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Abstract 

The success of reinforcement learning in practical problems depends on the ability to combine function 
approximation with temporal difference methods such as value iteration. Experiments in this area have 
produced mixed results; there have been both notable successes and notable disappointments. Theory has 
been scarce, mostly due to the difficulty of reasoning about function approximators that generalize beyond the 
observed data. We provide a proof of convergence for a wide class of temporal difference methods involving 
function approximators such as Ar-nearest-neighbor, and show experimentally that these methods can be 
useful. The proof is based on a view of function approximators as expansion or contraction mappings. 
In addition, we present a novel view of approximate value iteration: an approximate algorithm for one 
environment turns out to be an exact algorithm for a different environment. 
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1 Introduction and background 

The problem of temporal credit assignment — deciding which of a series of actions is responsible for a 
delayed reward or penalty — is an integral part of machine learning. The methods of temporal differences 
are one approach to this problem. In order to learn how to select actions, they learn how easily the agent 
can achieve a reward from various states of its environment. Then, they weigh the immediate rewards for 
an action against its long-term consequences — a small immediate reward may be better than a large one, 
if the small reward allows the agent to reach a high-payoff state. If a temporal difference method discovers 
a low-cost path from one state to another, it will remember that the first state can't be much harder to 
get rewards from than the second; in this way, information propagates backwards from states in which an 
immediate reward is possible to those from which the agent can only achieve a delayed reward. 

One of the first examples of a temporal difference method was the Bellman-Ford single-destination 
shortest paths algorithm [Bel58, FF62], which learns paths through a graph by repeatedly updating the 
estimated distance-to-goal for each node based on the distances for its neighbors. At around the same 
time, research on optimal control led to the solution of Markov processes and Markov decision processes (see 
below) by temporal difference methods [Bel61, Bla65]. More recently [Wit77, Sut88, Wat89], researchers have 
attacked the problem of solving an unknown Markov process or Markov decision process by experimenting 
with it. 

Many of the above methods have proofs of convergence [BT89, WD92, Day92, JJS94, Tsi94]. Unfortu- 
nately, most of these proofs assume that we represent our solution exactly and therefore expensively, so that 
solving a Markov decision problem with n states requires 0(n) storage. On the other hand, it is perfectly 
possible to perform temporal differencing on an approximate representation of the solution to a decision 
problem — Bellman discusses quantization and low-order polynomial interpolation in [Bel61], and approx- 
imation by orthogonal functions in [BD59, BKK63]. These approximate temporal difference methods are 
not covered by the above convergence proofs. But, if they do converge, they can allow us to find numerical 
solutions to problems which would otherwise be too large to solve. 

Researchers have experimented with a number of approximate temporal difference methods. Results 
have been mixed: there have been notable successes, including Samuels' checkers player [Sam59], Tesauro's 
backgammon player [Tes90], and Lin's robot navigation [Lin92]. But these algorithms are notoriously un- 
stable; Boyan and Moore [BM95] list several embarrassingly simple situations where popular approximate 
algorithms fail miserably. Some possible reasons for these failures are given in [TS93, Sab93]. 

Several researchers have recently conjectured that some classes of function approximators work more 
reliably with temporal difference methods than others. For example, Sutton [SS94] has provided experimental 
evidence that linear functions of coarse codes, such as CMACs, can converge reliably for some problems. 
He has also suggested that online exploration of a Markov decision process can help to concentrate the 
representational power of a function approximator in the important regions of the state space. 

We will prove convergence for a significant class of approximate temporal difference algorithms, including 
algorithms based on fc-nearest-neighbor, linear interpolation, some types of splines, and local weighted 
averaging. These algorithms will converge when applied either to discounted decision processes or to an 
important subset of nondiscounted decision processes. We will give sufficient conditions for convergence 
to the exact value function, and for discounted processes we will bound the maximum error between the —__. 
estimated and true value functions.   

a 
2 Definitions and basic theorems ^ 

Our theorems in the following sections will be based on two views of function approximators. First, we will    ^™~- 
cast function approximators as expansion or contraction mappings; this distinction captures the essential 
difference between approximators that can exaggerate changes in their training values, like linear regression      
and neural nets, and those like fc-nearest-neighbor that respond conservatively to changes in their inputs. 
Second, we will show that approximate temporal difference learning with some function approximators is 
equivalent to exact temporal difference learning for a slightly different problem. To aid the statement of 
these theorems, we will need several definitions. or 

A-I 



DEFINITION: Consider a vector space S and a norm || • || on S. If S is closed under limits in || • ||, then S is 
a complete vector space. Unless otherwise noted, all vector spaces will be assumed to be complete. 

Examples of complete vector spaces include the real numbers under absolute value and the n-vectors of 
real numbers under Manhattan (Ll), Euclidean (I2), and max (L°°) norms. The max norm, defined as 

Halloo = max|a; | 
i 

and the weighted max norm with weight vector W, defined as 

ii    ii     - 1  I     l \\a\\w = max —-a,-1 
i     Wi 

are particularly important for reasoning about Markov decision problems. 

DEFINITION: A function / from a vector space 5 to itself is a contraction mapping if, for all points a and b 
in 5, || /(a) — f(b) \\ < j\\ a — b ||. Here 7, the contraction factor or modulus, is any real number in [0,1). If 
we merely have || f(a) — f(b) || < || a — b ||, we call / a nonexpansion. 

For example, the function f(x) = 5+ f is a contraction with contraction factor |. The identity function 
is a nonexpansion. All contractions are nonexpansions. 

Lemma 2.1 Let C and D be contractions with contraction factors 7 and S on some vector space S. Let M 
and N be nonexpansions on S.  Then 

• C o N and N o C are each contractions with contraction factor 7 

• C o D is a contraction with factor jS 

• M o N is a nonexpansion. 

DEFINITION: A point x is a fixed point of the function / if f(x) = x. 

A function may have any number of fixed points. For example, the function x2 on the real line has two 
fixed points, 0 and 1; any number is a fixed point of the identity function; and a; + 1 has no fixed points. 

Theorem 2.1 (Contraction Mapping) Let S be a vector space with norm \\-\\. Suppose f is a contraction 
mapping on S with contraction factor 7. Then f has exactly one fixed point x* in S. For any initial point 
x0 in S, the sequence XQ, f(x0), f(f(xo)), ■ ■ ■ converges to x*; the rate of convergence of the above sequence 
in the norm \\ ■ || is at least 7. 

For example, the function 5 + | has exactly one fixed point on the real line, namely x = 10. 
If 5 is a finite-dimensional vector space, then convergence in any norm implies convergence in all norms. 

DEFINITION: A Markov decision process is a tuple (S,A,5, c, 7, So)- MDPs are a formalism for describing 
the experiences of an agent interacting with its environment. The set 5 is the state space; A is the action 
space. At any given time t, the environment is in some state xt € S. The agent perceives xt, and is allowed 
to choose an action at € A. The transition function, 6 (which may be probabilistic), then acts on xt and at 

to produce a next state xt+i, and the process repeats. So is a distribution on S which gives the probability 
of being in each state at time 0. The cost function, c (which may be probabilistic), measures how well the 
agent is doing: at each time step t, the agent incurs a cost c(xt,at). The agent must act to minimize the 
expected discounted cost E\^L0'ric(xt,at)}; 7 G [0,1] is called the discount factor. We will write V*{x) 
for the optimal value function, the minimal possible expected discounted cost starting from state x. We 
introduce conditions below under which V* is unique and well-defined. 

We will say that an MDP is deterministic if the functions c{x, a) and S(x, a) are deterministic for all x 
and a, i.e., if the current state and action uniquely determine the cost and the next state. An MDP is finite 
if its state and action spaces are finite; it is discounted if 7 < 1.  We will call an MDP a Markov process 



if \A\ = 1.  In a Markov process, we cannot influence the expected discounted cost; our goal is merely to 

compute it. 
There are several ways that we can ensure that V* exists. In a finite discounted MDP, it is sufficient to 

require that the cost function c(x,a) have bounded mean and variance for all x and a. For a nondiscounted 
MDP, even if c is bounded, cycles may cause the expected total cost for some states to be infinite. So, we 
are usually interested in the case where some set of states G is absorbing and cost-fret: that is, if we are 
in G at time *, we will be in G at time t + 1, and c(x,a) = 0 for anyxGG and a € A. Without loss of 
generality, we may lump all such states together and replace them by a single state. Suppose that state 1 of 
an MDP is absorbing. Call an action selection strategy proper if, no matter what state we start in, following 
the strategy ensures that P(xt = 1) - 1 as t — oo. A finite nondiscounted MDP will have a well-defined 
optimal value function as long as 

• the cost function has bounded mean and variance, 

• there exists a proper strategy, and 

• there does not exist a strategy which has expected cost equal to -oo from some initial state. 

From now on, we will assume that all MDPs that we consider have a well-defined V*. We will also assume 
that So puts a nonzero probability on every state in S. This allows us to avoid worrying about inaccessible 

If we have two MDPs Mi = (S, Ai,6i,Cl,7i,So) and M* = (5>^2,62,02,72,So) which share the same 
state space, we can define a new MDP M12, the composition of Mx and M2, by alternately following 
transitions from Mi and M2. More formally, let M12 = (S,Ai * ^2,<5i2,ci2,7i72,£b). At eacn steP' 
the agent will select one action from Ax and one from A2; we define the composite transition function 
612 so that «12(1,(01,02)) = 62{Si(x,a1),a2).  The cost of the composite action will be ci2(z,(ai,a2)) - 

ci(x,ai)+j1C2(6i(x,a1),a2). ..,.,.,_ • f 
A trajectory is a sequence of tuples (x0,a0,c0), (n.ai.ci),...; trajectories describe the experiences ol an 

agent acting in an MDP. If the MDP is absorbing, there will be a point t so that ct = ct+i = ... _ 0; we 
will usually omit the portion of the trajectory after t. 

Define a policy to be a function v : S ~ A. An agent may follow policy iz by choosing action v(x) 
whenever it is in state x. It is possible to generalize the above definition to include randomized strategies 
and strategies which change over time; but the extra generality is unnecessary. It is well-known [Bel61, BT89] 
that every Markov decision process with a well-defined V* has at least one optimal policy TT*; an agent which 
follows 7T* will do at least as well as any other agent, including agents which choose actions according to 
non-policies. The policy ir* will satisfy Bellman's equation 

(\fx E S)V*(x) = E(c(x,7r*(x)) +1V*(S(x,7r*(x)))) 

and every policy which satisfies Bellman's equation is optimal. 
There are two broad classes of learning problems for Markov decision processes: online and offline. In 

both cases, we wish to compute an optimal policy for some MDP. In the offline case, we are allowed access 
to the whole MDP, including the cost and transition functions; in the online case, we are only given 5 
and A, and then must discover what we can about the MDP by interacting with it. (In particular, in the 
online'case, we are not free to try an action from any state; we are limited to acting in the current state.) 
We can transform an online problem into an offline one by observing one or more trajectories, estimating 
the cost and transition functions, and then pretending that our estimates are the truth. (This approach is 
called the certainty equivalent method.) Similarly, we can transform an offline problem into an online one 
by pretending that we don't know the cost and transition functions. Most of the remainder of the paper 
deals with offline problems, but we mention online problems again in section 5. 

In the offline case, the optimal value function tells us the optimal policies: we may set TT*(X) to be any a 
which maximizes E(c{x, a) + 7V*(6(x, a))). (In the online case, V* is not sufficient, since we can't compute 
the above expectation.) For a finite MDP, we can find V* by dynamic programming. With appropriate 
assumptions, repeated application of the dynamic programming backup operator 

V(x) *- minE(c(x, a) + jV(6(x, a))) 



to every state is guaranteed to converge to V* from any initial guess [BT89]. (In the case of a nondiscounted 
problem with cost-free absorbing state g, we define the backup operator to set V(g) *— 0 as a special case.) 
This dynamic programming algorithm is called value iteration. If we need to solve an infinite MDP that 
satisfies certain continuity conditions, we may first approximate it by a finite MDP as described in [CT89], 
then solve the finite MDP by value iteration. For this reason, the remainder of the paper will focus on finite 
(although possibly very large) Markov decision processes. 

We can generalize the above single-state version of the value iteration backup operator to allow parallel 
updating: instead of merely changing our estimate for one state at a time, we compute the new value for 
every state before altering any of the estimates. The result of this change is the parallel value iteration 
operator. The following two theorems imply the convergence of parallel value iteration. See [BT89] for 
proofs. 

Theorem 2.2 (value contraction) The parallel value iteration operator for a discounted Markov decision 
process is a contraction in max norm, with contraction factor equal to the discount. If all policies in a 
nondiscounted Markov decision process are proper, then the parallel value iteration operator for that process 
is a contraction in some weighted max norm. The fixed point of each of these operators is the optimal value 
function for the MDP. 

Theorem 2.3 Let a nondiscounted Markov decision process have at least one proper policy, and let all 
improper policies have expected cost equal to +oo for at least one initial state. Then the parallel value 
iteration operator for that process converges from any initial guess to the optimal value function for that 
process. 

3    Main results: a simple case 

In this section, we will consider only discounted Markov decision processes. The following sections generalize 
the results to other interesting cases. 

Suppose that T is the parallel value backup operator for a Markov decision process M. In the basic 
value iteration algorithm, we start off by setting Vo to some initial guess at M's value function. Then we 
repeatedly set Vt+i to be T(V{) until we either run out of time or decide that some V„ is a sufficiently 
accurate approximation to V*. Normally we would represent each V{ as an array of real numbers indexed 
by the states of M; this data structure allows us to represent any possible value function exactly. 

Now suppose that we wish to represent V,, not by a lookup table, but by some other more compact data 
structure such as a neural net. We immediately run into two difficulties. First, computing T(Vi) generally 
requires that we examine V{(x) for nearly every x in M's state space; and if M has enough states that we 
can't afford a lookup table, we probably can't afford to compute V{ that many times either. Second, even if 
we can represent V* exactly with a neural net, there is no guarantee that we can also represent T{Vi). 

To address both of these difficulties, we will assume that we have a sample Xo of states from M. XQ 

should be small enough that we can examine each element repeatedly; but it should be large enough and 
representative enough that we can learn something about M by examining only the states in Xo. Now we can 
define an approximate value iteration algorithm. Rather than setting Vi+\ to T(Vi), we will first compute 
(T(Vi))(x) only for x £ Xo; then we will fit our neural net (or other approximator) to these training values 
and call the resulting function VJ+i. 

In order to reason about approximate value iteration, we will consider function approximation methods 
themselves as operators on the space of value functions: given any target value function, the approximator 
will produce a fitted value function, as shown in figure 1. In the figure, the sample Xo is the first five natural 
numbers, and the representable functions are the cubic splines with knots in Xo- 

The characteristics of the function approximation operator determine how it behaves when combined with 
value iteration. One particularly important property is illustrated in figure 2. As the figure shows, linear 
regression can exaggerate the difference between two target value functions V\ and V2: a small difference 
between the targets V\[x) and V^(a;) can lead to a larger difference between the fitted values V\(x) and 
Vi{x). Many function approximators, such as neural nets and local weighted regression, can exaggerate this 
way; others, such as ^-nearest-neighbor, can not. We will show later that this sort of exaggeration can cause 
instability in an approximate value iteration algorithm. 
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Figure 1: Function approximation methods as mappings. In (a) we see the value function for a simple 
random walk on the positive real line. (On each transition, the agent has an equal probability of moving left 
or right by one step. State 0 is absorbing; transitions from other states have cost 1.) Applying a function 
approximator (in this case, fitting a spline with knots at the first five natural numbers) maps the value 
function in (a) to the value function in (b). Since the function approximator discards some information, its 
mapping can't be 1-to-l: in (c) we see a different value function which the approximator also maps to (b). 

o     1 

(a) (b) 

Figure 2: The mapping associated with linear regression when samples are taken at the points x = 0,1,2. In 
(a) we see a target value function (solid line) and its corresponding fitted value function (dotted line). In (b) 
we see another target function and another fitted function. The first target function has values y = 0,0,0 
at the sample points; the second has values y = 0,1,1. Regression exaggerates the difference between the 
two functions: the largest difference between the two target functions at a sample point is 1 (at x = 1 and 
x = 2), but the largest difference between the two fitted functions at a sample point is g (at x = 2). 

DEFINITION: Suppose we wish to approximate a function from a space 5 to a vector space R. Fix a sample 
vector Xo of points from S, and fix a function approximation scheme A. Now for each possible vector Y of 
target values in R, A will produce a function / from 5 to R. Define Y to be the vector of fitted values; that 
is, the i-th element of Y will be / applied to the i-th element of X0. Now define MA, the mapping associated 
with A, to be the function which takes each possible Y to its corresponding Y. 

Now we can apply the powerful theorems about contraction mappings to function approximation methods. 
In fact, it will turn out that if MA is a nonexpansion in an appropriate norm, the combination of A with 
value iteration is stable. (That is, under the usual assumptions, value iteration will converge to some 
approximation of the value function.) The rest of this section states the required property more formally, 
then proves that some common function approximators have this property. 

DEFINITION: TWO operators MF and T on the space S are compatible if repeated application of Mp o T is 
guaranteed to converge to some x* G S from any initial guess xo G S. 

Note that compatibility is symmetric: if the sequence of operators MF , T, MF , T, MF ,■■■ causes conver- 
gence from any initial guess x0, then it also causes convergence from T(x0); so the sequence T, Mp,T, MF,- ■ • 
also causes convergence. 

Theorem 3.1 Let TM be the parallel value backup operator for some Markov decision process M with state 
space S, action space A, and discount j < 1. Let X = S x A. Let F be a be a function approximator (for 
functions from X to R) with mapping MF G R

|X|
 <-* R|x|- Suppose MF is a nonexpansion in max norm. 

Then MF is compatible with TM, and Mp ° TM has contraction factor j. 



(a) (b) 

Figure 3: A Markov process and a CMAC which are incompatible. Part (a) shows the process. Its goal is 
state 1. On each step, with probability 95%, the process follows a solid arrow, and with probability 5%, 
it follows a dashed arrow. All arc costs are zero. Part (b) shows the CMAC, which has 4 receptive fields 
each covering 3 nodes. If the CMAC starts out with all predictions equal to 1, approximate value iteration 
produces the series of target values 1, |£, (^)2,... for state 2. 

PROOF: By the value contraction theorem, TM is a contraction in max norm with factor 7. By assumption, 
MF is a nonexpansion in max norm. Therefore MF o TM is a contraction in max norm by the factor 7.    D 

Corollary 3.1   The approximate value iteration algorithm based on F converges in max norm at the rate 7 
when applied to M. 

It remains to show which function approximators are compatible with value iteration. Many common 
approximators are incompatible with standard parallel value backup operators. For example, as figure 2 
demonstrates, linear regression can be an expansion in max norm; and Boyan and Moore [BM95] show that 
the combination of value iteration with linear regression can diverge. Other incompatible methods include 
standard feedforward neural nets, some forms of spline fitting, and local weighted regression [BM95]. 

A particularly interesting case is the CMAC. Sutton [SS94] has recently reported success in combining 
value iteration with a CMAC, and has suggested that function approximators similar to the CMAC are 
likely to allow temporal differencing to converge in the online case. While we have no evidence to support 
or refute this suggestion, it is worth mentioning that convergence is not guaranteed in our offline framework, 
as the counterexample in figure 3 shows. 

In this example, the optimal value function is uniformly zero, since all arc costs are zero. The exact 
value backup operator assigns 0 to 1/(1) (since state 1 is the goal) and .05V(1) + .95V(2) to V(») for i £ 1 
(since all states except 1 have a 5% chance of transitioning to state 1 and a 95% chance of transitioning to 
state 2). The approximate backup operator computes these same 6 numbers as training data for the CMAC; 
but since the CMAC can't represent this function exactly, our output is the closest representable function 
in the sense of least squared error. If the exact operator produces kv where v=(0,l,l,l,l,l) , then the 
closest representable function will be kw where w = (§, §, §, f, f, |)T. If we repeat the process fronoMthis 
new value function, the exact backup operator will now produce ^v, and the CMAC will produce -gj-w. 
Further iteration causes divergence at the rate ^. 

The CMAC still diverges even if we choose a small learning rate: with learning rate a, the rate of 
divergence is 1 + ar^. However, if we train the CMAC based on actual trajectories in the Markov process, as 
Sutton suggests, we no longer diverge: transitions out of state 2, which lower the coefficients of our CMAC 
substantially, are as frequent as transitions into state 2, which raise the coefficients somewhat. In fact, since 
this example is a Markov process rather than a Markov decision process, convergence of the online algorithm 
is guaranteed by a theorem in [Day92]. 

We will prove that a broad class of approximation methods is compatible with value iteration. This 
class includes kernel averaging, ifc-nearest-neighbor, weighted ^-nearest-neighbor, Bezier patches, linear in- 
terpolation on a triangular (or tetrahedral, etc.) mesh, bilinear interpolation on a square (or cubical, etc.) 



mesh, and many others. (See the Experiments section for a definition of bilinear interpolation. Note that 
the square mesh is important: on non-rectangular meshes, bilinear interpolation will sometimes need to 
extrapolate.) 

DEFINITION: A real-valued function approximation scheme is an averager if every fitted value is the weighted 
average of zero or more target values and possibly some predetermined constants. The weights involved in 
calculating the fitted value % may depend on the sample vector X0, but may not depend on the target values 
Y. More precisely, for a fixed X0, if Y has n elements, there must exist n real numbers k{, n2 nonnegative 
real numbers ßij, and n nonnegative real numbers /?;, so that for each i we have ßi + J2j ßij = * anc* 

Yi=ßiki + Zjßi:Yj. 
It should be obvious that all of the methods mentioned before the definition are averagers: in all cases, 

the fitted value at any given coordinate is a weighted average of target values, and the weights are determined 
by distances in X values, and so are unaffected by the target Y values. 

Theorem 3.2 The mapping MF associated with any averaging method F is a nonexpansion in max norm, 
and is therefore compatible with the parallel value backup operator for any discounted MDP. 

PROOF: Fix the ßs and Ars for F as in the above definition. Let Y and Z be two vectors of target values. 
Consider a particular coordinate i. Then, letting || ■ || denote max norm, 

| [MF(Y) - MF{Z)]i |    =    | (ßiki + J2ßijYj) ~ (ft** + J2&izi) I 
3 3 

= i5>,-os--^-)l 
3 

<    max(Y,- — Zj) 

=    \\Y-Z\\ 

That is, every element of {MF(Y) - MF(Z)) is no larger than \\Y - Z\\. Therefore, the max norm of 
(MF(Y) - MF(Z)) is no larger than \\Y - Z ||. In other words, MF is a nonexpansion in max norm.        a 

4    Nondiscounted processes 

Consider now a nondiscounted Markov decision process M. Suppose for the moment that all policies for 
M are proper. Then the value contraction theorem states that the parallel value backup operator TM for 
this process is a contraction in some weighted max norm || • \\w- The previous section proved that if the 
approximation method A is an averager, then MA is a nonexpansion in (unweighted) max norm. If we could 
prove that MA were also a nonexpansion in || ■ ||w, we would have MA compatible with TM- Unfortunately, 
MA may be an expansion in || • ||w; in fact parts (a) and (b) of figure 4 show a simple example of a 
nondiscounted MDP and an averager which are incompatible. (Part (c) is a simple proof that the MDP and 
the averager are incompatible; see below for an explanation.) 

Fortunately, there are averagers which are compatible with nondiscounted MDPs. The proof relies on 
an intriguing property of averagers: we can view any averager as a Markov process, so that state x has a 
transition to state y whenever ßxy > 0, i.e., whenever the fitted V(x) depends on the target V(y). Part 
(b) of figure 4 shows one example of a simple averager viewed as a Markov process; this averager has 
ßu = /?23 = /?33 = 1 and all other coefficients zero. 

If we view an averager as a Markov process, and compose this process with our original MDP, we will 
derive a new MDP. Part (c) of figure 4 shows a simple example; a slightly more complicated example is 
in figure 5. As the following theorem shows, exact value iteration on this derived MDP is the same as 
approximate value iteration on the original MDP. 

Theorem 4.1 (Derived MDP) For any averager A with mapping MA, and for any MDP M (either 
discounted or nondiscounted) with parallel value backup operator TM, the function TM ° MA is the parallel 
value backup operator for a new Markov decision process M'. 



(a) (b) (c) 

Figure 4: A nondiscounted deterministic Markov process, and an averager with which it is incompatible. 
The process is shown in (a); the goal is state 1, and all arc costs except at the goal are 1. In (b) we see an 
averager, represented as a Markov process: states 1 and 3 are unchanged, while V(2) is replaced by 7(3). 
The derived Markov process is shown in (c); state 3 has been disconnected, so its value estimate will diverge. 

(a) (b) (c) 

Figure 5: An example of the construction of the derived Markov process. Part (a) shows a deterministic 
Markov process: its state space is the unit triangle, and on every step the agent moves a constant distance 
towards the origin. The value of each state is simply its distance from the origin, so the value function 
is nonlinear. For our function approximator, we will use linear interpolation on the three corners of the 
triangle. Part (b) shows a representative transition from the derived process: as before, the agent moves 
towards the goal, but then the averager moves the agent randomly to one of the three corners. On average, 
this scattering moves the agent back away from the goal, so steps in the derived process don't move the 
agent as far on average as they did in the original process. Part (c) shows the expected progress the agent 
makes on each step. The value function for the derived process is V*(x, y) = x + y. 



PROOF: Define the derived MDP M' as follows. It will have the same state and action spaces as M, and 
it will also have the same discount factor and initial distribution. We can assume without loss of generality 
that state 1 of M is cost-free and absorbing: if not, we can renumber the states of M starting at 2, add a 
new state 1 which satisfies this property, and make all of its incoming transition probabilities zero. We can 
also assume, again without loss of generality, that ßx = 1 and ki = 0 (that is, that A always sets V{1) = 0) 
— again, if this property does not already hold for M, we can add a new state 1. 

Suppose that, in M, action a in state x takes us to state y with probability paxy. Suppose that A replaces 
V(y) by ßyky + Y,z ßyzV(z). Then we will define the transition probabilities in M' for state x and action a 
to be 

p'axz   =  YlPaxyßyz     (z ^ *) 
y 

v'axi   =  YlPaxy(ßyl + ßy} 
y 

These transition probabilities make sense: since A is an averager, we know that J^z ßyz + /?y is 1, so 

^2 p'axz   =   Y2YlPa*yßyz + YlPaxy(l3y1 + f3ys) 
z z?i  y y 

=  Ylpa*y (X^ + A/J 

=      y jPaxy = 1 

y 

Now suppose that, in M, performing action a from state x yields expected cost cxa. Then performing 
action a from state x in M' yields expected cost 

Cxa   =  Cxa+yy^Paxy'ßy'ky' 
y' 

Now the parallel value backup operator TM
1
 for M' is 

V(x)    «-    min E{c'(x, a) + 7V(S'(x, a))) 
a 

=    minY^P'axz(c'xa + yv(z)) 
z 

=      min (j2 hZPaxyßyz) (c'xa + jV(z)) + fV^Paxyißyl + ßy)) (c'xa + jV(l))\ 

y \**i 

=    raxD-Y^Paxy    c'xa + J ^ ßy*v{z) 
y \ **i 

=    min \c'xa + 7 Y2Pa*y ^ßy*v(z) 
\ y z& 

=   min I cxa + -r'YPaxy'ßy'ky' + fYPaxy^2^yzV^ 
a    \ y> y **1 



On the other hand, the parallel value backup operator for M is 

V(x)    <-   minE(c(x,a)+jV(6(x,a))) 
a 

=     mm^2Paxy(Cxa + jV(y)) 
y 

If we replace V(y) by its approximation under A, the operator becomes TM ° MA: 

V{x)    <-    min ]P paxy I cra + T(A/ 
ky+^2 ^z V^ ) 

=      min     Cxa + l'YJPaxyßyky +7^2PaxyY2ßyzV(z) 
\ y y ^i 

which is exactly the same as TM' above. n 

Given an initial estimate VQ of the value function, approximate value iteration begins by computing 
MA(V0), the representation of V0 in A. Then it alternately applies TM and MA to produce the series of 
functions V0, MA(V0), TM(MA(V0)), MA(TM(MA(V0))),. ■.. (In an actual implementation, only the functions 
MA(...) would be represented explicitly; the functions TM{- ■ ■) would just be sampled at the points XQ.) On 
the other hand, exact value iteration on M' produces the series of functions VQ,TM °MA(VQ),TM °MA(TM ° 
MA(Vo)),   This series obviously contains exactly the same information as the previous one.  The only 
difference between the two algorithms is that approximate value iteration would stop at one of the functions 
MA(...), while iteration on M' would stop at one of the functions TM(• • •)• 

Now we can see why the combination in figure 4 diverges: the derived MDP has a state with infinite 
cost. So, in order-to prove compatibility, we need to guarantee that the derived MDP is well-behaved. 

If the arc costs of a discounted MDP M have finite mean and variance, it is obvious that the arc costs 
of M' also have finite mean and variance. That means that TM> = TM ° MA converges in max norm at the 
rate 7 — i.e., we have just proven again that MA is compatible with TM■ 

More importantly, if M is a finite nondiscounted process, there are averagers which are compatible with 
it. For example, if A uses weight decay (i.e., if ßy > 0 for all y), then M' will have all policies proper, since 
any action in any state has a nonzero probability of bringing us immediately to state 1. 

More generally, if M has only proper policies, we may partition its state space by distance from state 1, 
as follows (see [BT89]). Let Si = {!}• Now recursively define Uk = [jj<k -S* and ^ as 

Sk = i x I (x g Uk) A (minmaxP(i5(a;,a) = y) > 0) > 
l_ aGAyZUk ) 

Bertsekas and Tsitsiklis show that this partitioning is exhaustive; so we may set k(x) to be the unique k so 
that x £ Sk- If M is finite, there will be finitely many nonempty Sk- 

We will say that an averager A is self-weighted for M if for every state y, either ßy > 0 or there exists a 
state x so that k(x) < k(y) and ßyx > 0. 

Now, if A is self-weighted for a finite nondiscounted MDP M, then M' will have only proper policies: if 
at some time we are in state x, then no matter what action a we take, there is a nonzero chance that we will 
immediately follow an arc to a state in Sk for k < k(x). (By definition of the partition, there is a transition 
in M under a from x to some y so that k(y) < k(x). By the self-weighting property, either ßyz must be 
nonzero for some z so that k(z) < k(y), in which case x has a possible transition in M' under a to z; or 
ßy > 0, in which case x has a possible transition in M' under a to state 1.) If we follow such an arc, there is 
then a nonzero chance that we will immediately follow another arc to a state in Sk' for k' < k, and so forth 
until we eventually (with positive probability) reach partition S\ and therefore state 1. Let m be the largest 
integer so that Sm is nonempty. Then the previous discussion shows that, no matter what state we start 
from, we have a positive probability of reaching state 1 in TO — 1 steps. Call the smallest such probability 
e. Then in k(m — 1) steps, we have probability at least 1 — (1 - e)k of reaching state 1. The limit of this 
quantity as k -* 00 is 1; so with probability 1 we eventually absorb from any initial state. 

We have just proven 
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Corollary 4.1 Let M be a finite nondiscounted Markov decision process. Suppose all policies in M are 
proper. Let A be an averager which is self-weighted for M. Let TM and MA be the parallel backup operator 
for M and the mapping associated with A. Then TM and MA are compatible, and the approximate value 
iteration algorithm based on A will converge if is applied to M. 

If A ignores V(a;) for all states x not in some sample X0, then the states in X0 will play an important 
role in the derived MDP M'. While the initial state of a trajectory may be outside of X0, all transitions 
in M' lead to states in X0, so after one step the trajectory will enter X0 and stay there indefinitely. This 
means that we can characterize a large part of M' by looking only at its behavior on X0 — just what we 
need for a tractable algorithm. (It is worth mentioning that, if M is nondiscounted, X0 should contain the 
goal state: if it doesn't, M' will have no transitions into the goal, so all of its values will be infinite.) 

5    The online problem and Q-learning 

The results of the previous sections carry over directly to a gradual version of the parallel value backup 

operator 
V(x) ^„x min£(c(z, a) + yV(6(x,a))) 

a£A 

in which, rather than replacing V(x) by its computed update on each step, we take a weighted average of 
the old and new values of V(x). (The weights ax may differ for each x, and may change from iteration to 
iteration.) That is, we can still construct the derived MDP M' and perform gradual value iteration on it, 
and gradual value iteration on M' is still the same as gradual approximate value iteration on M. 

The results also apply nearly directly to dynamic programming with Watkins' [Wat89] Q* function 

Q*(x,a) = E(c(x,a) + 1V*(6(x,a))) 

and Q-learning operator 
Q(x,a) ^-axa E(c(x,a) + jminQ(6(x,a),a')) 

(The learning rates axa may now be random variables, and may depend for each step not only on x and 
a but also on the entire past history of the agent's interactions with the MDP, up to but not including the 
current values of the random variables c(x,a) and 6(x,a).) That is, we can still define a derived MDP so 
that the behavior of the approximate algorithm on the original MDP is the same as the behavior of the exact 
algorithm on the derived MDP. The derived MDP is, however, slightly different from the derived MDP for 
value iteration; see the Appendix for details. 

The previous paragraphs imply that, if we could sample transitions at will from the derived MDP 
(and so compute unbiased estimates of the Q-learning updates), we could apply gradual Q-learning to these 
transitions and learn a policy. The convergence of this algorithm would be guaranteed, as long as the weights 
axa were chosen appropriately, by any sufficiently general convergence proof for Q-learning [JJS94, Tsi94]. 

Unfortunately, there is a catch. Q-learning is designed to work for online problems, where we don't know 
the cost or transition functions and can only sample transitions from our current state. The power of the 
approximate value iteration method, on the other hand, comes from the fact that we can pay attention only 
to transitions from a certain small set of states. So, while the derived MDP for Q-learning will still have 
only a few relevant states, we won't in general be able to observe many transitions from these states, and so 
the approximate Q-learning iteration will take a very long time to converge. 

There are two ways that the approximate Q-learning algorithm might still be useful. The first is if we 
encounter a problem which is somewhere between online and offline: we can sample any transition at will, 
but don't know the cost or transition functions a priori or can't compute the necessary expectations. In 
such a problem we still can't use value iteration, since it is difficult to compute an unbiased estimate of the 
value iteration update, so the approximate Q-learning algorithm is helpful. 

The second way is if we are willing to accept possible lack of convergence. Suppose our function ap- 
proximator pays attention to the states in the set X0. If we pretend that every transition we see from a 
state x (£ Xo is actually a transition from the nearest state x' € X0, we will then have enough data to 
compute the behavior of the derived MDP on X0. Unfortunately, following this approximation is equivalent 
to introducing hidden state into the derived MDP; so we now run the risk of divergence. 
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6    Converging to what? 

Until now, we have only considered the convergence or divergence of approximate dynamic programming 
algorithms. Of course we would like not only convergence, but convergence to a reasonable approximation 
of the value function. The next section contains some empirical studies of approximate value iteration; 
this section proves some error bounds, then outlines the types of problems we have encountered while 
experimenting with approximate value iteration. 

6.1    Error bounds 

Suppose that M is an MDP with value function V*, and let A be an averager. What if V* is also a fixed 
point of M4? Then V* is a fixed point of TM ° MA; so, if we can show that TM ° MA converges, we will 
know that it converges to the right answer. 

If M is discounted and has bounded costs, TM°MA will always converge; the following theorem describes 
some situations where nondiscounted problems converge. 

Theorem 6.1 Let V* be the optimal value function for a finite nondiscounted Markov decision process M. 
Let TM be the parallel value backup operator for M. Let MA be the mapping for an averager A, and let V* 
also be a fixed point of MA- Then V* is a fixed point ofTM°MA,~ and if either 

1. M has all policies proper and A is self-weighted for M, or 

2. M has E(c(x, a)) > 0 for all x ^ 1 and A has kx > 0 for all x 

then iteration ofTja o MA converges to V*. 

PROOF: By the value contraction theorem, V* is a fixed point of TM- SO TM O MA(V*) = TM(V*) — V*; 
that is, V* is a fixed point of TM O MA- 

If (1) holds, then by the corollary to the derived MDP theorem, TM ° MA is a contraction in some 
weighted max norm; so V* is the unique fixed point of TM O MA , and iteration of TM O MA converges to V*. 

If (2) holds, then M' has c'(x,a) > 0 for all x ^ 1; so every improper policy in M' has infinite cost for 
some initial states. If we can show that M' has at least one proper policy, then TM ° MA must converge 
(and therefore must converge to V*). 

Note that V*(l) = 0 and V*(x) > 0 for x ^ 1, since all arc costs in M are positive. Suppose we start 
at some non-goal state x in M', and choose an action a so that V*(x) = E(c'(x, a) 4- V*(6'(x, a))). (There 
must be such an action, since V* is a fixed point of the value backup operator for M'.) Since c'(x,a) > 0, 
we know that V*(x) > E(V*(S'(x,a))). In particular, there must be a possible transition to some state y so 
that V*(x) > V*(y). If y is not the goal, we can repeat the argument to find a z so that y has a possible 
transition to z and V*(y) > V*(z), and so forth until (with positive probability) we eventually reach the 
goal. D 

The above theorem is useful only when we know that the optimal value function is a fixed point of our 
averager. For example, it shows that bilinear interpolation will converge to the exact value function for a 
gridworld, if every arc's cost is equal to its (Manhattan) length, since the value function for this MDP is 
linear. If we are trying to solve a discounted MDP, on the other hand, we can prove a much stronger result: 
if we only know that the optimal value function is somewhere near a fixed point of our averager, we can still 
guarantee an error bound for approximate value iteration. 

Theorem 6.2 Let V* be the optimal value function for a finite Markov decision process M with discount 
factor j. Let TM be the parallel value backup operator for M. Let MA be the mapping for an averager A. 
Let VA be any fixed point of MA- Suppose || VA — V* \\ = e, where || -1| denotes max norm. Then iteration 
ofTM ° MA converges to a value function Vb so that || Vo — V*|| < j^~-. 

PROOF: By the value contraction theorem, TM is a contraction in max norm with factor j. By theorem 3.2, 
MA is a nonexpansion in max norm. So, TM ° MA is a contraction in max norm with factor 7, and therefore 
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converges to some V0.  Repeated application of the triangle inequality and the definition of a contraction 
give 

\\Vo-TM{MA{V*))\\    = \\TM(MA(V0))-TM(MA(V*))\\ 

< l\\V0-V*\\ 

\\TM(MA(V*))-V*\\   = \\TM(MA(V*))-TM(V*)\\ 

< 7\\MA(V*)-V*\\ 

< 7\\MA(V*)-VA\\ + 7\\VA-V*\\ 

=   j\\MA(V*)-MA(VA)\\ + 7\\VA-V*\\ 

< 7||^*-^II + TII^
A
-^*II 

HVo-rH    <    \\Vo-TM(MA(V*))\\ + \\TM(MA(V*))-V*\\ 
< 7ll^o-^*|| + 27||V-^|| 

(1-7)11^0-^11    <    2j\\V*-VA\\ 

\Wo-V*\\   <   -H2L 
1-7 

which is what was required. n 

If we let 7 —>■ 0, we can make the above error bound arbitrarily small. This result is somewhat counter- 
intuitive, since A may not even be able to represent V* exactly. The reason for this behavior is that the 
final step in computing V0 is to apply TM\ when 7 = 0, this step produces V* immediately. 

As mentioned in a previous section, approximate value iteration returns MA(VQ) rather than Vo itself. So, 
an error bound for MA(V0) would be useful. The error bound on V0 leads directly to a bound for MA(V0): 

\\V* - MA(V0)\\    <    \\V*-VA\\ + \\VA-MA(V0)\\ 

=    e + \\MA(VA)-MA(V0)\\ 

< c + H^-Vbll 
< e + ||iM_y*|| + ||V*-Vb|| 

2je 
<    2e + 

1-7 

By way of comparison, Chow and Tsitsiklis [CT89] bound the error introduced by using a grid of side h 
to compute the value function for a type of continuous-state-space MDP. Writing VÄ* for the approximate 
value function computed this way, their bound is 

II V* - Vit || < j-^(*i + 7A'2|| V* \\Q) 

(for all sufficiently small h) where || • ||Q is the span quasi-norm 

\\F\\Q = sap F(x)-mfF(x) 
X x 

and A'i and K^ are constants. While their formalism allows them to discretize the available actions as well 
as the state space, an approximation which we don't consider, their bound also applies to processes with a 
finite number of actions. So, we can compare their bound on Vft* for the case of non-discretized actions to 
our bound on MA(VQ). 

Write Mh for the mapping associated with discretization on a grid of side h. (For definiteness, assume that 
(Mh(V))(x) = V^a:') where x' is the center of the grid cell which contains x. Almost any other reasonable 
convention would also work.) The processes that Chow and Tsitsiklis consider satisfy 

\V*(x)-V*(x')\<L\\x-x'\\ 

for some constant L (i.e., V* is Lipschitz continuous). (We can determine L easily from the cost and 
transition functions.) So, we can find a fixed point Vh of Mh which is close to V*, as follows. Pick a grid cell 
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C. Write CH and CL for the maximum and minimum values of V* in C; write XH and XL for states x € C 
which achieve these values. (Such states exist because V* is continuous.) We know that || XH — xi \\ < h, 
since the diameter of C is h. Therefore, by the Lipschitz condition, | CH — CL I < hL. So, if we set Vh(x) to 
be \{CH ~ CL) for all x € C, the largest difference between F* and Vh on C will be ^f-. Applying our error 

which has slightly different constants but the same behavior as h —► 0 or j —► 1 as the bound of Chow 
and Tsitsiklis. Our bound is valid for any h, rather than just sufficiently small h. Their bound depends on 
|| V* \\Q; since || V* \\Q is bounded by -^-, where r is the largest single-step expected reward, we have folded 
a similar dependence into the constant L. 

The sort of error bound which we have proved is particularly useful for function approximators such as 
linear interpolation which have many fixed points. (In fact, every function which is representable by a linear 
interpolator is a fixed point ofthat interpolator's mapping. The same is true for bilinear interpolation, grids, 
and 1-nearest-neighbor; it is not true for local weighted averaging or fc-nearest-neighbor for k > 1.) Because 
it depends on the maximum difference between V* and the fixed point of MA , the error bound is not very 
useful if V* may have large discontinuities at unknown locations: if V* has a discontinuity of height d, then 
any averager which can't mimic the location of this discontinuity exactly will have no representable functions 
(and therefore no fixed points) within | of V*. 

6.2    In practice 

The most common problem with approximate value iteration is the presence of barriers in the derived MDP. 
That is, sometimes the derived MDP can be divided into two pieces so that the first piece contains the goal 
and the second piece has no transitions into the first. In this case, the estimated values of the states in the 
second piece will be infinite. (We mentioned a special case of this situation above: if the averager ignores 
the goal state, then the derived MDP will have no transitions into the goal.) A less drastic but similar 
problem occurs when the second piece has only low-probability transitions to the first; in this case, the costs 
for states in the second piece will not be infinite, but will still be artificially inflated. 

This sort of problem is likely to happen when the MDP has short transitions and when there are large 
regions where a single state dominates the averager. For a particularly bad example, suppose our function 
approximator is 1-nearest-neighbor. If the transitions out of a sampled state x in M are shorter than half 
the distance to the nearest adjacent sampled state, then the only transitions out of a; in M' will lead straight 
back to x. Similarly, in local weighted averaging with a narrow kernel, a short transition out of a; in M will 
translate to a high probability self loop in M'. In both cases, the effect of the averager is to produce a drag 
on transitions out of x: actions in M' don't get the agent as far on average as they did in M. 

One way to reduce this drag is to make sure that no single state has the dominant weight over a large 
region. The best way to do so is to sample the state space more densely; but if we could afford to do 
that, we wouldn't need a function approximator in the first place. Another way is to increase a smoothing 
parameter such as kernel width or number of neighbors, and so reduce the weight of each sample point in 
its immediate neighborhood. Unfortunately, increased smoothing brings its own problems: it can remove 
exactly the features of the value function that we are interested in. For example, if the agent must follow a 
long, narrow path to the goal, the scattering effect of a wide-kernel averager is almost certain to push it off 
of the path long before it reaches the end. We will see an example of this problem in the hill-car experiment 
below. 

Both of the above problems — too much smoothing and the introduction of barriers — can be reduced 
if we can alter our MDP so that the actions move the agent farther. For example, we might look ahead two 
or more time steps at each value backup. (This strategy corresponds to the dynamic programming operator 
Tfa o MA for some n > 1. Since Tjfa is the backup operator for an MDP (derived by composing n copies 
of M), the previous sections' convergence theorems also apply to Tfo o MA-) While in general the cost 
of looking ahead n steps is exponential in n, there are many circumstances where we can reduce this cost 
dramatically. For instance, in a physical simulation, we can choose a longer time increment; in a grid world, 
we can consider only the compound actions which don't contain two steps in opposite directions; and in the 
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case of a Markov process, where there's only 1 action, the cost of lookahead is linear rather than exponential 
in n. (In the last case, TD(A) [Sut88] allows us to combine lookaheads at several depths.) If actions are 
selected from an interval of R, numerical minimum-finding algorithms such as Newton's method or golden 
section search can find a local minimum quickly. In any case, if the depth and branching factor are large 
enough, standard heuristic search techniques can at least chip away at the base of the exponential. 

7    Experiments 
This section describes our experiments with the Markov decision problems from [BM95]. 

7.1 Puddle world 

In this world, the state space is the unit square, and the goal is the upper right corner. The agent has four 
actions, which move it up, left, right, or down by .1 per step. The cost of each action depends on the current 
state: for most states, it is the distance moved, but for states within the two "puddles," the cost is higher. 
See figure 6. 

For a function approximator, we will use bilinear interpolation, defined as follows: to find the predicted 
value at a point (x,y), first find the corners (x0,y0), (x0,yi), (>i,2/o), and (*i,2/i) of the grid square 
containing (x,y). Interpolate along the left edge of the square between (x0,yo) and (ar0lJ/i) to find the 
predicted value at (x0,y). Similarly, interpolate along the right edge to find the predicted value at (xi,y). 
Now interpolate across the square between (x0,y) and {xi,y) to find the predicted value at (x,y). 

Figure 6 shows the cost function for one of the actions, the optimal value function computed on a 100 x 100 
grid, an estimate of the optimal value function computed with bilinear interpolation on the corners of a 7 x 7 
grid (i.e., on 64 sample points), and the difference between the two estimates. Since the optimal value 
function is nearly piecewise linear outside the puddles, but curved inside, the interpolation performs much 
better outside the puddles: the root mean squared difference between the two approximations is 2.27 within 
one step of the puddles, and .057 elsewhere. (The lowest-resolution grid which beats bilinear interpolation's 
performance away from the puddles is 20 x 20; but even a 5 x 5 grid can beat its performance near the 
puddles.) 

7.2 Car on a hill 

In this world, the agent must drive a car up to the top of a steep hill. Unfortunately, the car's motor is weak: 
it can't climb the hill from a standing start. So, the agent must back the car up and get a running start. The 
state space is [-1,1] x [-2,2], which represents the position and velocity of the car; there are two actions, 
forward and reverse. (This formulation differs slightly from [BM95]: they allowed a third action, coast. We 
expect that the difference makes the problem no more or less difficult.) The cost function measures time 
until goal. 

There are several interesting features to this world. First, the value function contains a discontinuity 
despite the continuous cost and transition functions: there is a sharp transition between states where the 
agent has just enough speed to get up the hill and those where it must back up and try again. Since 
most function approximators have trouble representing discontinuities, it will be instructive to examine the 
performance of approximate value iteration in this situation. Second, there is a long, narrow region of 
state space near the goal through which all optimal trajectories must pass (it is the region where the car 
is partway up the hill and moving quickly forward). So, excessive smoothing will cause errors over large 
regions of the state space. Finally, the physical simulation uses a fairly small time step, .03 seconds, so we 
need fine resolution in our function approximator just to make sure that we don't introduce a barrier. 

The results of our experiments appear in figure 7. For a reference model, we fit a 128 x 128 grid. While 
this model has 16384 parameters, it is still less than perfect: the right end of the discontinuity is somewhat 
rough. (Boyan and Moore used a 200 by 200 grid to compute their optimal value function, and it shows 
no perceptible roughness at this boundary.) We also fit two smaller grids, one 64 x 64 and one 32 x 32. 
Finally, we fit a weighted 4-nearest neighbor model using the 1024 centers of the cells of the 32 x 32 grid as 
sample points, and another using a uniform random sample of 1000 points from the state space. Note that 
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0.9 ^ 0 

Figure 6: The puddle world. From top left: the cost of moving up, the optimal value function as seen by a 
100 x 100 grid, the optimal value function as seen by bilinear interpolation on the corners of a 7 x 7 grid, 
and the difference between the two value functions. 
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Figure 7: Approximations to the value function for the hill-car problem. From the top: the reference model, 
a 32 x 32 grid, a fc-nearest-neighbor model, the error of the 32 x 32 grid, and the error of the^-nearest- 
neighbor model. In each plot, the horizontal axes represent the agent's positioned velocity, and the vertical 
axis represents the estimated time remaining until reaching the summit at x - .6. 
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Figure 8: Two smaller models for the hill-car world: a divergent 12 x 12 grid, and a convergent nearest- 
neighbor model on the same 144 sample points. 

the nearest-neighbor methods are roughly comparable in complexity to the 32 x 32 grid: each one requires 
us to evaluate about two thousand transitions in the MDP for every value backup. 

As the difference plots show, most of the error in the smaller models is concentrated around the dis- 
continuity in the value function. Near the discontinuity, the grids perform better than the nearest-neighbor 
models (as we would expect, since the nearest-neighbor models tend to smooth out discontinuities). But 
away from the discontinuity, the nearest-neighbor models win. The 32 x 32 nearest-neighbor model also 
beats the 32 x 32 grid at the right end of the discontinuity: the car is moving slowly enough here that the 
grid thinks that one of the actions keeps the car in exactly the same place. The nearest-neighbor model, 
on the other hand, since it smooths more, doesn't introduce as much drag as the grid does and so doesn't 
have this problem. The root mean square error of the 64 x 64 grid (not shown) from the reference model is 
0.190s, and of the 32 x 32 grid is 0.336s. The RMS error of the 4-nearest-neighbor fitter with samples at 
the grid points is 0.205s. The nearest-neighbor fitter with a random sample (not shown) performs slightly 
worse, but still significantly better than the 32 x 32 grid (one-tailed t-test gives p = .971): its error, averaged 
over 5 runs, is 0.235s. 

All of the above models are fairly large: the smallest one requires us to evaluate 2000 transitions for 
every value backup. Figure 8 shows what happens when we try to fit a smaller model. The 12 x 12 grid is 
shown after 60 iterations; it is in the process of diverging, since the transitions are too short to reach the 
goal from adjacent grid cells. The 4-nearest-neighbor fitter on the same 144 grid points has converged; its 
RMS error from the reference model is 0.278s (better than the 32 x 32 grid, despite needing to simulate 
fewer than one-seventh as many transitions). A 4-nearest-neighbor fitter on a random sample of size 150 
(not shown) also converged, with RMS error 0.423s. 

8     Conclusions and further research 

We have proved convergence for a wide class of approximate temporal difference methods, and shown exper- 
imentally that these methods can solve Markov decision processes more efficiently than grids of comparable 
accuracy. 

Unfortunately, many popular function approximators, such as neural nets, linear regression, and CMACs, 
do not fall into this class (and in fact can diverge). The chief reason for divergence is exaggeration: the more 
a method can exaggerate small changes in its target function, the more often it diverges under temporal 
differencing. (In some cases, though, it is possible to detect and compensate for this instability. The 
grow-support algorithm of [BM95], which detects instability by interspersing TD(1) "rollouts," is a good 
example.) 

There is another important difference between averagers and methods like neural nets. This difference 
is the ability to allocate structure dynamically: an averager cannot decide to concentrate its resources on 
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one important region of the state space, whether or not this decision is justified. This ability is important, 
and it can be grafted on to averagers (for example, adaptive sampling for fc-nearest-neighbor, or adaptive 
meshes for grids or interpolation). The resulting function approximator still does not exaggerate; but it is 
no longer an averager, and so is not covered by this paper's proofs. Still, methods of this sort have been 
shown to converge in practice [Moo94, Moo91], so there is hope that a proof is possible. 

A    The derived process for Q-learning 

Here is the analog for Q-learning of the derived MDP theorem. The chief difference is that, where the 
theorem for value iteration considered the combined operator TM o MA, this version considers MA oTM- 
The difference is necessary to keep the min operation in the Q-learning backup from getting in the way. Of 
course, if we show that either TM ° MA or MA o TM converges from any initial guess, then the other must 
also converge. 

Theorem A.l (Derived MDP for Q-learning) For any averager A with mapping MA,  and for any 
MDP M (either discounted or nondiscounted) with Q-learning backup operator TM, the function MA oTM 

is the Q-learning backup operator for a new Markov decision process M'. 

PROOF: The domain of A will now be pairs of states and actions. Write ßxayb for the coefficient of Q(y,b) 
in the approximation of Q(x,a); write kxa and ßxa for the constant and its coefficient. 

Take an initial guess Q(x,a). Write Q' for the result of applying TM to Q; write Q" for the result of 
applying MA to Q'. Then we have 

Q'(x,a)    =    E(c(x,a) + jmmQ(6(x,a),b)) 

=    cxa + 7 ^Pxay min Q(y, b) 
y 

Q"(z,c)    =    Y,lLß"*aQ'(x'a} + ßzckzc 

X      a 

=    ^2^2ßzcxa {cxa+j^2pxaymmQ(y,b) j + ßzckzc 

x      a \ y I 

-  Y^H,ß*™aC*a + 7YsY,&«« 2?*«»m™Q(y>b) + Act« 
x      a x      a y 

\  x      a / y     \  x      a J 

We now interpret the first parenthesis above as the cost of taking action c from state z in M'; the second 
parenthesis is the transition probability p'zcy for M'. Note that the sum YLyP'zcy wil1 generally be less than 
1; so we will make up the difference by adding a transition in M' from state z with action c to state 1 (which 
is assumed as before to be cost-free and absorbing and to have V(\) = 0). D 
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