A Catalytic Method for the Conversion of Silanes to Stannanes

Benjamin P. Warner and Stephen L. Buchwald

Massachusetts Institute of Technology
Department of Chemistry
Cambridge, MA 02139

The transformation of alkynyl-, allyl-, and benzyltrimethylsilanes to the corresponding tributylstannanes is reported. The reaction is initiated by the addition of tetrabutylammonium fluoride to a mixture of the silane and bis(tributyltin)oxide in tetrahydrofuran. The stannanes are isolated in quantitative yields after removal of the volatile bis(trimethylsilyl)oxide in vacuo.
A Catalytic Method for the Conversion of Silanes to Stannanes

by

Benjamin P. Warner and Stephen L. Buchwald

Prepared for Publication
in the
Journal of Organic Chemistry

Massachusetts Institute of Technology
Department of Chemistry
Cambridge, MA 02139

October 18, 1994

Reproduction in whole or in part is permitted for any purpose of the United States Government
A Catalytic Method for the Conversion of Silanes to Stannanes

Benjamin P. Warner and Stephen L. Buchwald*
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

The transformation of alkynyl-, allyl-, and benzyltrimethylsilanes to the corresponding tributylstannanes is reported. The reaction is initiated by the addition of tetrabutylammonium fluoride to a mixture of the silane and bis(tributyltin)oxide in tetrahydrofuran. The stannanes are isolated in quantitative yields after removal of the volatile bis(trimethylsilyl)oxide in vacuo.
In the course of our studies of organo-main group compounds, we desired ready access to aryl(alkynyl)boranes. One of the most useful routes to such compounds was from the aryl(silyl)acetylenes generated by the palladium mediated coupling of an aryl and trimethylsilylacetylene. The trimethylsilyl group would then be converted to a tributylstannyl group, and then to the corresponding alkynylborane. Rather than the usual two step methods for converting alkynylsilanes to alkynylstannanes, we reasoned that the trimethylsilyl group could be removed under appropriate conditions, and the resulting anion would react with bis(tributyltin)oxide. This reaction would generate a new alkoxide, and the cycle would be repeated. We found that tetrabutylammonium fluoride (TBAF) is an excellent catalyst for the process, the presumed course of which is shown in Scheme.

Scheme 1

Initiation

\[
\text{R-SiMe}_3 \xrightarrow{\text{TBAF}} \text{R-SiMe}_3\text{F} + \text{Bu}_4\text{N}^+ \xrightarrow{\text{R'OSnBu}_3} \text{R-SnBu}_3 + \text{R'O}^- \text{Bu}_4\text{N}^\oplus
\]

Catalytic Cycle

\[
\begin{align*}
\text{R-SnBu}_3 + \text{Me}_3\text{SiOR'} & \xrightarrow{\text{R'O}^- \text{Bu}_4\text{N}^\oplus} \text{R-SiMe}_3 \\
\text{R'OSnBu}_3 & \xrightarrow{\text{R-SiMe}_3\text{OR'}} \text{Bu}_4\text{N}^\oplus
\end{align*}
\]

\[R' = \text{Bu}_3\text{Sn or Me}_3\text{Si}\]

We believe that this method for generating alkynylstannanes from silanes has advantages in terms of cost and ease of use. This reaction utilizes inexpensive bis(tributyltin)oxide rather than the more costly and moisture-sensitive tributyltin chloride. The reaction allows the conversion of alkynylsilanes, as well as allyl- and benzyltrimethylsilane, to the corresponding tributylstannanes in one step, as opposed to desilylation and isolation of the terminal alkyne. Finally, the product is isolated in
quantitative yield with removal of the volatile bis(trimethylsilyl)oxide the only purification needed.6

The reaction was carried out by first charging a sealable Schlenk tube with an appropriate silane (1 to 1.057 equiv), bis(tributyltin)oxide (0.5 equiv), and THF. A small amount of TBAF (0.02 equiv) was then added and the solution was heated at 60 °C for 2.5 h (16 h for allyl and benzyl silane), at which time the solvent and bis(trimethylsilyl)oxide are removed in vacuo. Allyl,8 benzyl, and alkynylsilanes all react to generate the corresponding stannanes in excellent yields without further purification (Table 1).

[Table 1]

In summary, we have developed an efficient method for the conversion of alkynyl, benzyl, and allyl silanes to the corresponding stannanes.

Experimental Section:

General Considerations:

All reactions were carried out under an atmosphere of argon using standard Schlenk techniques. Nuclear magnetic resonance (NMR) spectra were recorded on a Varian Unity-300, Varian XL-300, Varian XL 301, or Bruker AC-250 Fourier transform spectrometer. Infrared (IR) spectra were recorded on a Perkin Elmer 1600 series Fourier transform spectrometer. Electron impact high resolution mass determinations (HRMS) were recorded on a Finnegan MAT System 8200. Elemental Analyses were performed by Desert Analytics; air sensitive samples were sent in sealed vials under nitrogen.

Tetrahydrofuran (THF) was dried and deoxygenated by refluxing and distilling from sodium / benzophenone ketyl under an argon atmosphere. All reagents, unless otherwise stated, are commercially available and were used as received. Yields refer to isolated yields of products of greater than 95% purity as estimated by 1H NMR
Representative Procedures: A flame dried sealable Schlenk flask under Argon was charged with 1a (0.348 g, 2.0 mmol), and (Bu3Sn)2O (0.596 g, 1.0 mmol), and THF (5 mL). TBAF (0.040 mL, 1 M in THF) was added, and the flask was sealed and stirred at 60 °C for 2.5 h, at which time the volatiles were removed in vacuo to yield 1b as a colorless oil with no further purification necessary (0.764 g, 98 %).

Compounds 1a-4a, 9a, and 10a were purchased from Aldrich Chemical Co., Inc. Compounds 5a-8a were prepared according to the literature. The spectral data for 6a, 1b, and 2b, have been reported in the literature. Compounds 3b and 9b were compared with material purchased from Aldrich Chemical Co., Inc.

5a: 1H NMR (300 MHz, CDCl3): δ 0.26 (s, 9H), 7.54 (d, J = 18.0 Hz, 2H), 7.57 (d, J = 18.0 Hz, 2H); IR (Film): alkyne 2158, nitrile 2234.

7a: 1H NMR (300 MHz, CDCl3): δ 0.18 (s, 9H), 1.59 (m, 4H), 2.11 (m, 4H), 6.18 (m, 1H); IR (Film): alkyne 2161.

8a: 1H NMR (300 MHz, CDCl3): δ 0.34 (s, 18H), 7.28 (dd, J = 5.7, 3.3 Hz, 2H), 7.51 (dd, J = 5.7, 3.3 Hz, 2H); IR (Film): alkyne 2161.

4b: 1H NMR (300 MHz, CDCl3): δ 0.89 (t, J = 7.3 Hz, 9H), 0.99 (t, J = 8.1 Hz, 6H), 1.30 (m, 6H), 1.55 (m, 6H); 13C NMR (75 MHz, CDCl3): δ 92.91, 83.94, 28.79, 26.97, 13.57, 11.36; IR (Film): alkyne 2036.

5b: 1H NMR (300 MHz, CDCl3): δ 0.91 (t, J = 7.3 Hz, 9H), 1.07 (t, J = 8.0 Hz, 6H), 1.36 (m, 6H), 1.6 (m, 6H), 7.51 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.2 Hz, 2H); 13C NMR (75 MHz, CDCl3): δ 132.2, 131.7, 128.7, 118.5, 110.5, 108.0, 99.9, 28.9, 27.0, 13.7, 11.3; IR (Film): nitrile 2363, alkyne 2228; HRMS: Calcd. for C21H31NSn: 417.1478. Found: 417.1476.

6b: 1H NMR (300 MHz, CDCl3): δ 0.88 (t, J = 7.5 Hz, 9H), 0.99 (t, J = 8.1 Hz, 6H), 1.32 (m, 6H), 1.53 (m, 6H), 3.37 (s, 3H), 4.09 (s, 2H); IR (Film): alkyne 2149.
7b: H NMR (300 MHz, CDCl3): δ 0.89 (t, J = 7.2 Hz, 9H), 0.98 (t, J = 8.1 Hz, 6H), 1.34 (m, 10H), 1.57 (m, 10H), 2.09 (m, 4H), 6.10 (m, 1H); IR (Film): alkyne 2126.

8b: H NMR (300 MHz, CDCl3): δ 0.92 (t, J = 7.2 Hz, 18H), 1.06 (t, J = 12 Hz, 12H), 1.36 (m, 12H), 1.6 (m, 12H), 7.17 (dd, J = 5.7, 3.4 Hz, 2 H), 7.42 (dd, J = 5.8, 3.4 Hz, 2 H); 13C NMR (75 MHz, CDCl3): δ 132.6, 127.2, 126.3, 108.5, 97.4, 28.9, 27.0, 13.6, 11.2; IR (Film): alkyne 2135; Anal: Calcd. for: C34H58Sn2: C, 57.99; H, 8.3. Found: C, 57.97; H, 8.58.

10b: H NMR (300 MHz, CDCl3): δ 0.81 (t, J = 7.8 Hz, 6H), 0.87 (t, J = 7.4 Hz, 9H), 1.28 (m, 6H), 1.4 (m, 6H), 2.3 (t, JSn-H = 27 Hz, 2H), 6.9 (m, 3 H), 7.16 (m, 2 H).

Acknowledgment: This work was supported, in part, by the Office of Naval Research to whom we are grateful. SLB acknowledges additional support as a Camille & Henry Dreyfus Teacher-Scholar.

Supplementary material available: Copies of 1H and 13C NMR spectrum for 5b (2 pages).

References:
5. Tributyltin chloride is $47.59/mole and bis(tributyltin)oxide is $33.65/mole of tributyltin from Aldrich Chemical Co., Inc. Prices are from the 1992-93 catalog, and are derived from the largest sized bottles listed.
6. We note that the stannanes generated can be used without purification or removal of
solvent and volatiles, in Stille reactions. For example, 1a was converted to 1b, then 1 equivalent of iodobenzene, 0.025 equivalents of palladium (II) acetate, and 0.05 equivalents of triphenylphosphine were added. After heating the reaction mixture to 60 °C for 14 h, followed by aqueous work up, and flash chromatography, diphenylacetylene was isolated in 81 % yield. Echavarren, A.M.; Stille, J.K. J. Am. Chem. Soc. 1987, 109, 5478. Cummins, C.H. Tetrahedron Lett. 1994, 35, 857.

7. Solutions of TBAF contain 5% water, which protonates some of the silane or stannane. For alkynylstannanes, this reaction is reversible, but for allyl and benzyl trimethylsilane, a small amount of material was unavoidably lost.

<table>
<thead>
<tr>
<th>Substrate<sup>a</sup></th>
<th>Product</th>
<th>Yield<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a Ph--SiMe<sub>3</sub></td>
<td>1b Ph--SnBu<sub>3</sub></td>
<td>97%</td>
</tr>
<tr>
<td>2a Me--SiMe<sub>3</sub></td>
<td>2b Me--SnBu<sub>3</sub></td>
<td>96%</td>
</tr>
<tr>
<td>3a Me<sub>2</sub>Si--SiMe<sub>3</sub></td>
<td>3b Bu<sub>2</sub>Sn--SnBu<sub>3</sub></td>
<td>96%</td>
</tr>
<tr>
<td>4a Me<sub>3</sub>Si--SiMe<sub>3</sub></td>
<td>4b Bu<sub>3</sub>Sn--SnBu<sub>3</sub></td>
<td>98%</td>
</tr>
<tr>
<td>5a p-NC-Ph--SiMe<sub>3</sub></td>
<td>5b p-NC-Ph--SnBu<sub>3</sub></td>
<td>99%</td>
</tr>
<tr>
<td>6a MeO--SiMe<sub>3</sub></td>
<td>6b MeO--SnBu<sub>3</sub></td>
<td>98%</td>
</tr>
<tr>
<td>7a C<sub>6</sub>H<sub>5</sub>=C≡SiMe<sub>3</sub></td>
<td>7b C<sub>6</sub>H<sub>5</sub>=C≡SnBu<sub>3</sub></td>
<td>97%</td>
</tr>
<tr>
<td>8a C<sub>6</sub>H<sub>4</sub>=C≡SiMe<sub>3</sub></td>
<td>8b C<sub>6</sub>H<sub>4</sub>=C≡SnBu<sub>3</sub></td>
<td>99%</td>
</tr>
<tr>
<td>9a<sup>b</sup> C≡SiMe<sub>3</sub></td>
<td>9b C≡SnBu<sub>3</sub></td>
<td>95%</td>
</tr>
<tr>
<td>10a<sup>b</sup> Ph--SiMe<sub>3</sub></td>
<td>10b Ph--SnBu<sub>3</sub></td>
<td>95%</td>
</tr>
</tbody>
</table>

^aReaction run for 2.5 h except as noted.
^bReaction run for 16 h.
^cYields refer to isolated product of >95% purity as estimated by ¹H NMR.
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>Dr. Richard W. Drisko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, ONR 331</td>
<td>Naval Facilities & Engineering</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td>Service Center</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5660</td>
<td>Code L52</td>
</tr>
<tr>
<td>Port Hueneme, CA 93043</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defense Technical Information Center</th>
<th>Dr. Eugene C. Fischer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building 5, Cameron Station</td>
<td>Naval Surface Warfare Center</td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td>Carderock Division Detachment</td>
</tr>
<tr>
<td></td>
<td>Annapolis, MD 21402-1198</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. James S. Murday</th>
<th>Dr. Bernard E. Douda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Naval Surface Warfare Center</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>Crane Division</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5320</td>
<td>Naval Surface Warfare Center</td>
</tr>
<tr>
<td></td>
<td>Crane, Indiana 47522-5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. John Fischer, Director</th>
<th>Dr. Peter Seligman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, C0235</td>
<td>Naval Command, Control and Ocean Surveillance Center</td>
</tr>
<tr>
<td>Naval Air Weapons Center</td>
<td>RDT&E Division</td>
</tr>
<tr>
<td>Weapons Division</td>
<td>San Diego, CA 92152-5000</td>
</tr>
<tr>
<td>China Lake, CA 93555-6001</td>
<td></td>
</tr>
</tbody>
</table>

* Number of copies to forward