
iBiiii

mm
«HHH

Hi'

. •■■■ ■■ :-^-7^-^ ^.■.■^■■^'/■■y- ■"■■■■■ I"

Cooperative Intelligent Software Agents

Daiun Zeng Katia Sycara

wi^i^^^H^mhii^^mmammmim^^miimt^mm^^mKmimmmm^m^mmmm

19950425 di

Carnegie Mellon University
The Robotics Institute

INSTITUTE Technical Report

Cooperative Intelligent Software Agents

Dajun Zeng Katia Sycara

CMU-RI-TR-95-14

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

March, 1995

©1995 Carnegie Mellon University

Accesion For

NTIS CRA&I
DT1C TAB
Unannounced
Justification

By
Distribution/

Availability Codes

Dist

ß±

Avail and/or
Special

fThis research has been sponsored in part by ARPA Contract F33615-93-1-1330

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

Contents

1 Introduction *

2 Distributed Architecture for Intelligent Information Retrieval
and Problem Solving 2

3 An Example Scenario: Organize a Visit 6

4 Conclusions "

List of Figures

List of Tables

Abstract

The availability of network-based information sources and services,
along with the wide use of of World Wide Web, presents a great op-
portunity for enhanced problem solving support that incorporates in-
formation gathering into the problem solving framework. The concept
of an intelligent information agent has been explored for information
accessing and filtering tasks (e.g., filtering of newsgroup information).
To provide support for more complex tasks that involve information
gathering along with decision making capabilities, an agent must com-
municate and cooperate with other agents. One of the main issues is
how to structure a multi-agent architecture that will allow access,
filtering and fusing of information from many sources and services,
integrated with flexible decision support. In this paper we present
such an architecture. It has two layers: The top layer consists of task-
specific software agents which help users perform tasks by formulating
problem solving plans and carrying out these plans through querying
and exchanging information with other software agents. The bottom
layer consists of information-specific agents which provide intelligent
access to a heterogeneous collection of information sources. The lay-
ered architecture has been implemented in the domain of everyday
organizational tasks (e.g., hosting visitors, finding information about
persons on the internet, managing personal calendars) at Carnegie
Mellon. We illustrate this architecture and the agent coordination
protocols in the hosting visitor domain.

1 Introduction
1 Due to advances in networking technology, increasingly diverse and volu-
minous information is becoming available to decision makers. In effect, vast
amounts of information in electronic form are currently freely available at a
multitude of sites to anyone with access to the Internet. This presents the
opportunity for enhanced levels of decision support that integrate informa-
tion gathering and utilization into a decision support framework. Although
this opportunity has been recognized by the decision support community [6],
there has currently been limited investigation of problem solving frameworks
where information is actively sought out in an open environment and is seam-
lessly integrated with problem solving and decision making [3, 9]. One of the
main goals of our research in the PLEIADES group is to address this issue.

In most current information retrieval systems, users are assumed to know
the information source and the form of their queries. Even though multiple
data sources may be available, the user must decide which data source will
most likely provide the correct answer, formulate the query according to the
query language used by that data source and analyze the retrieved infor-
mation. If the answer to a query is not adequate, then the user will either
formulate another query or explore another data source. Moreover, when
the retrieved data will be used to support decision making, the user must
interpret and possibly reformat and enter the results into the decision sup-
port system. This mode of operation is very time consuming and inefficient,
especially in the new information environment where: (1) The number and
variety of data sources and services is dramatically increasing every day, (2)
the information sources are multi-modal and distributed, and (3) the avail-
ability, type and reliability of information services are constantly changing.
These characteristics of the new information environment necessitate new
architectures for finding, retrieving, filtering and fusing information.

On the other hand, automated or semi-automated problem solving sys-
tems typically operate in a closed world environment, where almost every
piece of information needed for problem solving is assumed to be known
before problem solving starts or can be inferred by the system [2]. For ex-

*We want to thank Tom Mitchell, Rich Caruana, Dana Freitag, Matthew Glickman,
Ken Lang, Sean Slittery, David Zabowski and other members of the PLEIADES project
for interesting discussions. We also want to thank Gilad Amiri, Anandeep Pannu and
Leonardo Garrido-Luna for doing much of the implementation.

ample, a planning system is assumed to know all the detailed specifications
of available operators, initial state and goal state before it gets started. To
realize the great opportunities for enhanced decision support presented by
the availability of the new network-based electronic information environment,
new problem solving architectures must be developed that integrate active
information gathering with decision support functionality [3].

In this paper, we present a distributed framework where intelligent soft-
ware agents cooperate asynchronously to perform goal-directed information
retrieval and information integration in support of various tasks, such as
finding information about people on the Internet, managing calendars and
making arrangements to host visitors in an academic environment. We have
implemented this architecture in the PLEIADES project. The broader goal
of PLEIADES is to characterize and develop distributed agent-based archi-
tectures that are composed of negotiating and learning agents and apply them
to provide logistics support for everyday tasks at Carnegie Mellon. Software
agents coordinate and negotiate with each other to resolve disparities in the
retrieved information. In addition, they learn from their users, the infor-
mation sources, and each other. We believe that the proposed approach will
help human users to harness the power of the information highway to support

their decision making.

2 Distributed Architecture for Intelligent In-
formation Retrieval and Problem Solving

We have developed a distributed architecture consisting of a collection of
coordinating Intelligent Agents that coordinate with each other to actively
seek, retrieve, filter, integrate and monitor information, and integrate the
information into their problem solving to support a variety of users and
tasks. The distributed architecture we have developed has been motivated
by the following considerations:

• distributed information sources: Information sources available on-line
are inherently distributed. Furthermore, these sources typically are
of different modalities. Therefore it is natural to adopt a distributed
architecture consisting of many software agents.

•

sharability: Typically, user applications need to access several services
or resources in an asynchronous manner in support of a variety of tasks.
It would be wasteful to replicate agent information gathering or prob-
lem solving capabilities for each user and each application. It is desir-
able that the architecture support sharability of agent capabilities and

retrieved information.

complexity hiding: Often information retrieval in support of a task
involves quite complex coordination of many different agents. To avoid
overloading the user with a confusing array of different agents and
agent interfaces, it is necessary to develop an architecture that hides
the underlying distributed information gathering and problem solving

complexity from the user.

modularity and reuseability: Although software agents will be operat-
ing on behalf of their individual patrons—human users, pieces of agent
code for a particular task can be copied from one agent to another and
can be customized for their new user to take into consideration partic-
ular users' preferences or idiosyncrasies. One of the basic ideas behind
the distributed agent-based approach is that software agents will be
kept simple for ease of maintenance, initialization and customization.
Another facet of reuseability is that pre-existing information services,
whose implementation, query language and communication channels
are beyond the control of user applications, could be easily incorpo-
rated in problem-solving.

flexibility: software agents can interact in new configurations "on-
demand", depending on the information requirements of a particular

decision making task.

To address these issues, we have developed a distributed agent-based
architecture that has two conceptual layers: The top layer consists of task-
specific software agents which interact with the user to support user tasks
by formulating problem solving plans and carrying out these plans through
querying and exchanging information with other software agents. The bot-
tom layer consists of information-specific software agents, which provides
intelligent access to a heterogeneous collection of information resources. For
example, a scheduling task-specific agent manages and updates a particular

•

user's appointment and meeting agenda. The general-purposed finger ser-
vice module, which can extract useful information from the network finger
utility given a user's login name and network address, can be viewed as an
information-specific software agent.

A task-specific agent has the following knowledge: (1) model of the task
domain, (2) procedural knowledge for performing the task, e.g., query decom-
position, appointment scheduling capabilities, (3) knowledge about relevant
task- or information-specific agents that it must coordinate with in support
of its particular task, (4) protocols that enable coordination with the other
relevant agents, and (5) strategies for conflict resolution and information fu-
sion. If a task assistant is a personal assistant to a particular user, it possesses
in addition, task-relevant preferences of its user. For details on automated
acquisition of user preferences, see [1, 10]. Having the user interact only
through a relevant task assistant hides the underlying distributed informa-
tion gathering and problem solving complexity and frees the user from having
to know of, access and interact with a plethora of information seeking agents
in support of a task. For example, the hosting visitor task involves four in-
formation agents and four task agents. However, the user interacts directly
only with the Visitor Hoster agent, the main task assistant for the visitor
hosting task.

A typical information-specific agent knows: (1) model of the associated
databases and meta-level information, such as size, average time it takes to
answer a query and monetary cost of query processing, (2) procedures for
accessing databases, (3) conflict resolution and information fusion strategies,
and (4) protocols for coordination with the other relevant software agents.
An information-specific agent also (1) caches answers to queries that are fre-
quently asked, (2) determines how to manage the cached information, and
(3) induces data base regularities and uses the learned summary knowledge
during agent interactions. In addition, an information-specific agent can also
be used as Al-enhanced gateway to externally available information services.
For example, there are many pre-existing information services available on-
line, such as various search engines for World Wide Web. To access these
services, we have build information-specific agents that know how to to in-
teract with the information sources and services and can inter-operate with
our task-specific agents. In this way, the services that have been developed
by others and are either pre-existing or newly added to the information en-
vironment can be utilized by PLEIADES to the full extent without affecting

any other part of the system. This capability supports scalability and main-

tenance of the system.
To answer queries submitted by other software agents or a human user,

an information retrieval agent might need to decompose the query, find the
relevant information resources, resolve any disparity among returned infor-
mation and integrate the information. In case there are multiple information
sources available, which might have replicated data and varying degrees of
data correctness, processing time and costs, the information retrieval agent
needs to choose the appropriate information sources relevant to an informa-
tion request. If the chosen information sources fail to provide a useful answer,
the information retrieval agent should seek and try other sources to re-do the
data query. Because of these complexities of information retrieval, we view
information retrieval as a planning task itself. In our distributed architec-
ture, task-specific agents develop and monitor the execution of information
retrieval plans as well as other task-related problem solving plans. A task-
specific agent can decide when to actively seek new information about the
environment or user, and in turn, utilize retrieved information for problem
solving. This type of intelligent agents differs from traditional AI systems
since information-seeking during problem solving is an inherently built-in
part of the system. In effect, the planning and execution stages are in-
terleaved since the retrieved information may change the planner's view of
the outside world or alter the planner's inner belief system. In our system,
information-specific agents are the information retrieval plan executors.

Due to space limitations, we briefly describe the distributed coordination
processes in our multi-agent system. When a task-specific agent receives
a task from a user or from another task-specific agent, it decomposes the
task based on the domain knowledge it has and then delegates the subtasks
to other task-specific agents or directly to information-specific agents. The
task-specific agent will take responsibility of collecting retrieved data, resolv-
ing conflicts, coordinating among the related agents and finally reporting to
the user. The agents who are responsible for assigned sub-tasks will either
decompose these sub-tasks further based on their own domain knowledge
or perform data retrieval (or possibly other domain-specific local problem
solving activities). One of the most important features of this coordination
paradigm is that information gathered from information retrieval steps will
be incorporated in subsequent problem solving steps. Obviously, one of the
major issues involved in multi-agent system is the problem of interoperabil-

ity and communication between the agents. In our framework, we use the
KQML language [4] for inter-agent communication. In order to incorporate
and utilize pre-existing software agents or information services that have been
developed by others, we adopt the following strategy: If the agent is under
our control, it will be built using KQML. If not, we build a gateway agent to
handle different communication channels, different data and query formats,
etc., to connect it with our agents. We are also implementing an advertise-
ment mechanism and services registries that can be accessed by task-specific
agents to help determine availability and location of desired information and
services.

3 An Example Scenario: Organize a Visit

We illustrate our distributed system architecture and the interactions of the
task-specific and information-specific agents in the scenario of hosting a vis-
itor at CMU. Hosting a visitor involves arranging the visitor's schedule with
faculty whose research interests match the interests that the visitor has ex-
pressed in his/her visit request. A different variation of the hosting visitor
task has also been explored by Kautz and his colleagues at Bell Labs [5].

A visitor hosting agent should have the following capabilities: (1) It
should automate information retrievals in terms of finding personnel informa-
tion of potential appropriate meeting attendees. It should be able to access
various on-line public databases and information resources at the disposal
of the visit organizer. The system should also integrate the results obtained
from various databases, clarify ambiguities (e.g., the same entity can be re-
ferred by different names in different partially replicated data bases) and
resolve the conflicts which might arise from inconsistency between informa-
tion resources. (2) It should create and manage the visitor's schedule as
well as the meeting locations for the various appointments with the faculty
members (e.g., a faculty's office, a seminar room). (3) It should possess a
graphical user interface which can interact with the users. The GUI facil-
itates getting input from the user, presenting acquired information, asking
for user confirmation as well as advising the user of the state of the system
and its progress.

Our prototype system, called Visitor Hoster, supports the visitor host-
ing task. It takes as input a visit request, the tentative requested days for

6

the meeting and the research interests of the visitor. Its final output is a
detailed schedule for the visitor of meetings with faculty members whose
interests match the ones expressed in the visitor's request and who have
been contacted and have agreed to meet with the visitor at times convenient
for them. The scheduling task where multiple agents are involved is very
complex and will not be described here. (For details, see [7].) To support
the hosting visitors task, Visitor Hoster retrieves information from var-
ious heterogeneous information resources at CMU and also internet-based
resources, such as remotely accessing plan files at sites external to CMU
to extract information about people. The currently implemented informa-
tion specific agents that are utilized in support of hosting visitors include:
(1) Finger agent, which heuristically parses the retrieved information from
remotely residing finger data bases. The finger agent is used to find infor-
mation about the visitor so faculty can decide whether they are interested
in meeting with him/her. The possible types of information that can be
acquired in this way include: work title, research interests, work and home
phone numbers, vacation plan, etc. (2) Who's-Who agent, which accesses
on-line CMU who's who database through http-based queries to find infor-
mation about potential faculty who should be contacted to see if they are
interested in meeting with the visitor. (3) Faculty Interests agent, which
can be used to retrieve information about the faculty members in the School
of Computer Science at CMU with respect to their research interests. (4)
Computer-Science-Directory agent, which can get the information about
phone number, home address, etc. for all the members of the School of Com-
puter Science at CMU, including faculty members, staff and students. This
information is utilized when available free slots in the visitor's calendar could
be filled with meetings with students and staff in the requested research area.

The task-specific agents utilized in the hosting visitor task are: (1) Visitor Hoster
agent, which accepts input from the user specifying the identity of the vis-
itor, the visitor's area of interest, tentative visit date and visit duration.
(2) Scheduling agent, which maintains a visitor's meeting schedule. (3)
Personnel Finder agent, which accesses various information sources to find
more specific information about the visitor and the faculty members that
might be interested in meeting with the visitor. (4) Interface agent, which
takes care of presenting acquired information from task or information spe-

cific agents to human users graphically.
We briefly present a visitor hosting scenario to illustrate the interactions

7

of the various agents. Suppose Gio Wiederhold wants to visit CM1A CS
department. Gio has requested that he would prefer to meet with CM1A
faculty interested in data bases. Relevant information about Gio, such as
first and last name, affiliated organization, date and duration of his visit and
his preference as to the interests of faculty he wants to meet with are input
into the Visitor Hoster agent. Then the Visitor Hoster agent commu-
nicates with the Faculty Interests information specific agent to get a list
of potential meeting candidates with research interests in databases. Based
on the list of names returned in answer to this information gathering query,
the Personnel Finder tries to collect more information for these potential
meeting candidates so that they can be contacted and asked about whether
they would be interested in meeting with Gio. For each potential meeting
attendee, the Personal Finder agent spawns multiple queries to various in-
formation specific agents, i.e., the Finger agent, the Who's-Who agent and
the Computer-Science-Directory agent simultaneously. These agents in
turn translate the queries to match the format of the corresponding infor-
mation resource. In particular, information is gathered about the faculty
rank, office location, telephone and e-mail address of each of the potential
meeting attendees. The Personnel Finder agent receives the replies for
each potential attendee, merges the information and resolves any conflicts.
It then sends the information to the scheduling agent. The scheduling
agent selects the e-mail addresses of the most senior faculty 2 in Gio's area
of interest (databases) and automatically sends them e-mail asking if they
would like to meet with Gio on the date of his visit. If faculty members have
personalized calendar management assistants (e.g., Tom Mitchell's Calendar
Apprentice CAP [1, 8]), the scheduling agent communicates with those as-
sistants 3. For each contacted faculty member, his/her calendar assistant
sends the scheduling agent information as to whether the faculty member
agrees to meet with Gio and the preferred meeting location and time. Then
the scheduling agent constructs a feasible schedule for Gio further coordi-
nating with the meeting candidates' calendar assistants to resolve potential
scheduling conflicts.

2Currently, the default duration of a meeting is one hour, so for a full day's visit, 8
faculty members are initially selected.

3For those faculty members who do not have a software calendar manager, the e-mail
is in human readable form.

4 Conclusions

In this paper, we have presented an implemented distributed agent-based
architecture to support decision making tasks that necessitate information
retrieval from distributed net-based sources and utilization of the retrieved
information into the decision support framework. Our approach has been im-
plemented in the PLEIADES system that supports everyday organizational
logistics tasks at CMU. PLEIADES currently has 10 agents that coordinate
with each other and with the user in cooperative information gathering and
decision support. We believe that such flexible distributed architecture will
be able to answer many of the challenges that face users as a result of the
new, vast net-based information environment, such as locating, accessing,
filtering and integrating information from disparate information sources and
incorporating retrieved information into decision support tasks.

We are currently extending the PLEIADES capabilities to include (1)
learning conflict resolution and negotiation strategies and (2) learning capa-
bilities and reliability of inter-operating agents.

References

[1] Lisa Dent, Jesus Boticario, John McDermott, Tom Mitchell, and David
Zabowski. A personal learning apprentice. In Proceedings of the Tenth
National Conference on Artificial Intelligence. AAAI, 1992.

[2] Oren Etzioni, Keith Golden, and Daniel Weld. Tractable closed world
reasoning with updates. In Proceedings of \th International Conference
on Principles of Knowledge Representation and Reasoning, 1994.

[3] Oren Etzioni and Daniel Weld. A softbot-based interface to the internet.
Communications of the ACM, 37(7), July 1994.

[4] Tim Finin, Rich Fritzson, and Don McKay. A language and protocol to
support intelligent agent interoperability. In Proceedings of the CE and
CALS Washington 92 Conference, June 1992.

[5] Henry A. Kautz, Bart Selman, and Michael Coen. Bottom-up design of
software agents. Communications of the ACM, 37(7), July 1994.

[6] Jay Liebowitz. Expert SYSTEMS for business and management. Your-

don Press, Englewood Cliffs, N.J., 1990.

[7] JyiShane Liu and Katia Sycara. Distributed meeting scheduling. In
Proceedings of the Sixteenth Annual Conference of the Cognitive Science
Society, Atlanta, Georgia, August 13-16 1994.

[8] Tom Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and
David Zabowski. Experience with a learning personal assistant. Com-
munications of the ACM, 37(7), July 1994.

[9] Tim Oates, M. V. Nagendra Prasad, and Victor R. Lesser. Cooperative
information gathering: A distributed problem solving approach. Tech-
nical Report UMass Computer Science Techincal Report 94-66, Depart
of Computer Science, University of Massachusetts, 1994.

[10] Katia Sycara and Kazuo Miyashita. Case-based acquisition of user pref-
erences for solution improvement in ill-structured domains. In Proceed-
ings of AAAI-94, Seattle, Washington, August 1994. AAAI.

10

