertion methods of 
section 3.3, i.e., the application of boundary recovery techniques, and possible robustness problems 
associated with the use of finite-precision arithmetic, due to the presence of highly skewed elements 
at intermediate stages of the mesh generation process. However, these methods are considerably 
simpler to implement than the algorithm of the previous section. They extend readily to three 
dimensions, and can also be used to generate triangulations other than the Delaunay triangulation, 
as will be shown. Such methods have been described by Rebay [44], and Mueller et al. [45], and 
later taken up by Marcum et al. [43, 46]. Assuming an element-size distribution function has been 
defined, and is used to control the maximum permissible circumradius of a triangle as a function of 
spatial location, Rebay [44] begins by classifying all triangles of the initial triangulation as either 
accepted, active, or waiting. An accepted triangle is one that satisfies the circumradius-bound 
defined by the field function, while a waiting triangle is one that does not. Active triangles are 
waiting triangles which are neighbors of accepted triangles. Active triangles are the only triangles 
considered for refinement. Thus, the set of edges which delimits the border between accepted and 
waiting triangles constitutes the front, and active triangles are simply triangles which have an 
edge on the front. Mueller et al. [45] and Marcum [46] have devised point placement strategies 

which mimic hyperbolic structured mesh generation techniques. At each stage, the entire front is 
considered, and a new set of points is created ahead of the front, similarly to a new layer of points 
in a structured hyperbolic mesh scheme. These points are then filtered, in order to remove points 
which may be too close together, such as in concave regions of the front, and the filtered point-set is 
inserted into the mesh sequentially, using the Delaunay point-insertion methods. A more traditional 
technique for advancing the front by using a heap-list, which always chooses the smallest front-edge, 
has also been found to work well. A particular implementation of these algorithms, as performed 
by the author is given below: 

22 



Step 1: Define afield-spacing function and discretize the boundaries accordingly. 
Step 2: Create an initial triangulation which covers the entire domain (using auxiliary points) 
Step 3:  Insert all boundary points into the triangulation using a Delaunay point-insertion algo- 

rithm (Bowyer/Watson or Green-Sibson). 
Step 4: Recover the boundary integrity using edge-swapping techniques (or edge-face swapping in 

3D) 
Step 5: Flag all triangles outside of the physical domain as accepted, and all triangles inside the 
domain which violate the local circumradius-bound as waiting (usually all initial triangles will be 

in violation). 
Step 6:   The set of edges which delimits accepted and waiting triangles forms the current front 
(which coincides with the boundaries at this stage). Construct a heap-list of these edges ordered 

by smallest edge-length. 
Step 7: Pick the smallest front edge from the top of the heap-list, and determine the position of 

the new point ahead of this edge, based on the local value of the field function. 
Step 8: Insert this point into the triangulation using the Delaunay point-insertion algorithm. 
Step 9: Reclassify newly formed triangles as accepted and waiting, based on the local circumradius 

bound, and update the front accordingly. 
Step 10: If the front is not empty, go to step 7, else stop. 

Figure 18:   Illustration of point-placement strategy for advancing-front Delaunay point- 

insertion method. 

The point-placement strategy is illustrated in Figure 18. The new point is placed along the median 
of the current front-edge, at a distance which results in a triangle of circumradius p, as prescribed 
by the field function. The location of the new point along the median is limited at the lower end 
by the intersection of the median with the inscribed circle of the current front edge, (since this 
is the smallest possible circumcircle which can be formed with a triangle consisting of this edge 
and a third point), and at the other extreme by the location of the circumcenter of the current 
waiting triangle formed with this edge. This extreme corresponds to a circumcenter point-insertion 
strategy, as described in section 3.3, which ensures the new point will not fall coincident ally close 
to an existing mesh point. Figure 19 illustrates the mesh generation process at an intermediate 
stage for the same configuration shown in the previous section. The front is clearly visible, and the 
identity of the accepted and waiting triangles is fairly evident. This algorithm uses the same point- 
placement strategy as the algorithm of the previous section, and thus should yield the identical mesh 
as the advancing-front Delaunay procedure of the previous section, provided the same background 
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spacing function is specified (not the case in this example). The main difference between these two 
algorithms is that, in the former case, the waiting triangles which are most often highly skewed, are 
never formed, thus leaving an ungridded gap region between the fronts. This results in the need to 
employ quadtree data-structures to perform the search for nearby front points and circumcircles. 
In the present method, the domain is always entirely covered by a triangulation, which is utilized 
in an efficient manner for supporting all spatial searching operations (implemented as neighbor 
walks). 

Figure 19: Partially completed advancing-front Delaunay point-insertion mesh. 

A notable feature of the present methodology is that the boundary recovery procedure must 
be performed immediately after the insertion of the boundary points, and cannot be performed at 
the end of the mesh generation operation, after all interior points have been added, as discussed 
in section 3.3. This is due to the fact that the boundary discretization constitutes the initial 
front, the location of which is required to guide the placement of new points. Once the boundary 
discretization has been recovered, it must be maintained throughout the insertion of all interior 
mesh points. While in two dimensions this is easily achieved by modifying the point-insertion 
algorithms according to the principles of constrained Delaunay triangulations, the lack of any 
such notion in three dimensions makes the situation more difficult. Indeed, the initial mesh with 
recovered boundaries in general will not represent a Delaunay triangulation, and may lead to failure 
of the Delaunay-based point-insertion algorithms. 

An alternative technique [25, 46] circumvents this issue. The approach is based on relaxing the 
constraint that the final mesh be as close as possible to Delaunay, and relies on variants of the Green- 
Sibson point-insertion algorithm. The basic mesh generation procedure is similar to that described 
above, except that in step 8, a truncated Green-Sibson algorithm is employed to insert new field 
points. The new point is inserted by joining it to the four vertices of its enclosing tetrahedron 
(or five vertices of two neighboring tetrahedra in the event the point coincides with a face, with 
a similar extension for a point coinciding with an edge), and then swapping faces and edges of 
the newly formed and subsequently modified elements according to the in-circle criterion, until a 
Delaunay mesh is recovered, or the process can no longer "improve" the mesh. Boundary integrity 
is easily enforced in this manner, since face-edge swaps which alter the boundary discretization 
are simply prohibited. While the Bowyer/Watson algorithm relies on the Delaunay property of 
the mesh in order to guarantee the convexity of the reconstructed region and the validity of the 
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new triangulation, the Green-Sibson algorithm can still be employed with initial constructions 
other than Delaunay triangulations. In such cases it reduces to a local optimization technique 
which attempts to approximate the Delaunay triangulation. By modifying the face-edge swapping 
criterion, the algorithm can be employed to construct other types of triangulations, such as min- 
max triangulations. (However, forward as well as backward propagation of the swapping tests 
must be implemented in such cases as described in section 2.1.2). In fact, Delaunay triangulations 
may not be the optimal construction for three-dimensional mesh generation problems, in spite of 
all the elegant properties associated with such triangulations. Since it is possible to form a sliver 

tetrahedron with vanishingly small volume for which the circumsphere is not excessively large (i.e., 
imagine four coplanar points on the sphere), Delaunay triangulations in three dimensions often 
admit such ill-behaved elements. This suggests that min-max triangulations may be better suited 

for three-dimensional grid generation purposes. 
On the other hand, the use of Green-Sibson type point-insertion local-reconnection algorithms 

for generating min-max triangulations suffers from the inability to recover the globally optimum 
min-max triangulation. In fact, the algorithm typically gets caught very quickly in a local optimum 

and results in poor quality meshes. A key feature which enables a closer approximation of the 
global optimum and yields higher quality meshes, is the use of an intermediate Delaunay in-circle 
swapping test, as demonstrated in [43, 46]. In this approach, each time a new point is inserted, the 
surrounding faces and edges are first swapped according to the traditional Delaunay in-circle test, 
and then re-swapped according to the min-max criterion. The use of this intermediate pseudo- 
Delaunay construction serves to broaden the range of influence of the new point, thus providing a 
more global effect, and avoiding the local optima which typically plague the straight application of 

the min-max criterion. 

4    Adaptive Meshing 

Aside from the treatment of complex geometries, the second main advantage of unstructured meshes 
is the ease with which solution-adaptive meshing may be implemented. Since no inherent structure 
is assumed in the representation of unstructured meshes, mesh refinement and coarsening may be 
performed arbitrarily in any region of the mesh. The principle idea of adaptive meshing is, of 
course, to enable a higher accuracy solution at lower cost, through a more optimal distribution of 
grid points for each computed solution. The entire procedure is akin to a control problem, where 
the output (the solution) drives the machinery which generates the solution itself. The basic steps 

in an adaptive meshing solution strategy are: 

• Computation of initial solution. 

• Estimation of local error in solution. 

• Modification of mesh according to estimated error values. 

• Initialization of solution on adapted mesh. 

• Resumption of numerical solution procedure. 

A complete adaptive solution package must therefore include a flow solution module, an error 
estimation technique, and a grid adaptation (refinement-derefinement) module, as well as an ac- 
curate representation of the actual configuration geometry. Thus, the construction of an adaptive 
solution methodology represents a large investment in software development, particularly in three 

dimensions. 
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The need to store geometry data is dictated by the requirements of pla.cing new adaptively 
introduced boundary points on the curves or surfaces which define the original geometry, rather 
than simply on the coarse grid approximation to this geometry, as shown in Figure 20. 

Figure 20: Illustration of fine and coarse grid discretizations of curved boundary. 

The extraction and reduction of this data from its defining source (usually a CAD data-package) 
may prove to be a difficult task, particularly for complex three-dimensional configurations. Another 
possibility is to encode the geometry as a very fine set of points (finer than the highest expected 
mesh resolution). This seemingly primitive technique may be making a comeback, particularly 
with the availability of rapid high-resolution geometry scanning devices. 

The actual mechanics for modifying the mesh, i.e., adding, removing, and displacing mesh 
points, as well as reconnecting them, is usually the topic which receives the most elaboration in 
adaptive meshing papers. It is also perhaps the best understood of all the required elements. 
Most adaptive meshing techniques can be implemented as extensions or enhancements to known 
mesh generation strategies. The formulation of an effective mesh refinement criterion, on the other 
hand, is a difficult task which has not been adequately resolved to date. The main problem is 
that an exact characterization of the error requires a knowledge of the solution itself, which is 
obviously impractical. While finite-element error estimates have been developed for simple elliptic 
problems, the difficulty is compounded for fluid dynamics problems by the fact that the governing 
equations represent a coupled system of non-linear hyperbolic partial-differential equations. A true 
characterization of the error would necessarily require information from all flow variables. Estimates 
which rely on the smoothness properties of the solution break down in regions near discontinuities 
such as at shocks. Furthermore, all error estimates rely on the fact that the computed solution 
is asymptotically close to the exact solution. The non-linear and hyperbolic character of the 
governing equations may, however, result in situations where this assumption does not hold, at 
least locally. Consider for example a separation bubble which only appears when certain upstream 
flow features have been adequately resolved, or the diffusion of a wake profile due to inadequate 
upstream resolution. In such cases, the downstream solution is in no way asymptotically close to 
the exact solution in these regions. 

The inadequacy of current error estimators, coupled with the fact that the computed solution 
may be far removed from the exact solution, are the main reasons why adaptive meshing cannot be 
utilized in lieu of mesh generation itself. In other words, the idea of initiating the calculation with 
an extremely coarse grid (possibly just fine enough to resolve the essential geometry topology) and 
relying on adaptive meshing to generate the final mesh, is impractical since many flow features will 
never be captured on such a mesh. The generation of a suitable initial mesh, with good resolution 
in regions of expected solution activity, is essential for good overall adaptive solution performance. 
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4.1     Refinement Criteria 

The most popular refinement criteria for fluid-flow problems are essentially heuristically derived 
gradient-based criteria, which involve a single or multiple physical flow variables. As an example, 
the gradient of pressure can be used to identify inviscid flow features, while the gradient of velocity 
can be used to track shear layers. In actual fact, it is the undivided gradient which is employed: 

du    , 
e=^-h (2) 

or, discretely: 

e - Au (3) 

The use of an undivided gradient ensures that the value of e, which should approximate the error, 
decreases as the mesh size is reduced. Since second-order methods, which are typically employed, 
can represent linear solutions exactly, an undivided second difference may be expected to yield a 
better refinement criteria: 

d2u    L 

€=dx*-h (4) 

Both first and second difference based refinement criteria have been tested and employed in the 
literature. However, the use of first differences is more conservative (i.e., produces more refinement) 
and is often found to work better in practice. Lohner [47] advocates the use of a non-dimensional 
criterion which is designed to assign equal weight to weak as well as strong flow features. This 
is achieved by forming the ratio of second and first derivatives. The refinement indicator can be 
written as: 

e = hx2\ 
\du\     ,     _- (5) hm + aü 19 

where ü represents some neighborhood average of the flow variable u, and a is a small parameter. 
This extra term in the denominator acts as a "noise" filter which avoids triggering refinement in 
regions of small solution oscillations. This type of refinement criterion has been used extensively 
for two- and three-dimensional transient flow solutions involving shock waves. 

An interesting study of the effectiveness of various refinement criteria for steady-state problems 
can be found in the paper by Warren et al. [48]. The error levels in various adapted mesh solutions 
using different refinement criteria were assessed by comparing the adapted mesh solutions to the 
"exact" solution (i.e., a solution computed on a highly resolved, globally refined mesh). Their 
experiments indicate that the modification of the undivided differences in equation (3) to include 
a local mesh length-scale such as: 

e = Au- Ax (6) 

produces a more effective refinement criterion. This is partially due to the fact that while the simple 
undivided difference form of equation (3) decreases in magnitude as the mesh is refined in smooth 
regions of flow, it remains approximately constant in the vicinity of shock waves, since the shock 
wave profile steepens as the mesh is refined, and the jumps remain almost constant. However, even 
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in regions of smooth flow, the additional length scale weights large cells more heavily than small 
cells, and drives the adaptation process closer towards global refinement. The introduction of an 
extra length scale thus produces a more conservative criterion (i.e., results in more refinement) 
and thus greater reduction of the error can be expected. This asymptotic tendency towards global 
refinement is actually the behavior which is desired for steady-state problems. While adaptive 
meshing is typically thought of as a process that refines only local regions of the mesh, this is 
characteristic of the initial stages of an adaptive mesh procedure, where the appropriate distribution 
of mesh resolution is set up to match the solution. Once this has been achieved, and the error is 

presumably equipartitioned throughout the domain, any increase in solution accuracy can only 
come about from global refinement. Refinement criteria must therefore be able to reproduce this 

behavior. 
Although gradient-based refinement criteria have been employed successfully in computational 

fluid dynamics, such techniques are not well founded and are far from optimal. The effectiveness 

of a refinement criterion is measured in terms of accuracy delivered for the number of mesh points 
required. In the above discussion, the more conservative gradient-based criteria are obviously the 

most successful at reducing the solution error, but also result in excessive refinement, and are not 
necessarily the most efficient. The construction of more optimal refinement criteria will require 
the development of better error estimation techniques most likely through the use of some type of 

extrapolation method [49]. 

4.2     Mesh Adaptation Techniques 

Mesh adaptation may involve the addition of extra vertices, the removal of vertices, the redistri- 
bution of existing vertices and the reconnection of mesh vertices. The character of the problem 
to be solved dictates the requirements of the mesh adaptation strategy. For example, steady-state 
problems usually involve a small number of adaptation phases as part of a lengthy solution process. 
Therefore, relatively sophisticated (i.e., more optimal) adaptation strategies can be employed, such 
as, in the extreme case, complete mesh regeneration. Mesh refinement procedures are most impor- 
tant here, while de-refinement has only a minor effect and can often be omitted for steady-state 
cases. For transient problems, mesh adaptation must be performed every several time-steps, and 
thus efficiency is much more important than optimality. Mesh refinement and de-refinement are 
both essential for transient cases. Furthermore, the accuracy of interpolation from the original 
mesh to the refined mesh affects the solution accuracy (unlike the steady-state case), and thus 
accurate transfer schemes are required. These requirements have often lead to the use of simple 
element subdivision schemes for transient flows. 

For steady-state as well as transient problems, mesh adaptation strategies are generally based 
on one of the previously discussed mesh generation procedures, and can be implemented as an 
extension of the originating procedure. 

4.2.1     Delaunay Point-Insertion Based on Solution Gradients 

The Bowyer/Watson and Green-Sibson algorithms described in section 2.1 enable the introduction 
of new points in any regions of an existing mesh, and are thus natural candidates for mesh adap- 
tation algorithms. A particular implementation of an adaptive mesh solution strategy using the 
Bowyer/Watson algorithm performed by the author [50] is described below. Assuming an initial 
Delaunay triangulation mesh has been constructed, the flow solution is computed on this mesh. 
Using the undivided gradient of density as a refinement criterion (c.f. equation (3)), each edge of 
the mesh is then examined and flagged for refinement if the difference of density along the edge 
is larger than some threshold value, which is set proportional to the average of all density dif- 
ferences taken over all mesh edges. This simple edge-based refinement strategy tends to produce 
non-isotropic point distributions which triangulate poorly. Therefore, a more isotropic refinement 
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strategy is desired. This is achieved by effecting a single loop over the mesh triangles and flagging 
the remaining edges for refinement of any triangle which has a single or two refined edges. Note that 
this operation requires the use of a cell-to-edge data-structure, in addition to the cell-to-node data- 
structure employed by the Delaunay triangulation algorithm, and the edge-to-node data-structure 
employed by the flow solution algorithm. 

For each flagged edge, a new point is created at the midpoint of the edge. For boundary edges, 

these points are repositioned onto the spline curve which defines the original geometry, as depicted 
in Figure 20. The new points are put in a list, and then inserted and triangulated sequentially into 
the mesh using the Bowyer/Watson algorithm. The new refined mesh is smoothed by repositioning 
the points according to a Laplacian filtering technique. The solution is then interpolated in a 
piecewise linear manner from the original mesh to the new finer mesh (using the interpolation 
operators constructed for the multigrid algorithm as described in the next chapter) and the flow is 
solved on the new mesh. The entire procedure is repeated several times, until the desired accuracy 
(or grid size) is attained. 
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Figure   21:     Adaptively  generated 
mesh for NACA 0012 airfoil. 

Figure 22: Adaptively generated 
mesh for idealized four element airfoil 
geometry. 

Figure 21 illustrates the final mesh obtained by this procedure, after three adaptive refinement 
passes, for the computation of transonic flow over a NACA 0012 airfoil. The flow features are 
rather well defined in this case, and the various levels of refinement are evident in the final mesh. 
Figure 22 illustrates an adaptive mesh obtained for the computation of inviscid subsonic flow over 
a multi-element airfoil. Here, the flow is smooth and features are not well defined. The various 

levels used to construct the adapted mesh are not as evident, and the procedure results in a smooth 
variation of the mesh in most regions of the domain. This same procedure extends readily to three 
dimensions. Figure 23 depicts an adapted tetrahedral mesh employed to compute the transonic 
flow over an ONERA M6 wing. This mesh contains a total of 173,412 points, and was obtained 
through two applications of adaptive refinement. The double shock structure in the flow solution 
is clearly reflected in the mesh refinement pattern. 
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Figure 23: Adaptively generated mesh in three dimensions for ONERA M6 wing. 

4.2.2 Extensions to Steiner Triangulation 

Any mesh generation technique which relies on the use of a background element-size distribution 
function can be extended in a natural manner for adaptive meshing problems. Consider the Steiner 
triangulation methods described in section 3.3, where new points are continually added to the mesh, 
until elements which satisfy the background size-function are obtained. Once the flow solution has 
been obtained on the initial mesh, the background function may be modified to reflect the result 
of the application of a refinement criterion to this solution, (i.e., the background function can be 
modified to specify small element sizes in regions of high flow gradients or solution error). A new 
adapted mesh may then be constructed by simply restarting the Steiner triangulation algorithm, 
and resuming triangulation until convergence to the new background function is achieved. This 
strategy, of course, only produces additional refinement. In principle, mesh de-refinement may 
also be achieved by removing points sequentially, and retriangulating the resulting convex cavity 
for each deleted point, in regions where the mesh element-size is smaller than that prescribed by 
the background function. This may be achieved, for example, by applying the Tanemura-Merriam 
Delaunay triangulation algorithm to the vertices of the cavity which is created upon the removal of a 
point from the current mesh. In three dimensions, however, it is possible to encounter cavities which 
cannot be tetrahedralized, and a more sophisticated approach may be required. An alternative is 
to maintain a data-structure which encodes a hierarchical history of the triangulation construction, 

as suggested by Barth [51]. 

4.2.3 Adaptive Remeshing 

The background element-size distribution function of traditional advancing-front methods may 
also be modified in a solution adaptive manner. For background functions defined on a (coarse) 
unstructured grid, one approach is to define the new function on the current mesh slated for 
refinement [26]. The advancing-front mesh generation software can then be utilized to regenerate 
a new mesh from scratch, using the newly defined background function to determine the solution- 
adaptive mesh distribution. A less expensive alternative is to use local remeshing [34]. In this 
approach, the current mesh is removed in various regions of the domain where the discrepancy 
between current and desired mesh resolution is large.   New local meshes are then generated in 
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these void regions using the advancing-front method, where the initial front is determined by the 
boundary between meshed and void regions. 

4.2.4     h-Reflnement or Subdivision Techniques 

h-refinement techniques, which rely on the subdivision of mesh elements according to a prede- 
termined set of primitive operations, are both simple and efficient. These methods result in fine 
grid elements which are fully nested with their forming coarse grid elements, as well as fine grids 
which contain, as a subset of their vertices, all the coarse grid vertices. These properties enable 
a very accurate and efficient transfer of variables from one grid to another, as well as a simple 
framework for encoding history effects to determine parent-child relationships between cells. This, 
in turn, enables efficient use of de-refinement techniques. Efficiency, de-refinement, and accuracy 
of interpolation make these methods ideal for transient problems. The fully nested property of 
these techniques has also been exploited for constructing unstructured multigrid algorithms based 
on such meshes (see chapter on multigrid methods). 

The main drawback of such methods is the possibility of generating ill-shaped elements and 
meshes with arbitrarily high connectivity at isolated vertices. In order to avoid such situations, 
strict rules on the permitted element subdivision types must be enforced. A set of primitives for 
the subdivision and de-refinement of three-dimensional tetrahedra are given by Lohner [47], and 
reproduced in Figure 24. 

1:2 

1:4 

2:4 

2:8 

4:8 

Figure 24: Rules for subdivision refinement of three dimensional tetrahedra! meshes. 

1:2, 1:4, and 1:8 refinements are permitted. Subsequent refinements of 2:4, 2:8, and 4:8 are also 
permitted. However, if a 1:2, 1:4, or 2:4 configuration is to be refined further, it must first be 
transformed to a 1:8 refinement, and then its child elements refined recursively. When applying 
these rules to a set of elements in a mesh, care must be taken to ensure compatible refinement 
patterns are obtained on neighboring elements, and to avoid jumps larger than 8:1 between neigh- 
boring elements. This is achieved by iteratively modifying the refinement types on groups of mesh 
elements until a compatible pattern is achieved. 
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Figure 25: Example of three-dimensional mesh adaptation by subdivision for transient 
shock-wave problem over an unfriendly configuration. (Reproduced from [52] with permis- 

sion). 

Figure 25 illustrates an example of a transient shock wave problem computed with an adaptive 
h-refinement technique, taken from [52], using the technique described above. Another method for 
avoiding ill-shaped elements and poor mesh connectivity is to perform an edge-swapping or face- 
edge swapping operation in two dimensions or three dimensions, respectively, after the element 

subdivision operations, in order to improve the mesh topology. While substantial improvement 
in mesh quality can be obtained, particularly if the strict refinement rules have been relaxed, 
the nested property of the meshes is lost, and the parent-child history essential for de-refinement 
becomes more complicated to recover. 

4.2.5     Mesh Movement Techniques 

Mesh movement techniques involve the movement of mesh vertices in order to improve the dis- 
cretization accuracy, by drawing points towards regions of high solution error, and away from 
regions of excessive resolution. These are often performed without altering the mesh connectivity, 
which makes then particularly simple to implement. While they have proved useful for structured 
meshes (where the mesh structure must be preserved), they are rarely used in this form for un- 
structured meshes, since mesh refinement is easily implemented. They are most often employed in 
conjunction with other adaptive meshing techniques as a smoother, in order to improve local grid 
quality. A simple construction of Laplacian-type smoothing operations for two-dimensional meshes 
is given by updating the coordinates of each mesh point as: 

N 
xneu- = xold + _-yix°U -Xk] 

A 

N 

ynew = yM + ^Y.(y0ld - yk) 
A 

7) 
k=l 

where the summation is over all the neighboring vertices of the considered point. This procedure 
mimics a Jacobi iteration for a Laplacian operator on the coordinates of the grid points, and can be 
applied iteratively for all grid points. This particular formulation does not exclude the possibility 
of forming negative area elements. Although formulations have been developed for excluding such 
possibilities, they are often expensive and difficult to solve. A simpler approach is to unsmooth 
grid points in regions where negative elements are created. This approach, combined with the use 
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of face-edge swapping for improving grid connectivity, can substantially improve mesh quality (c.f. 

Figure 14). 
While mesh movement methods have seldom been employed as a solution-adaptive meshing 

procedure for unstructured meshes, a notable exception is the use of these techniques for shock 
fitting purposes [53, 54]. If the mesh points of a triangular mesh are displaced in such a manner as 
to align the mesh edges with the shocks in the flow, then it is possible to capture the shock over a 
single mesh cell interface using, for example, a cell-centered scheme with a Rieman interface solver. 

Figure  26:    Original mesh,  adapted mesh,  and corresponding solutions,  using mesh- 
movement shock fitting approach. (Reproduced from [54] with permission). 

Figure 26 illustrates the use of this technique for capturing a bow and fishtail shock about a 
supersonic airfoil. Not only can very weak shocks be well captured, but the required number of 
grid points and computational effort is much lower than for mesh refinement techniques. 

5     Stretched-Mesh Generation 

The drive towards full Navier-Stokes solvers has necessitated the development of stretched grid 
generation techniques in order to resolve the thin boundary-layer and wake regions which are 
characteristic of high-Reynolds-number viscous flows. Proper boundary-layer and wake resolution 
usually requires mesh spacing several orders of magnitude smaller in the direction normal to the 
boundaries than in the streamwise direction, resulting in large cell aspect-ratios in these regions. 
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The application of the triangulation methods described in the preceding sections to these types 
of mesh-point distributions results in awkward triangulations, which are ill-suited for numerical 
computations. This is due to the fact that most of these methods have been conceived for the 
generation of isotropic meshes, and are ill-suited for the generation of high-aspect-ratio elements. 
Consider, for example, the Delaunay triangulation of such a point-set. In two dimensions, Delaunay 
triangulations are equivalent to max-min triangulations, i.e., they correspond to the triangulation 
which maximizes the smallest angles of all elements. Since high aspect-ratio triangles necessar- 
ily contain at least one very small angle, Delaunay triangulations actually attempt to avoid the 
generation of such elements. 

There are two possible approaches in dealing with these difficulties. The first is to make use of 
alternative element types in regions of high mesh stretching, such as quadrilaterals in two dimensions 
and prisms or hexahedra in three dimensions [55, 56]. The second approach is to define the types 
of triangle/tetrahedral elements which are desirable for stretched mesh generation, and to modify 

existing methods or devise new techniques for generating meshes which contain such elements. 

In practice, both approaches are viable. In fact, the two approaches are less distinct than may 
be expected, since it is always possible to subdivide a mixed-element mesh into a fully triangular 
or tetrahedral mesh, and similarly most highly stretched triangular/tetrahedral meshes can be 
transformed into mixed quadrilateral/triangular or prismatic-tetrahedral meshes by identifying 
appropriate mesh edges for removal [15, 43]. In fact, the definition of a stretching direction in 
itself implies a certain degree of local structure in the mesh, which enables the simple extraction of 
quadrilaterals/prisms from a triangular/tetrahedral mesh. Similarly, no loss of flexibility is implied 
by the use of semi-structured quadrilateral or prismatic meshes in highly-stretched regions. The 
main drawbacks of using mixed-element meshes is the lack of homogeneity in the grid structure, 
which may complicate procedures such as flow solution and mesh adaptation. The advantages are 
reduced overheads for these same procedures, due to the lower overall connectivity of these mesh 
elements and the resulting reduction in the number of mesh edges. In three dimensions, the use 
of prismatic elements are particularly attractive, since this permits the use of triangular surface 
meshes. 

If fully triangular/tetrahedral meshes are to be employed, a characterization of the optimal 
stretched triangle shape needs to be defined. In [57]. it is shown how the accuracy of a two- 
dimensional finite-element approximation on triangular elements degrades as the maximum angle 
of the elements increases. 

(a) (b) 

Figure 27:   Illustration of two types of high aspect ratio triangles:  non-obtuse (a) and 
obtuse (b). 

Thus, as shown in Figure 27, stretched obtuse triangles which contain one large angle and two small 
angles are to be avoided, while stretched nearly right-angle triangles, with one small angle and two 
nearly right angles are to be preferred. (Similarly, one may infer that the types of tetrahedra which 
result from the subdivision of a thin prism in 3D are desirable). Thus, a triangulation procedure 
which avoids obtuse triangles in favor of right-angle triangles would be desirable.   It should be 
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noted , however, that even if a "perfect" triangulation scheme exists, acceptable mesh elements will 
only be obtained provided the vertices are positioned appropriately. Thus, most stretched-mesh 
generation techniques involve careful point-placement strategies as well as modified triangulation 

schemes. 

5.1     Stretched Delaunay Point-Insertion 

One of the earliest techniques for generating highly stretched triangular meshes [36, 37, 58] makes 
use of a locally-mapped Delaunay triangulation point-insertion method. The basic idea is to de- 

fine a local stretching vector (direction and magnitude of stretching) at each vertex. New points 
are inserted into the triangulation using the Bowyer/Watson Delaunay triangulation algorithm. 
However, this triangulation is carried out in a transformed space, which is obtained by locally 
remapping the physical space according to the values of the stretching vector in the vicinity of 
the new point. This results in a nearly isotropic Delaunay triangulation in the transformed space, 
but in a stretched Delaunay triangulation in physical space, where triangle circumcircles become 

circumellipses, as shown in Figure 28. 

Figure 28: Circumellipse of a stretched Delaunay triangulation. 

The problem of constructing a global mapping for complex domains with variable distributions of 
stretching represents a formidable task. However, since the the Delaunay triangulation is a local 
construction, the problem can be formulated in a simpler manner, using local mappings. Each 
time a new point is to be inserted, a local mapping may be constructed, using the local values 
of the stretching vectors, which may be averaged and taken as constant throughout the region 
to be restructured. This enables the use of a variable stretching distribution, but requires the 
distribution of stretching to be smooth, and to vary slowly with respect to the point-distribution. 
In fact, a close coupling between the stretching and mesh-point distributions is required in order to 
ensure the generation of appropriately shaped triangular elements. In the present approach, this 
is achieved by generating both mesh-point and stretching distributions from a set of overlapping 
stretched structured meshes. The original method [37] can be summarized as follows: 

Step 1: Generate a highly stretched structured mesh about each geometry component. 
Step 2:  Filter out far-field and downstream wake points in these structured meshes. 
Step 3: Define a stretching vector at each remaining point, based on the local structured grid-cell 
orientation, stretching direction, and aspect-ratio (stretching magnitude). 
Step 4: Using the Bowyer/Watson algorithm, construct the (unstretched) Delaunay triangulation 

of this set of points. 
Step 5:   Smooth the distribution of stretching vectors by performing several passes of averaging 
stretchings with their neighboring values. 
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Step 6: Swap the edges of the mesh according to the Delaunay in circle criterion, measured in the 
locally mapped space, as defined by the average local stretching vector (i.e., a stretched Delaunay 
in ellipse criterion). 

Step 7: Smooth the mesh-point distribution and reswap the edges (this step may be repeated 
several times). 

The use of point-sets derived from structured meshes ensures that the points will be distributed in 
a configuration which favors the formation of nearly right-angle triangles in the highly stretched 
regions of the mesh,, such as near the walls and in the wake regions. Step 3 ensures the compatibility 
between the stretching distribution fand thus triangulation criterion) and point distribution, while 
step 5 is necessary to guarantee a smooth distribution of stretching in regions where the structured 
meshes overlap. It is noteworthy that an initial triangulation is required in order to accomplish 
this smoothing. Figure 29 illustrates a stretched unstructured mesh produced by this technique for 
a simple airfoil configuration. 

Figure 29:   Stretched unstructured mesh produced by mapped Delaunay triangulation 
procedure for RAE 2822 airfoil. 

The present method permits a smooth transition between stretched and unstretched regions, as 
well as between two neighboring stretched regions, and enables a straight-forward implementation 
of adaptive meshing techniques. New mesh points may be inserted into the existing mesh by first 
assigning them a stretching vector taken as the average of the neighboring stretching vectors, and 
then using the Bowyer/Watson algorithm in the locally stretched space to triangulate the new 
point. The final mesh may be post-processed with several passes of smoothing and edge-swapping. 
An example of an adaptively generated stretched unstructured mesh about a four-element airfoil 
is illustrated in Figure 30. 
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Figure 30: Adapted stretched mesh for computing viscous flow over four-element airfoil. 

In retrospect, this mesh generation approach can be viewed as the construction of an initial (De- 
launay) triangulation, followed by an edge-swapping reconnection phase governed by a criterion 
determined by a distribution of stretching. In this respect, it is similar to some of the more recent 

methods for constructing stretched triangulations. 

5.2    Hybrid Methods 

One of the most evident techniques for constructing stretched meshes for viscous flows is to use a 
hybrid technique which makes use of a structured mesh in the thin boundary-layer and wake regions, 
which require high degrees of stretching, and an unstructured mesh in the regions of inviscid flow, 
where isotropic constructions are desirable. In two dimensions, the structured portion of the mesh 
consists of quadrilaterals, while in three dimensions either hexahedra or prismatic (semi-structured) 
elements may be used. These elements may be later subdivided into triangles or tetrahedra to 
produce a homogeneous mesh, or alternatively they may be retained, and the flow solver may be 

modified to capitalize on the local grid structure. 
An example of a hybrid approach to stretched mesh generation consists of generating a local 

structured mesh using a hyperbolic mesh generation technique, up to a prespecified distance away 
from the boundary surfaces, and an advancing-front unstructured mesh generation technique to 
complete the mesh by filling in the remainder of the domain with an isotropic unstructured mesh 
[56]. The problems associated with hybrid mesh constructions involve the adequate definition of 
the thickness of the structured mesh layer, as well as difficulties involved in concave regions or 
regions where neighboring boundaries are in close proximity, which may result in overlapping of 
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the structured meshes. Another difficulty consists of producing a mesh with a smooth transition 
between stretched structured regions and isotropic unstructured regions. Many of these difficulties 
can be overcome by employing a structured grid layer of variable thickness. 

5.3     Semi-Structured-Unstructured Hybrid Meshes 

The hybrid structured-unstructured approach may be made more flexible by employing so-called 

semi-structured meshes in the stretched mesh regions [59]. Semi-structured meshes are essentially 
structured meshes with a variable thickness or normal resolution. A semi-structured mesh may 
be constructed by first generating a structured mesh about each geometry component, over a 
distance which covers a significant portion of the domain (i.e.. a distance much greater than the 
boundary-layer thickness), and then removing the regions of the mesh which overlap with neighbor- 
ing structured meshes and/or geometry components, as well as regions of the mesh where stretching 
is not required, i.e., where the structured mesh cell aspect-ratios are less than unity. The remaining 
portion of the domain is then gridded with an isotropic triangulation scheme. This results is an 
automatic determination of the inner-mesh thickness, and a more smooth transition between the 
inner and outer meshes. 
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Figure 31:    Semi-structured mesh gener- 
ated prior to completion of isotropic region. 

Figure 32:   Final Unstructured mesh gen- 
erated using semi-structured approach. 

An example of a semi-structured mesh generated by the author is depicted in Figures 31 and 
32. The outer boundary is somewhat ragged, but this presents no difficulty for the unstructured 
mesh approach which is used to complete the mesh. In this case, the advancing-front Delaunay 
triangulation scheme was employed in the isotropic regions of the domain, and elements of the semi- 

structured mesh have been subdivided into triangles. A noteworthy point concerns the structure 
of the mesh in the wake regions. While highly stretched meshes are required in wake regions, 
unless these are to be carried to the outer boundary of the domain, they must be blended with 
the isotropic portion of the mesh in a smooth manner. In the present implementation, this is 
accomplished by coarsening the wake-point distribution in the normal direction increasingly in the 
downstream direction, and readjusting the connectivity. This operation is performed prior to the 
generation of the isotropic portion of the mesh, since it results in a modification of the initial 
boundary discretization of the remaining area to be gridded isotropically. 

The drawbacks of this method are the requirement of being able to generate structured meshes 
about arbitrary geometry components, the task of locating overlapping structured mesh regions, 
and the ability of the method to merge two neighboring semi-structured meshes. 
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5.4    Advancing-Layers Method 

The advancing-layers method [60, 61, 62, 63, 64] represents a generalization of the concept of semi- 
structured meshes. Rather than construct an inner semi-structured mesh by truncating a structured 
mesh, the advancing-layers technique uses structured hyperbolic mesh generation principles locally 
at each boundary edge or face to advance a new layer in the normal direction, thus creating a new 
cell. Advancing-layers can also be viewed as a modification to the unstructured advancing-front 
algorithm to create stretched quadrilateral (or prismatic) elements using different point-placement 
and reconnection strategies. This is achieved by capitalizing on the similarities between hyperbolic 
mesh generation and advancing-front techniques. 

The point placement strategy of the advancing-layers method relies on the surface normals of 
the boundary discretization. A line segment normal to the boundary surface is first associated with 
each boundary point. These normals are often smoothed by averaging their orientations with those 
of their neighbors. Progressive smoothing, which vanishes near the boundary and increases away 
from the boundary is typically employed. Quadrilateral elements (or prismatic elements in three 
dimensions) are created by placing new points along the boundary normals and connecting them 
to neighboring points in a specified pattern. 

The layers are advanced out from the original discretized boundaries with an increasing step- 
size which results in progressively decreased stretching. For each normal stack of cells associated 
with a boundary edge or face, the advancing process is terminated either when an opposing front 
is encountered, or when the cell aspect-ratio becomes close to unity. Once the advancing-layers 
procedure terminates, the remainder of the domain is filled in with an isotropic unstructured mesh, 
as in the previous methods. While the rate of growth of the advancing layers is typically prescribed, 
a background function is used to determine the resolution of the initial boundary discretization 
as well as to control that of the unstructured portion of the mesh. When the advancing-layers 
phase terminates, the existing mesh looks much like the semi-structured or truncated hyperbolic 
structured mesh of Figure 31. A three-dimensional example of the advancing layers method, taken 
from [64], is depicted in Figure 33, for a four-element wing configuration, showing the surface mesh, 
and the partially completed mesh of stretched layers. As in the semi-structured mesh procedure, 
the layers may be conserved as quadrilaterals or prisms in two or three dimensions respectively, or 
they may be subdivided into triangles or tetrahedra. 

Figure 33:   Illustration of advancing-layers method for three-dimensional unstructured 
mesh generation about segmented wing geometry. (Reproduced from [64] with permission). 
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5.5     Advancing-Front Min-Max Triangulations 

A somewhat more unified approach to generating highly stretched triangulations involves the use 
of min-max triangulations, i.e., triangulations which minimize the maximum angles produced in 
the elements. While Delaunay triangulations were written-ofF as unsuitable for stretched mesh 
generation, the desire to avoid obtuse or large angle triangles in such meshes implies the feasibility 
of using min-max triangulations for generating stretched meshes. 

However, connectivity strategies alone cannot guarantee high quality meshes, and thus com- 
patible point-placement strategies must be developed. The advancing-front min-max triangulation 

algorithm of Marcum [43] makes use of two distinct point placement strategies, one for highly 
stretched regions of the mesh, and another for isotropic regions. In the stretched mesh regions, 
the point placement strategy resembles that described in the advancing-layers method, i.e., points 
are placed along smoothed boundary normal segments. In the isotropic regions, points are placed 

according to the same rules described for the advancing-front Delaunay triangulation algorithm 
of section 3.5, making use of a background element-size distribution function. The mesh gener- 

ation process begins by generating a coarse triangulation which covers the entire domain. The 
domain boundaries are then discretized according to the background function, and these boundary 
points are inserted into the existing triangulation. Once all boundary points have been inserted, 
the boundary integrity is recovered. The advancing-front min-max procedure is then initiated by 
creating new points using the appropriate point-placement strategy and inserting each point into 
the existing triangulation using the min-max variant of the Green-Sibson algorithm (i.e., forced 
triangulation followed by edge-swapping). The unifying feature of this strategy is that the inser- 
tion and triangulation of new points is identical in stretched and unstretched regions. The point 
placement methods are however different in these two regions, and the method retains a somewhat 
hybrid character. An example of a stretched unstructured mesh generated by this technique is 

shown in Figure 34. 

Figure 34: Stretched unstructured mesh produced by advancing-front min-max trian- 
gulation procedure for familiar two-dimensional geometry, with illustration of stretched 
triangulation over the coast of Belgium. (Reproduced from [43] with permission). 

The method has also been demonstrated in three dimensions, as shown in Figure 35.   In three 
dimensions, each time a new point is inserted, the mesh must first be swapped to a local Delaunay 

40 



configuration, and then to the min-max configuration, in order to attain a more globally optimum 
final min-max configuration, as described in section 3.5. 

An alternate point-placement strategy for min-max triangulations which does not rely on an 
advancing-front is given by Barth [65]. One of the drawbacks of the reliance on min-max tri- 
angulations is the possibility of the min-max criterion resulting in undesirable connectivities for 
seemingly well distributed vertices. For highly stretched meshes, the min-max triangulation may 
be very sensitive to the placement of vertices, with small displacements leading to substantially 
different connectivities. The precise placement of grid points in the highly stretched regions is thus 
much more critical than in "forced" triangulation methods such as the advancing-layers method. 
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Figure 35: Section of an advancing-front min-max triangulation grid in three dimensions 
about an F-18 aircraft configuration. (Reproduced from [43] with permission). 
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