AD-A285 713

WL-TR-93-3010
VOLUME I

AEROMECHANICS TECHNOLOGY
Volume I: Final Report, Task 1,
Three-Dimensional Euler/Navier-Stokes
Aerodynamic Method (TEAM) Enhancements

R. K. Agarwal, T. P. Gielda

McDonnell Douglas
P.O. Box 516
St. Louis, MO 63166

July 1994

Approved for public release; distribution is unlimited.

FLIGHT DYNAMICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-7562
NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT-RELATED PROCUREMENT, THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY OBLIGATION WHATSOEVER. THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS LICENSING THE HOLDER, OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.
This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

DON W. KINSEY, Tech Mgr
Interdisciplinary & Applied
CFD Section

JOSEPH M. MANTER
Chief
CFD Research Branch

DENNIS SEDLOCK
Chief
Aeromechanics Division

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE NOTIFY WL/FIMC, WRIGHT-PATTERSON AFB, OH 45433-7913 TO HELP MAINTAIN A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC DOCUMENT.
1. AGENCY USE ONLY (Leave blank)
2. REPORT DATE
3. REPORT TYPE AND DATES COVERED
 Final Report
 July 91 - February 92

4. TITLE AND SUBTITLE
 AEROMECHANICS TECHNOLOGY
 Volume I: Final Report, Task 1, Three-Dimensional Euler/Navier-Stokes Aerodynamic Method (TEAM) Enhancements

5. FUNDING NUMBERS
 C: F33615-91-C-3004
 PE: 62201F
 PR: 2404

6. AUTHOR(S)
 R. K. Agarwal
 T. P. Gielda

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 McDonnell Douglas Corporation
 P.O. Box 516
 St. Louis, MO 63166

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Flight Dynamics Directorate
 Wright Laboratory
 Air Force Materiel Command
 Wright-Patterson AFB OH 45433-7562

10. SPONSORING/MONITORING AGENCY REPORT NUMBER
 WL-TR-93-3010

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release, distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
 McDonnell Douglas has implemented a Johnson-King turbulence model into the Wright Laboratory TEAM code. Solutions were obtained for several test cases using the standard Baldwin-Lomax model and the incorporated Johnson-King model. Comparisons with experimental data were made where possible. General agreement was seen between the two turbulence models; however, poor agreement with the experimental data was noted for the Onera M6 wing test case. Grid sensitivity studies and further calibration of the TEAM code are needed.

14. SUBJECT TERMS
 Computational Fluid Dynamics, Turbulence Model, Navier-Stokes

15. NUMBER OF PAGES
 25

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
 Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
 Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
 Unclassified

20. LIMITATION OF ABSTRACT
 UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prepared by ANSI std. 298-18
298-102
FOREWORD

In accordance with the requirements of the United States Air Force contract F33615-91-C-3004 to implement the McDonnell Douglas Johnson-King turbulence model into the Air Force Wright Laboratory Three-dimensional Euler/Navier-Stokes Aerodynamic Method (TEAM), the following report was prepared by the McDonnell Douglas Research Laboratory (MDRL), St. Louis, Missouri, for the Aeromechanics Division of Wright Laboratory. The contract monitor for this program was Captain Keith B. Jochum, and Dr. Raymond Cosner, McDonnell Aircraft Company, was the McDonnell Douglas program manager. Dr. Ramesh Agarwal (MDRL) was the principal investigator and Dr. Thomas Gielda (MDRL) provided technical assistance. Additional programming support was provided by Mr. Steve Ellison of the McDonnell Douglas Missile System Company (MDMSC). McDonnell Douglas acknowledges the assistance of Captain Jochum and Dr. Don Kinsey for their interest and support during the contract performance period.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTICE</td>
<td>ii</td>
</tr>
<tr>
<td>FOREWORD</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF PAGES</td>
<td>v</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 MDC Johnson-King Turbulence Model</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 MDC Johnson-King Team Code Calibration Plan</td>
<td>1-3</td>
</tr>
<tr>
<td>1.3 Turbulence Model Formulation Limitations</td>
<td>1-3</td>
</tr>
<tr>
<td>2.0 GOVERNING EQUATIONS</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Johnson-King Turbulence Model Formulation</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Solution Procedure</td>
<td>2-4</td>
</tr>
<tr>
<td>3.0 MDC MODIFICATIONS TO TEAM</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Subroutine JKEXEC</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Subroutine JKSET</td>
<td>3-1</td>
</tr>
<tr>
<td>3.3 Subroutine JKTM</td>
<td>3-1</td>
</tr>
<tr>
<td>3.4 Subroutine THOMAS</td>
<td>3-1</td>
</tr>
<tr>
<td>4.0 TEAM CODE CALIBRATION TEST CASES</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1 Flat Plate</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 RAE 2822 Airfoil</td>
<td>4-2</td>
</tr>
<tr>
<td>4.3 Onera M6 Wing</td>
<td>4-3</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>4-6</td>
</tr>
<tr>
<td>5.0 REFERENCES</td>
<td>5-1</td>
</tr>
<tr>
<td>6.0 APPENDICES</td>
<td>6-1</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1.1.</td>
<td>Computational Grid for Delta N1B1 Forebody Simulation</td>
<td>1-2</td>
</tr>
<tr>
<td>Figure 1.1.2.</td>
<td>Comparison of Computed and Measured Surface Pressure on the M1B1 Forebody for the MDC Johnson-King, Baldwin-Lomax and K-e Turbulence Models; $M_\infty = 0.8$, $\alpha = 0.0$, $Re = 4,000,000.0/ft$</td>
<td>1-2</td>
</tr>
<tr>
<td>Figure 4.1.1.</td>
<td>Comparison of computed and theoretical skin-friction coefficient for a flat plate with the Baldwin-Lomax and Johnson-King turbulence Models; $M_\infty = 0.7$, $Re = 1,000,000.0$</td>
<td>4-2</td>
</tr>
<tr>
<td>Figure 4.2.1.</td>
<td>Comparison of the Computed and Measured Surface Pressure Coefficient on the RAE 2282 Airfoil; $M_\infty = 0.75$, $\alpha = 2.8$ Deg., $Re = 6,200,000$</td>
<td>4-3</td>
</tr>
<tr>
<td>Figure 4.3.1.</td>
<td>Comparison of the Computed and Measured Surface Pressure Coefficient on the Onera M6 Wing at the $y/b = 0.20$ Span Station; $M_\infty = 0.84$, $\alpha = 3.0$ Deg., $Re = 11,700,000.0$</td>
<td>4-4</td>
</tr>
<tr>
<td>Figure 4.3.2.</td>
<td>Comparison of the Computed and Measured Surface Pressure Coefficient on the Onera M6 Wing at the $y/b = 0.45$ Span Station; $M_\infty = 0.84$, $\alpha = 3.0$ Deg., $Re = 11,700,000.0$</td>
<td>4-4</td>
</tr>
<tr>
<td>Figure 4.3.3.</td>
<td>Comparison of the Computed and Measured Surface Pressure Coefficient on the Onera M6 Wing at the $y/b = 0.65$ Span Station; $M_\infty = 0.84$, $\alpha = 3.0$ Deg., $Re = 11,700,000.0$</td>
<td>4-5</td>
</tr>
<tr>
<td>Figure 4.3.4.</td>
<td>Comparison of the Computed and Measured Surface Pressure Coefficient on the Onera M6 Wing at the $y/b = 0.90$ Span Station; $M_\infty = 0.84$, $\alpha = 3.0$ Deg., $Re = 11,700,000.0$</td>
<td>4-5</td>
</tr>
<tr>
<td>Figure 4.3.5.</td>
<td>Comparison of the Computed and Measured Surface Pressure Coefficient on the Onera M6 Wing at the $y/b = 0.95$ Span Station, $M_\infty = 0.84$, $\alpha = 3.0$ Deg., $Re = 11,700,000.0$</td>
<td>4-6</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The purpose of this investigation was to improve the prediction capability of Wright Laboratory
Three-Dimensional Euler/Navier-Stokes Aeromechanic Method, designated TEAM, through the imple-
mentation of the McDonnell Douglas nonequilibrium Johnson-King (J-K) turbulence model. The J-K
turbulence model has been demonstrated to predict more accurately surface pressure distributions on
supercritical transonic airfoils and wings with small regions of axially shock-separated flow. The follow-
ing subsections will provide a brief history of the development, calibration and limitations of the J-K
model.

1.1 MDC Johnson-King Turbulence Model

The McDonnell Douglas Research Laboratory has developed a three-dimension nonequilibrium John-
son-King turbulence model in support of the ongoing Delta rocket program at the McDonnell Douglas
Space Systems (MDSSC) Company, Huntington Beach, California. The J-K model was developed to pre-
dict more accurately the surface pressure distributions on the large payload variants of the Delta rocket.
The increased payload Delta forebody configuration included a boat-tail region which was susceptible to
shock-wave-boundary-layer separation.

Numerical simulations of the increased payload Delta flowfield with the standard Baldwin-Lomax
(B-L) turbulence model underpredicted the extent of the axial separation bubble. To overcome this defi-
ciency, the J-K formulation of Abid and Johnson [1] was implemented. Simulations were performed on
the Delta N1B1 forebody configuration, shown in Figure 1.1.1, with the Baldwin-Lomax and Johnson-King
and k-ε turbulence models. Figure 1.1.2 depicts the computed surface pressure on the N1B1 forebody.
Note the improved agreement with the experimental data that the J-K and k-ε models provide. The J-K
formulation developed for the Delta program has been modified for implementation into the TEAM code.
Figure 1.1.1. Computational Grid for Delta N1B1 Forebody Simulation

Figure 1.1.2. Comparison of Computed and Measured Surface Pressure on the M1B1 Forebody for the MDC Johnson-King, Baldwin-Lomax and $K-e$ Turbulence Models; $M = 0.8$, $\alpha = 0.0$, $Re = 4,000,000.0/ft.$
1.2 MDC Johnson-King Team Code Calibration Plan

To demonstrate the J-K implementation into the TEAM code several test cases were computed. The test case configurations were: (1) a simple flat plate, (2) the RAE 2822 airfoil, and (3) the Onera M6 wing. The test cases were chosen to provide an increasing level of geometric complexity. For all test cases the analyses were conducted with both the B-L and J-K turbulence models. Comparisons were made with existing experimental data where possible.

1.3 Turbulence Model Formulation Limitations

The J-K model installed into the TEAM code has one limitation which was resulting from the scope of the contract as spelled out in the statement-of-work. The J-K model in the TEAM code has been coded for configurations where the solid walls correspond to a \(k=1 \) surface. The J-K model is functional for zonal geometries; however, as specified above, the solid walls must lie on a \(K=1 \) surface.
2.0 GOVERNING EQUATIONS

In the following sections the development of the MDC J-K model will be discussed.

2.1 Johnson-King Turbulence Model Formulation

In this investigation, the J-K formulation of Abid and Johnson [1] was employed. A summary of their model follows.

In the Johnson-King nonequilibrium model the functional form of the eddy viscosity is:

\[\mu_t = \mu_{io} \left(1 - e^{-\frac{\tau_m}{\tau_{io}}} \right) \] (1)

The inner viscosity, \(\mu_{oi} \), is defined by the following:

\[\mu_{oi} = \frac{\mu_{i}}{D^2} \times \frac{N \tau_{i}^{\frac{1}{3}}}{\tau_{m}} \] (2)

where \(\tau_m \) is the maximum Reynolds shear stress, \(N \) is the body normal distance and \(\kappa \) is the von Karman constant (\(\kappa = 0.4 \)). The damping coefficient \(D \) is defined by the following expression:

\[D = \left(1 - e^{\frac{y^+}{A^*}} \right) \] (3)

where \(A^* = 17 \) and \(y^+ \) is the standard law-of-the-wall coordinate. The Reynolds shear stress is assumed to be of the form:

\[\tau_m = \frac{\mu_{i}^l m_l}{\rho} \] (4)

where \(\omega \) is the magnitude of the vorticity, and the variable \(\tau_m \) is determined from the solution of a partial differential equation which will be described below.

The outer eddy viscosity \(\mu_{io} \) is found from the equation below:

\[\mu_{io} = \rho \sigma K C_e F_w \gamma_k \] (5)

where:
K = 0.0168

C_c = 1.6

F_w = N_{max} \cdot F_{max}

F_{max} is the maximum of the function:

\[F(N) = N \cdot D^{kol} \quad \text{(6)} \]

and N_{max} is the body-normal distance to the point where F(N) is a maximum. Intermittency effects are modeled by:

\[\gamma_k = \left[1.0 + 5.5 \left(\frac{0.3 \cdot N}{N_{max}} \right)^6 \right]^{-1} \quad \text{(7)} \]

The variable \(\Theta \) provides the link between the eddy viscosity distribution and the variable \(\tau_m \). If one assumes that the ratio of Reynolds shear stress to the turbulent kinetic energy is constant at the location where \(\tau_m \) occurs, a partial differential equation for \(\tau_m \) can be derived from the turbulent kinetic energy equation. Complete details of the derivation are given in reference [2]. In the cartesian coordinate frame this equation can be written as:

\[
\frac{\partial \tau_m}{\partial t} + U_m \frac{\partial \tau_m}{\partial x} + V_m \frac{\partial \tau_m}{\partial y} + W_m \frac{\partial \tau_m}{\partial z} = \frac{a_1}{L_m} \left(\tau_{m,eq}^{\frac{1}{2}} - \tau_m^{\frac{1}{2}} \right) - a_1 D_m
\]

\[\text{(8)} \]

The subscript \(m \) denotes the variable is evaluated at a point where the \(\tau_m \) is a maximum. The dissipation length scale \(L_m \) is defined as:

\[L_m = \min \left(0.4 \cdot N_m, 0.09 \cdot \delta \right) \quad \text{(9)} \]

where \(\delta \) is the boundary layer thickness and assumed to be 1.9 \(N_{max} \). \(\tau_{m,eq} \) is the value of \(\tau_m \) assuming that eddy viscosity profile is in equilibrium (i.e., \(\Theta = 1.0 \)). The diffusion term \(D_m \), modeled by Johnson [3], is defined as:
Throughout this investigation the values of a_1 and C_D were fixed at 0.25 and 0.5, respectively.

In order to simplify the partial differential equation a change of variables was made. Let:

$$ g = \frac{\tau_{m_1}}{a_1} $$

$$ g_{eq} = \tau_{m_{eq}} $$

The transformed PDE becomes:

$$ \frac{\partial g}{\partial t} + U_m \frac{\partial g}{\partial x} + V_m \frac{\partial g}{\partial y} + W_m \frac{\partial g}{\partial z} + \Gamma = 0 $$

where:

$$ \Gamma = \frac{a_1}{2 L_m} \left[\left(\frac{g}{g_{eq}} - 1 \right) - \frac{C_D}{a_1 \delta} \frac{L_m}{\varepsilon} \left| 1 - \frac{\delta}{\delta_{eq}} \right| \right] $$

The above equation is then transformed to the computational plane to simplify the integration. A further simplification is made by assuming steady flow. The simplified transformed equation becomes:

$$ \left[u_m \varepsilon_x + v_m \varepsilon_y + w_m \varepsilon_z \right] \frac{\partial g}{\partial \varepsilon} + $$

$$ \left[u_m \varepsilon_x + v_m \varepsilon_y + w_m \varepsilon_z \right] \frac{\partial g}{\partial \xi} + i = 0 $$

Note that ε and ξ directions correspond to the transformed streamwise and spanwise directions, respectively. The terms containing the transformed normal derivative (η) were assumed to be negligible along the surface where τ_m occurs. For complete details see reference [4]. The above equation can now be solved for g and subsequently τ_m. Once τ_m is known, a new value of sigma is computed from:

$$ \sigma^{n+1} = \sigma^n \frac{\sigma_{max} \tau_m}{(\mu_1 \omega_1)_{max}} $$
2.2 Solution Procedure

The partial differential equation for $g (14)$ was integrated via successive-line-over-relaxation. Line relaxation was performed in the transformed streamwise (ξ) direction. The cross-flow derivative (ξ) terms were treated as source terms and moved to the right-hand side of the equation. By solving the equation for g in this manner overall CPU time expenditures were reduced.

When the TEAM code is initialized the values of \mathcal{U} are set to 1.0. Once the solution has been advanced in time, the JKTM subroutine writes out the current values of \mathcal{U} and g to I/O unit 55 (i.e., fort.55). This data file is required for subsequent restarts. If the fort.55 data file is not present, the JKTM subroutine defaults the value of \mathcal{U} back to 1.0.
3.0 MDC MODIFICATIONS TO TEAM

To complete the installation of the J-K module into the TEAM code, four subroutines were added to the original TEAM software. Subroutines JKEXEC, JKSET, JKT, and THOMAS are discussed below. Also, a minor modification was made in subroutine FILTER to allow the J-K model to be called from the main program driver.

To invoke the J-K turbulence model the turbulence model selection term, in the auxiliary data set, is set from “bltm” to “jktm.” Once the selection term is set to “jktm,” the TEAM code will invoke the J-K turbulence model.

3.1 Subroutine JKEXEC

Subroutine JKEXEC prepares the data set to be fed into the J-K turbulence model. The function of JKEXEC is to search through the boundary condition table to locate the viscous wall and pass the variables to subroutine JKSET.

3.2 Subroutine JKSET

Subroutine JKSET converts the flow and grid data passed from JKEXEC into the form required by the subroutine JKT. JKSET converts the cell-centered to cell-face flow variables. Once the data conversion is complete, subroutine JKSET then calls subroutine JKT.

3.3 Subroutine JKT

Subroutine JKT computes the turbulent eddy viscosity in a manner as described in Section 2.0.

3.4 Subroutine THOMAS

Subroutine Thomas performs a tridiagonal inversion required by subroutine JKT.
4.0 TEAM CODE CALIBRATION TEST CASES

To meet the contractual obligation of the statement of work, MDC performed a series of code calibration runs to demonstrate the installation of the J-K turbulence model into the TEAM code. The computed test cases were:

1a -- Flat plate with B-L turbulence model, (Required by Contract)
1b -- Flat plate with J-K turbulence model, (Required by Contract)
2a -- RAE 2822 Airfoil with B-L turbulence model, (MDC Optional)
2b -- RAE 2822 Airfoil with J-K turbulence model, (MDC Optional)
3a -- Onera M6 wing with B-L turbulence model, and (Required by Contract)
3b -- Onera M6 wing with J-K turbulence model. (Required by Contract)

4.1 Flat Plate

Tests cases 1a and b were computed to demonstrate the implementation of the J-K turbulence model into the TEAM code. The freestream conditions employed for this test case were:

\[M_\infty = 0.7 \quad \text{Re} = 1,000,000 \]

The computational grid consisted of 101 streamwise by 61 normal by 3 spanwise grid points. A comparison of the theoretical and computed skin-friction coefficient for both the B-L and J-K turbulence models is shown in Figure 4.1.1. Note the generally poor agreement with the empirical result of van-Driest. Instead of decreasing monotonically down the plate, the values of \(C_f \) increase near the exit of the computational domain. This behavior indicated that the TEAM code did not have the capability to accurately model near-field subsonic outflow.
Figure 4.1.1. Comparison of computed and theoretical skin-friction coefficient for a flat plate with the Baldwin-Lomax and Johnson-King turbulence Models; $M \infty = 0.7$, $Re = 1,000,000.0$.

4.2 RAE 2822 Airfoil

Test cases 2a and 2b demonstrated the capability of the J-K model to compute two-dimensional transonic flow over a supercritical airfoil section. The computational grid consisted of 241 streamwise by 65 normal by 2 spanwise grid points. The freestream conditions for this test case are shown below:

\[M \infty = 0.75 \quad \alpha = 2.8 \text{ Degrees} \]

\[Re_c = 6.2 \times 10^6 \]

Grid point spacing in the normal direction was maintained such that the y^+ value for the first point off the wall did not exceed 4.0. The TEAM code default options were used for time step and dissipation.

Comparisons of computed and measured surface pressure coefficients are made, with good agreement, in Figure 4.2.1. The J-K solution more accurately predicts the shock-wave location on the suction-surface of the airfoil. Both the B-L and J-K solutions were run for approximately 2500 iterations and 4 orders of magnitude reduction of the L2 norm was obtained.
4.3 Onera M6 Wing

Test cases 3a and b demonstrated the capability of the J-K model to compute three-dimensional transonic flow over wing configurations. The computational grid for the ONERA M6 wing consisted of 193 streamwise by 36 normal by 37 spanwise grid points. The freestream conditions for this test case are shown below:

\[M_\infty = 0.84 \]
\[\alpha = 3.06 \text{ Degrees} \]
\[\text{Re}_c = 11.7 \times 10^6 \]

Grid point spacing in the normal direction was maintained such that the \(y^+ \) value for the first point off the wall did not exceed 10.0.

Comparisons of computed and measured surface pressure coefficients are made, at the spanwise locations of \((z/b) = 0.2, 0.45, 0.65, 0.90 \) and \(0.95 \) in Figures 4.3.1, 2, 3, 4 and 5, respectively. The agreement of the B-L and J-K computed solutions is good; however, the comparison with the experimental data is poor.
Figure 4.3.1. Comparison of the Computed and Measured Surface Pressure Coefficient on the Onera M6 Wing at the \(y/b = 0.20 \) Span Station; \(M_\infty = 0.84, \alpha = 3.0 \text{ Deg.}, \text{Re} = 11,700,000.0 \).

Figure 4.3.2. Comparison of the Computed and Measured Surface Pressure Coefficient on the Onera M6 Wing at the \(y/b = 0.45 \) Span Station; \(M_\infty = 0.84, \alpha = 3.0 \text{ Deg.}, \text{Re} = 11,700,000.0 \).
Figure 4.3.3. Comparison of the Computed and Measured Surface Pressure Coefficient on the Onera M6 Wing at the y/b = 0.65 Span Station; M∞ = 0.84, α = 3.0 Deg., Re = 11,700,000.0.

Figure 4.3.4. Comparison of the Computed and Measured Surface Pressure Coefficient on the Onera M6 Wing at the y/b = 0.90 Span Station; M∞ = 0.84, α = 3.0 Deg., Re = 11,700,000.0.
Poor agreement with the experimental data was attributed to the fact that the computational grid did not have the sufficient density, in the streamwise direction, to capture the shock-wave adequately on the suction surface. Grid density studies were required but not possible due to the scope of the contract statement-of-work.

All input data files required for the ONERA Wing simulation are listed the Appendix.

4.4 Discussion

MDC has implemented a J-K model into the TEAM code. Computations have been performed for both 2-D flat plate, 2-D airfoil, and 3-D wing configurations. Computed solutions from the B-L and J-K turbulence models appear to be in reasonable agreement; however, for the case of the ONERA M6 wing, the agreement between the computed solutions and the experimental data is poor. Poor agreement with the ONERA data is attributed to inadequate grid resolution on the suction side of the airfoil in the recompression region. Further calibration of the TEAM code is indicated, but not covered in the scope of this investigation.
5.0 REFERENCES

6.0 APPENDICES

Main Program Control Input Data Set

Auxiliary Input Data Set

'zone 1' 'segment' 0

'zone 1' 'segment' 1
29 165 4 5 1 1

'zone 1' 'segment' 1
29 165 8 9 1 1

'zone 1' 'segment' 1
29 165 13 14 1 1

'zone 1' 'segment' 1
29 165 16 17 1 1

'zone 1' 'segment' 1
29 165 19 20 1 1

'zone 1' 'segment' 1
29 165 21 22 1 1

'zone 1' 'segment' 1
26 165 24 25 1 1

Boundary Condition Data Set

'zone 1' 'ree' 'tlns-k' 9

1 1 1 37 1 33 'far'
193 193 1 37 1 33 'far'
29 165 1 25 1 1 'solid'
1 29 1 25 1 1 'wake'
193 165 1 25 1 1 'zone 1'
165 193 1 25 1 1 'wake'
29 1 1 25 1 1 'zone 1'
1 193 25 37 1 1 'wake'
193 1 25 37 1 1 'zone 1'
1 193 1 1 1 33 'symmetry_xz'
1 193 37 37 1 33 'far'
1 193 1 37 33 33 'far'