Synthesis and Structure of a Novel Bis-Stibole

Massachusetts Institute of Technology
Department of Chemistry
Cambridge, MA 02139

Office of Naval Research
Department of the Navy
Chemistry Division, ONR 331
800 North Quincy Street
Arlington, VA 22217-5660

Prepared for Publication in Organometallics

Reproduction in whole or in part is permitted for any purpose of the United States Government. Approved for public release and sale, distribution unlimited.

The novel benzobis(stibole) 2a, synthesized from bis(zirconacycle) 1, crystallizes to place all three ring substituents in a syn orientation. Complex 2a stacks in such a manner so that the central phenyl ring of two adjacent Sb₂C₁₀ ring systems are nearly perfectly eclipsed.

stibole, organo-antimony, organo-main group
Synthesis and Structure of a Novel Bis-Stibole

by

Donald P. Hsu, Benjamin P. Warner, Richard A. P Maher,
William M. Davis and Stephen L. Buchwald

Prepared for Publication in Organometallics

Massachusetts Institute of Technology
Department of Chemistry
Cambridge, MA 02139

October 18, 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government
Synthesis and Structure of a Novel Bis-Stibole
Donald P. Hsu, Benjamin P. Warner, Richard A. Fisher, William M. Davis and Stephen L. Buchwald

Massachusetts Institute of Technology
Cambridge, MA 02139 (USA)

The novel benzobis(stibole) 2a, synthesized from bis(zirconacycle) 1, crystallizes to place all three ring substituents in a syn orientation. Complex 2a stacks in such a manner so that the central phenyl ring of two adjacent Sb2C10 ring systems are nearly perfectly eclipsed.
For several years we have been interested in the use of zirconacycles for the synthesis of novel main group derivatives. Our efforts have focused principally on developing synthetic routes to cyclic compounds of the heavier main group elements for which there are few reliable methods. We have been particularly interested in synthetic routes to stiboles, certain derivatives of which are thermochromic. In this account, we report the synthesis and solid state structure of some unusual bis-stibolobenzene derivatives.

We have previously reported the synthesis, characterization, and reactivity of zirconocene complexes of certain benzdiynes and these studies provide the starting point for the current investigation. We felt that bis-zirconacycle 1, prepared as previously described, would provide us with a ready entry for the synthesis of unique bis-main group heterocycles by use of the procedure developed by Fagan and Nugent. Treatment of toluene solutions of 1 with two equivalents phenylantimony dichloride, gives the isomeric phenyl stiboles 2 (Scheme 1). Filtration of the reaction mixture through alumina (III) provides 2 in 71% yield as a mixture of syn (2a) and anti (2b) isomers (2a/2b = 55/45). Isomer 2a can be preferentially crystallized (rectangular prisms) from cold hexane/toluene solutions of the mixture of isomeric metallacycles. Recrystallization of 2 from ether generates two distinct crystal types, rectangular prisms of 2a and small needles of 2b. The crystal types may be physically separated to give small amounts of each isomer. Once purified, solutions of the isomers are stable with respect to interconversion at temperatures up to 150 °C, at which point the compounds
begin to decompose. However, 2 is not configurationally stable if exposed to Lewis acids.7 When pure 2\textsubscript{a} was adsorbed onto silica gel for 1 h, then eluted with ether, the recovered compound 2 was found to be a mixture of 2\textsubscript{a}:2\textsubscript{b} in a 82:18 ratio.

The solid state structure of 2\textsubscript{a} was determined by a single crystal x-ray diffraction study.8 The ORTEP and packing diagrams are shown in Figures 1 and 2. The bond distances and angles within the ring system are in the range found in stiboles which have been previously reported.1,3a-c The Sb\textsubscript{2}C\textsubscript{10} ring system is virtually planar. The bond angles about the antimony atom are narrow as might be expected from consideration of the hybridization of the antimony center in stibines.3a Quite unexpectedly however, the methyl group of the ring methoxy substituent is oriented syn to the two phenyl groups located on the antimony centers. The likely reason for this structural feature is apparent from the examination of the packing diagram (Figure 2).

\textbf{Figure 1.} Molecular structure of compound 2\textsubscript{a} with partial listing of bond distances and angles.

and consideration of the close intermolecular contacts. Two Sb\textsubscript{2}C\textsubscript{10} ring systems lie parallel to each other, 3.6 \AA\ apart. This proximity forces the methoxy carbon atoms to reside away from neighboring Sb\textsubscript{2}C\textsubscript{10} ring system and toward the phenyl substituents. The interactions between the two Sb\textsubscript{2}C\textsubscript{10} rings are shown in Figure 3 in which the phenyl rings have been removed for clarity. Of particular interest is that the central six membered rings of the two molecules, shown in Figure 3, are nearly perfectly eclipsed.

\textbf{Figure 3.} Orientation of the symmetry related Sb\textsubscript{2}C\textsubscript{10} rings. The phenyl rings have been omitted.
This is in contrast to Jorgensen's recent theoretical results for the structure of the benzene-anthracene complex. This interesting difference may be due to crystal packing forces. The corresponding stibacyclopentadiene units are approximately anti with Sb₁ and Sb₂ lying between C₁ and C₂ and C₇ and C₈ of the opposite ring respectively. This orientation minimizes the unfavorable coulombic interactions between the lone pairs of related antimony centers of the two units.

In summary, we have prepared the first example, to our knowledge, of bis-metallacyclopentadienes of a main group element. Investigations are underway in our laboratory to further explore the use of zirconacyclic intermediates as vehicles for the preparation of new and interesting main group compounds.

Experimental Section

Diphenyldistibolobenzenes: (2a, 2b):

Two dry Schlenk flasks were charged with 1 (0.400 g, 0.61 mmol) and phenylantimony dichloride (0.329 g, 1.22 mmol) separately, in a nitrogen-filled glove box. The flasks were removed from the glove box and attached to a Schlenk line under argon, and toluene (10 mL) was added to each. The solution of 1 was added to the phenylantimony dichloride solution via cannula at room temperature. The color of the reaction mixture quickly changed from red to pale yellow. The reaction mixture was stirred for 2 h, then a sample was removed by pipette. At this point, the reaction was judged to be complete (¹H NMR), with the product being a 55:45 ratio of 2a:2b. The reaction solution was then filtered through a plug of alumina (III) with an additional 50 mL of toluene used to wash the material through the column. The solvent was removed in vacuo to leave a yellow solid (0.265 g, 0.434 mmol, 71%). This material was dissolved in approximately 0.5 mL of toluene and 2.5 mL of hexane (with gentle heating to 50 °C to dissolve), and allowed to crystallize, under argon, at -20 °C to yield several large, blocky, yellow crystals (0.062 g, 0.102 mmol, 17%). Further attempts to separate
the diastereomers from the remaining material by fractional crystallization were unsuccessful. In a separate experiment, a mixture of 2a and 2b was crystallized from ether to yield two distinct forms of crystals: rectangular (2a) and needle-type crystals (2b). A small amount of each isomer (2b) was physically separated and used for full characterization: 2a: 1H NMR (300 MHz, C6D6) δ 7.5-7.4 (m, 4H), 7.32 (s, 1 H), 7.0-6.9 (m, 6 H), 3.45 (s, 3 H), 2.05 (s, 6 H) and 2.03 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ 166.3, 158.3, 145.6, 137.5, 135.6, 131.0, 128.7, 128.4, 116.8, 60.7, 18.6 and 14.8; IR (KBr) 3059, 2987, 2907, 2848, 1563, 1510, 1475, 1430, 1364, 1350, 1317, 1193, 1063, 1035, 1018, 998, 855, 730, 695 and 450 cm⁻¹; Anal. Calcd. for C27H26OSb2: C, 53.16; H, 4.3. Found: C, 53.05; H, 4.36. 2b: 1H NMR (300 MHz, CDCl3) δ 7.46-7.42 (m, 4 H), 7.26-7.18 (m, >6 H solvent included), 3.61 (s, 3 H), 2.21 (s, 6 H) and 2.19 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ 166.3, 158.3, 147.1, 145.6, 137.3, 135.6, 130.7, 128.8, 128.5, 116.8, 60.5, 18.5 and 14.8; IR (KBr) 3060, 2986, 2929, 2968, 2842, 1565, 1512, 1476, 1430, 1354, 1318, 1063, 1036, 1019, 998, 855, 729, 695 and 450 cm⁻¹; Anal. Calcd. for C27H26OSb2: C, 53.16; H, 4.3. Found: C, 53.37; H, 4.36.

Acknowledgment. This work was supported, in part, by the Office of Naval Research, and by Union Carbide (Innovation Recognition Award), whom we gratefully acknowledge. SLB acknowledges additional support as a Fellow of the Alfred P. Sloan Foundation (1988-92) and a Camille & Henry Dreyfus Teacher-Scholar (1989-94).

Supplementary Material Available: ORTEP diagram of 2a, tables of bond distances and angles for 2a, and a table of final positional and thermal parameters for 2 (29 pages). Ordering information is given on any current masthead page.

References and Notes:

 (b) Ashe, A.J. III; Kausch, C.M.; Eisenstein, O. *Organometallics* 1987, 6, 1185.

6. When 1 was treated with 2 equiv. SbCl₃ or SbBr₃, the analogous chloro- and bromostiboles were formed as quite insoluble powders, which we were unable to isolate in sufficient purity.

8. Crystals of 2a are monoclinic; space group P2₁/n (#14); a = 12.284(2), b = 14.281(3), c = 13.898(3) Å; β = 95.31(20°; Z = 4; rcalc = 1.669 g/cm³. A total of 5790 unique reflections were collected using a Rigaku AFC6R diffractometer with graphite monochromated Mo Ka radiation and a 12KW rotating anode generator. The structure was solved using a combination of the Patterson method and direct methods. The final cycle of full-matrix least-squares refinement was based on 2832 observed reflections for which I > 3.00s(I) and 271 variable parameters and converged with R = 0.037 and Rw = 0.053. Anisotropic thermal parameters were assigned to non-hydrogen atoms while hydrogen atoms were included as fixed contributions to the structure factors. Further details of the crystal structure investigation are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, GB-Cambridge CB2 1EW (UK), on quoting the full journal citation.
TECHNICAL REPORT DISTRIBUTION LIST - GENERAL

Office of Naval Research (1)*
Chemistry Division, ONR 331
800 North Quincy Street
Arlington, Virginia 22217-5660

Dr. Richard W. Drisko (1)
Naval Facilities & Engineering
Service Center
Code L52
Port Hueneme, CA 93043

Defense Technical Information Center (2)
Building 5, Cameron Station
Alexandria, VA 22314

Dr. Eugene C. Fischer (1)
Code 2840
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. James S. Murray (1)
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5320

Dr. Bernard E. Douda (1)
Crane Division
Naval Surface Warfare Center
Crane, Indiana 47522-5000

Dr. John Fischer, Director (1)
Chemistry Division, C0235
Naval Air Weapons Center
Weapons Division
China Lake, CA 93555-6001

Dr. Peter Seligman (1)
Naval Command, Control and Ocean Surveillance Center
RDT&E Division
San Diego, CA 92152-5000

* Number of copies to forward