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Abstract

Many robotics tasks require an ability to determine quickly the nature of the terrain surrounding the robot. In cross
country navigation in particular, the robot needs to know where the vegetation is and where the hard obstacles are. I
have developed a general system which has successfully allowed real-time terrain typing in the NavLab II autono-
mous vehicle. This system and training paradigm are based on standard neural network technology and allow the

robot to learn arbitrary non-linear mappings from color and texture space to terrain space.
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1.0 Introduction

Much of the work in autonomous navigation has focussed on the idea of finding and avoiding obstacles [Kelly93] and
the complementary problem of finding empty and level ground over which to maneuver [Pomerleau91]. This is
appropriate for some navigation tasks, such as road following, and for some environments such as a lifeless planetary
surface. But for many environments and navigations tasks, this simple concept of an obstacle is insufficient. For
example, in an off-road navigation task almost anywhere on our very own planet, there are at least two kinds of obsta-
cles: hard-obstacles such as rocks and soft-obstacles such as vegetation. Sometimes we can make a robot navigate by
avoiding all obstacles, but there are times when it is preferable to drive, walk, or otherwise travel over or through the

soft-obstacles. Hence, we need to locate the soft-obstacles.

1.1 Terrain Typing Background
Terrain typing is not unstudied, although real-time terrain typing has often been neglected. Some interesting work has
been done by [Marra88] and [Wright89]. Wright used neural networks to find roads in images, but he performed sig-

nificant image segmentation before applying the neural network, and not much emphasis was put on finding the ter-

rain type quickly.

Marra, Dunlay, and Mathis used several techniques, and the early work we have done in our group is derivative pri-
marily from one of their techniques, the “Image Based Neural Networks™ of [Marra88]. In that work, Marra, et al,
tried to classify terrain as one of six things: brush, dirt, grass, hill, road, or sky. The Image Based Neural Network
technique had some success, but we hope to improve on those results by focussing more closely on classifying just
vegetation. By having such a complicated function to learn as they had, it is not surprising that their networks had dif-
ficulty developing internal texture representations as there must have been significant interference (crosstalk) caused
when the training examples from different terrains were used. An additional benefit of a narrower problem is that we
should be able to use fewer hidden units in the neural networks; this will give us a chance to achieve real-time classi-
fication (Marra, et al, could turn a 512 by 512 raw image into a 32 x 32 classification image in more than 2 seconds on

a very fast and expensive parallel computer [using > 50 hidden units]). Our system is quick to train and quick to run.
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1.2 Our Research Goals

Our research group is studying navigation using the NavLab II military ambulance, also known as the HMMWYV
(High Mobility Multi-Wheeled Vehicle, pronounced “Humvee”, Figure 1, on page 2). At one of our primary test sites
on an old slag heap (2 km x 2km), vegetation runs rampant throughout the year. We most frequently use a laser range
finder to navigate there, and to the laser range finder the vegetation looks just like the natural hills, ridges, and man

made mounds which we must avoid. Usually we just avoid everything for simplicity’s sake.

FIGURE 1. The HMMWYV
However, this approach limits the reachable regions on the slag heap. Additionally, this approach makes all of our
navigation less efficient. Only one system has been implemented so far that handles vegetation [Davis95], and the
manner with which vegetation is dealt is fairly tightly integrated into that system’s paradigm (modular neural network
control). This paper describes a different system for finding vegetation in single images: IVY (for Ian’s Vegetation

Yielder).

IVY’s role is to process an image directly after digitization. The output is a new image, or an overlay on the raw
image, which has intensity values whose range denotes the degree of vegetation at each pixel. In fact, IVY can be
used to do more complicated terrain typing, too, but this paper assumes a single division of vegetation or non-vegeta-

tion.
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2.0 The Approach: IVY 1

In order to best understand the problem of terrain typing, we are starting with a simple architecture and a simple prob-
lem to solve. In the work detailed here and in our future work, we shall expand our technique and goals as we expand

our understanding of the complexity of the problem.

2.1 Architecture

Ivy 1, which is covered by this paper, uses a monolithic neural network approach to classification. The paradigm is
referred to as the operator architecture [Davis93a] since we use the neural network much as we would any low level
computer vision operator such as an edge detector. Ivy 1 uses a simple 3-layer backpropagation neural network
[Rumelhart86]. Ivy 2 will use a MAMMOTH modular network architecture [Davis95a] (see “Future Directions” on
page 10).The inputs to IVY 1 are three small retinas, a red, a green, and a blue one. This is for use with an unmodified
color CCD camera. The input level units are activated with appropriately scaled pixel values from a square retina
centered around a particular pixel in question. The single output of IVY 1 represents whether or not the center pixel is
to be classified as vegetation. The size of the retina can be adjusted to accommodate different resolutions and the
amount of texture or averaging you wish to have affect the classification (this will be discussed in “Averaging and

Texture” on page 5 & “Larger Retina Experiment” on page 8). See Figure 2, on page 4 for a diagram of IVY 1.

2.2 Training

Training IVY 1 is straightforward. We hand-label each pixel in several images at whatever resolution we desire the
classification to occur. With a sophisticated “paint” program which allows color range matching as well as the selec-
tion of polygonal regions and hand drawn regions, we can do this quite painlessly. For training we randomly select a
training set with usually 500 training exemplars. Each exemplar is a an ordered pair (x, y) in which x is a 3-band (red,
green, & blue) retina about a random point in one of the training images and y is the label for the pixel at that point in
the hand-labelled image. 500 exemplars is sufficient for providing a functional approximation basis® for the mapping

we are trying to learn.

1. For possibly better results, we could have an Infra-Red retina. IR has been shown to be very useful in distinguish-
ing vegetation from other terrains [Kelly95].
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Output Node (value of -1.0to 1.0
with high value meaning vegetation)

Hidden layer

RED GREEN BLUE

FIGURE 2. IVY 1 monolithic operator network

2.3 Justification

2.3.1 Color Space Complexity

The obvious question is why do we use a neural network approach to classification. The answer has two aspects. Con-
sider the problem as if we were using retinas of one pixel so that the classification was based strictly on color space
considerations. First, the mapping from RGB image space to terrain space can be nonlinear and complicated. Simple
color space matching (such as used in hand-labelling training images in which all colors within a small neighborhood
of a given (R,G,B) point are positively labelled) is not appropriate alone for complicated images for the same reason
that a linear classification surface in color space does not always work. A linear classification surface (a plane in RGB
color space) or a combination of linear classification surfaces will only work if the set of points in RGB that maps

either to positive vegetation or negative vegetation is entirely convex (the proof of this is trivial). A simple example is

that we often encounter very green vegetation, as well as red and orange vegetation. We also see brown dirt roads. To

2. A functional approximation basis, Bf, is a concept which we are beginning to examine in which we have a func- .
tion we desire to learn, f from space X to space Y, and each element of Bf is a pair (x;5 ¥;) where all of the x; form a

topological basis of the set in X which we wish to map from and the y, form a topological basis of the set in Y which

we want to map to. A rigorous exploration of the appropriate size of B, for a given f, and of the relationship between

the niceness of f and the details of the topological bases of X & Y will be undertaken in the future and promises to

uncover good methods for determining good training sets for given architectures and training algorithms (such as the

operator architecture and backpropagation in IVY 1).
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linearly classify all of the vegetation or to classify it with a single color neighborhood match would mean that we

would incorrectly classify the road.

Even using a series of simple color space neighborhood matches impractical. Assume for the moment that the set, V,
in RGB space which maps to vegetation in terrain space is the “simpler” set; perhaps it could be called almost-con-
vex. For every “dent” in V (a separate convex region, R, of RGB space outside of V which fits in one of the concavi-
ties on the surface of set V), we would require at least one additional simple color neighborhood match to accurately
reproduce the correct mapping. If V were convex, this would mean one match, but V is not guaranteed to be convex

or even for that matter connected in RGB space.

2.3.2 Averaging and Texture

The second aspect is that when we use retinas larger than one pixel we want to achieve classification based in part on
averaging or texture, and neural network techniques allow us to create these more complex mappings easily. Averag-
ing is important for complete image classification because we get shadows both on vegetation and on rocks and other
obstacles. If we look at individual pixels only, we will get very dark pixels that cannot be properly classified. If, how-
ever, we look at the surrounding pixels, too, and all of them are vegetation-colored or vegetation-textured, then we

can classify a pixel as vegetation.

In the work detailed here we deal with texture implicitly as did Marra, et al., though our next stage of research will
concentrate more on utilizing texture data. Texture considerations become especially important when there are more
man-made obstacles in the environment which might be vegetation colored. Since man-made items tend to be
smoother and more continuously colored than vegetation in a CCD image, including a sufficiently big retina at a suf-
ficiently high resolution can give us important clues for classification, and even our early work allows these clues to

contribute to the mapping we construct.

In this paper, we show the results of both a purely color space based IVY 1 system and the results of an IVY 1 which
used a 7 x 7 pixel retina to try to capture averaging and texture information. Both systems run in real-time on the
HMMWYV (where the Hz are determined by initial image resolution and whether or not we sample retinas to get a

lower resolution output image - all of which is programmable on the fly).
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3.0 Color Space Only Experiment

The simplest IVY 1 network which we trained had a single RGB pixel as an input (3 input units in the neural net-
work). We used a series of 5 high resolution images (640x480) to generate 500 training exemplars and 500 initial test-
ing exemplars. Each pixel is defined as three integers from 0 to 255. All of the images used were digitized live from a

CCD camera on the same day.

Blue[0-255] | Blue[0-255]

Green [0-255] Green [0-255]

Red [0-2

a. Vegetation b. Non-vegetation

FIGURE 3. Plot of training set for 1 pixel input IVY 1. The dots on graph “a” represent the set in RGB
space that we wish to map to “vegetation” in terrain space. The graphed set is a subset (randomly sampled)
of all of the points labelled ‘“vegetation’ in the training images. Notice that there are almost two distinct
major clusters, one “above’ the other with reference to the Blue axis. The dots on graph “b” represent the
set in RGB space that we wish to map to “non-vegetation”.

The pixels represented in the training set for both positive and negative exemplars of vegetation do not cover the
RGB space, which means that the ideal function which we wish to approximate is not even defined on those other
areas of RGB space. You can see the relatively small portion of RGB space actually covered in Figure 3, on page 6.
Performance on other days and lighting conditions is not guaranteed with such a training set. For more generality, the

training set must cover the desired subset of RGB space.

Furthermore, there is some overlap in the positive and negative sets. This is due largely to shadows and specular

effects, but also occurs due to misclassifications (by hand), and natural overlap in the two ideal sets of vegetation and

non-vegetation.
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The mapping is fairly easy to learn and convergence occurs quickly. AnIVY 1 network was trained with each number

of hidden units from 1 to 15 and the results are shown in Figure 4, on page 7.
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¥
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20-epoch cycles

FIGURE 4. Average error per test pixel over (100) 20-epoch training cycles for 1 by 1 pixel IVY 1 with 1 to
15 hidden units. Note that average error on over 500 test cases never was < 0.3. Output of IVY 1 is single
unit ranging from -1.0 to 1.0 with 1.0 being ‘“vegetation’” and -1.0 being “non-vegetation.”

In the diagrammed trials and in others, the function was learned reasonably well by each network. One hidden unit
usually seemed to be not good enough, but anything from 2 or 3 up was good. With higher numbers of hidden units,
convergence took more time, as one would expect, but the long term results were not better. In even the best 1 pixel
IVY 1 networks the average classification error on the given test set of 500 exemplars was more than 0.3. The maxi-
mum error possible was 2.0 and average error with random weights would be expected to be 1.0. The average classi-
fication error results both from misclassifications and weaker classifications (which make us use a looser threshold on

the output for our terrain decision).
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4.0 Larger Retina Experiment

In order to take advantage of averaging and texture, we also trained an IVY 1 network that had a 7 x 7 RGB pixel ret-
ina (147 input units). This network’s architecture is very similar to that used in [Marra88], though the mapping it is to
learn is more focussed which is an important distinction. The same hand-labelled high resolution images were used to
generate the training and test sets for this IVY 1 network as for the simpler one described in “Color Space Only

Experiment” on page 6. Again, 500 exemplars were used for a training set and 500 were used as a test set.

S,
o
0
i
[0.0-0.8] Wéﬁﬁ%ﬁfﬁ¢
.
Y
-
T £ @, 7

7
.
.
-

0.6 G 15
@%’%@mﬁ%’@% ‘?ffg’ff}fgf; gffgfgg’?ﬁ%
s

@%% L

)

%ﬂ:%W‘{W%
7

.
@,
)

Hidden Units

20-epoch cycles &0
g0

100

FIGURE 5. Average error per test pixel over (100) 20-epoch training cycles for 7 by 7 pixel IVY 1 with 1 to
15 hidden units. Note that average error on over 500 test cases went as low as 0.15. Qutput of IVY 1 is single
unit ranging from -1.0 to 1.0 with 1.0 being “vegetation’ and -1.0 being “non-vegetation.”

Training was slower in real-time for these networks since for a given number of hidden units, the 7 x 7 input IVY 1
network has 49 times as many connections as a 1 pixel IVY 1 network. However, the learning “flattened out” in fewer

epochs (passes through the entire training set; see Figure 5, on page 8). This is partially because there was signifi-

CMU_RI_TR_95_06




cantly less overlap between the sets of vegetation and non-vegetation, both in the ideal mapping and in the actual
training set. The high dimensionality of the inputs to the 7 x 7 input IVY 1 prevents us from generating an under-

standable plot of the vegetation and non-vegetation sets in their raw form.

5.0 Conclusions

5.1 Results

The average error for the 7 x 7 input IVY 1 was less than half of that for the 1 pixel IVY 1 network. This was a com-
bination of misclassifications and a less well-learned mapping (the latter of which frequently causes the former). The
reasons are that the larger retina IVY 1 simply had more information that was relevant to the ideal mapping. The
implicit texture and averaging information of a large retina made the mapping less dependent on strict color space

data, which is often insufficient for classifications (as can be seen in the set overlaps of Figure 3, on page 6).

If speed were of the utmost importance, the 1 pixel IVY 1 system performs adequately, but the network is sufficiently

small fora 7 x 7 input IVY 1 (with few enough hidden units) that there would rarely be enough motivation to forego

the greater reliability of the more complicated network. A nice side effect of the larger retinas is that they can be used

to tessellate the image if sampling is desired to increase speed (Marra, et al, used a large scale tessellation to reduce a

512 x 512 raw image to 32 x 32 classification image). Such a tessellation allows each pixel to contribute to its
1

region’s classification due to the large retina. Thus, in practice we can classify real images in real-time' on our

HMMWY vehicle.

As we noted earlier, even the RGB space considerations alone (such as non-convex classification sets) justify the use
of neural networks or other equally sophisticated clustering and function approximation techniques. The additional
averaging and texture information makes a sophisticated technique that much more important since different dimen-

sions of the input space can imply entirely different classifications.

We have developed a system based on [Marra88] that we feel has practical usefulness which is due to focussing on a

simpler classification problem. We suspect that combining the results of several such classifiers for different terrain

1. Where real-time is defined as faster than the cycle time of our other systems that perform navigation. This defini-
tion means that we can process an image in time to account for vegetation in each planning cycle.
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types may even have superior results to a single classifier that tries to learn a more difficult classification problem. At

this stage it is important for us to try to solve the simplest problems quickly and well.

5.2 Future Directions

One of the issues not addressed here is the separation of averaging effects from texture effects. Even for our simple
initial tasks texture might be worth explicitly handling, and if we were to want to classify only certain types of vege-
tation, the texture could be even more important than the color space considerations. Thus, we are developing a series
of tests to examine the utilization of texture in IVY 1. One test is to use a network trained at high resolution on a
lower resolution image, in effect eliminating the texture data. Another test involves using artificially generated sup-
plements to the training set and the test set which include retinas filled with colors appropriate to vegetation but in
distinctly non-vegetation textures. Marra, et al, tried to have the neural network learn texture information implicitly,
and a more explicit approach may be needed (though they explicitly represented where in the image a pixel was since

its location affects its texture, and this idea is one we shall examine).

Since we know ahead of time that texture and averaging are important, if one of these crucial pieces of information is
shown to be not fully utilized we will extend the IVY model to IVY 2, an operator architecture based on the MAM-
MOTH modular neural network architecture and training paradigm [Davis95]. With MAMMOTH we train subnet-
works to recognize important known features and then integrate the pre-trained hidden units into the supervising task

network (for IVY 2, we could have feature networks representing texture or the colors of surrounding pixels).

Finally, to extend the usefulness of either IVY 1 or IVY 2, we shall develop a regimen for developing a training set
appropriate to multiple lighting and weather effects as well as a richer variety of vegetation. As we include these vari-
ations and seasonal color changes into our training sets, we will want to have texture and averaging and color space

information well under control.

We hope to have many of these issues addressed in the near future, and plan to have some version of IVY integrated

into several autonomous navigation systems within a very short time.
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