Laser Spectroscopy of GdO: Ligand Field Assignments of $4f^7(8S)6p-4f^7(8S)6s$ Transitions

Leonid A. Kaledin, Matthew G. Erickson, and Michael C. Heaven

Emory University
303B School of Dentistry
Atlanta, GA 30322

AFOSR/NC
Building 410, Bolling AFB DC
20332-6448

The results were consistent with ligand field theory models for the excited states of lanthanide oxide (LnO) molecules.
Laser Spectroscopy of GdO: Ligand Field Assignments of $4f^7(8S)6p \leftrightarrow 4f^7(8S)6s$ Transitions

LEONID A. KALEDIN, MATTHEW G. ERICKSON, AND MICHAEL C. HEAVEN

Department of Chemistry, Emory University, Atlanta, Georgia 30322

Wavelength-resolved fluorescence excitation techniques have been used to record three electronic transitions of GdO at a resolution of 0.03 cm$^{-1}$. Previous analyses of two bands (Yu.N. Dmitriev et al., Acta Phys. Hung. 55, 467-479 (1984) and P. Carette et al., J. Mol. Spectrosc. 124, 243-271 (1987)) have been extended with some corrections to the assignments of low-J lines. Improved molecular constants were obtained for the $X'\Sigma^+$ and a^Π states that correlate with Gd$^{2+}$ ($4f^7(8S)6s$)0^2.

A large difference between the spin-orbit coupling constants for $X'\Sigma^+$ ($\lambda = -0.10353$ cm$^{-1}$) and a^Π ($\lambda = -0.64712$ cm$^{-1}$) was noted. This difference was ascribed to the fact that the X state is almost pure $f^7(8S)$, whereas the a state has partial $f^7(8P)$ character. Analysis of the a state required off-diagonal matrix elements of the spin-orbit interaction, evaluated using sixth-order degenerate perturbation theory, for treatment of nonrotating molecular spin-orbit intervals. In principle, these elements are needed to describe Σ states of septet and higher multiplicity. Energy intervals reflecting the structure Gd$^{2+}$($4f^7(8S)6p$)0^2 were recognized among the excited states of GdO. Overall, the results were consistent with ligand field theory models for the excited states of lanthanide oxide (LnO) molecules.

INTRODUCTION

The low-lying electronic states of several diatomic lanthanide oxides (LnO) have been successfully predicted using ligand field theory (LFT). In these models the molecular electronic structures are derived from the atomic energy levels of the divalent Ln$^{2+}$ ions. Among the lanthanides La$^{2+}$, Gd$^{2+}$, and Lu$^{2+}$ are distinguished by the fact that they possess 4f shells that are empty, half-filled, and filled, respectively. Compared to other LnO molecules, LaO and LuO have quite simple low-lying electronic structures, owing to their $4f^N(8S)$ metal-ion cores. The $4f^N(8S)$ core of Gd$^{2+}$ is also expected to yield a relatively simple electronic structure for GdO, which may be related to the energy level patterns for LaO and LuO (see Fig. 1).

The anticipated simplicity of GdO has encouraged several spectroscopists to study states that exhibit the highest multiplicities so far encountered in diatomic molecules (1-8). Van Zee et al. (6) established the $X'9\Sigma^-$ symmetry for ground state GdO trapped in solid argon and neon by means of ESR spectroscopy. Electronic spectra were recorded by Dmitriev et al. (7), who used pure isotopic 158GdO in order to reduce line overlaps. Seventeen rotational branches were identified in a strong band at 568 nm. This transition originated from $X'9\Sigma^-$, $v = 0$. The upper level was tentatively assigned to the $\Omega = 1$ component of a 9Π state, based on the intensity distributions of the various branches. The first excited state, a^Π, was located 1837.6(15) cm$^{-1}$.

1 Permanent address: High Temperature Institute of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow, 127412 Russia.
above the $X^7\Sigma^-$ ground state. More recently, Carette et al. (8) analyzed the (0, 0) bands of the $B^5\Sigma^-–X^7\Sigma^-$ (462 nm), $B^1\Sigma^-–a^7\Sigma^-$ (489 nm), $B^5\Sigma^-–a^7\Sigma^-$ (504 nm), and $A^9\Pi_4–X^9\Sigma^-$ (541 nm) transitions. In the analysis of the ground state, both Dmitriev et al. (7) and Carette et al. (8) used perturbation theory, rather than direct diagonalization of the matrix for a $9\Sigma^-$ state.

The primary goals of the present study were to use laser spectroscopy to characterize the $X^9\Sigma^-$ and $a^7\Sigma^-$ states at 0.01 cm$^{-1}$ accuracy, and to examine configurational assignments for excited electronic states using LFT predictions. Our measurements yield improved molecular constants for the $X^7\Sigma^-$ and $a^7\Sigma^-$ states. Spin–orbit interactions in the $a^7\Sigma^-$ state have been analyzed for the first time. We also report constants for a previously unobserved electronically excited state.

NOTATION

In the following we retain the X and a labels for the two lowest energy states. However, the alphabetical notation traditionally used to label electronically excited states becomes confusing and ambiguous when applied to the complex electronic
manifolds of systems with open d or f shells. Hence, for excited states that do not show recognizable ^{2S+1}A multiplet structure, we use the labels $[T_0] \Omega$, where T_0 is the term energy given in units of 10^3 cm$^{-1}$. For $^{2S+1} \Sigma$ states where the various Ω components are not widely separated we adopt the notation $[T_0]^{2S+1} \Sigma$. Our labels for the states reported by Carrette et al. (8) are [18.4]4 = $A^9 \Pi_4$, [21.6]$^9 \Sigma^+ = B^9 \Sigma^-$, and [22.2]$^9 \Sigma^- = B^7 \Sigma^-$. As described below, we found that the state previously assigned (7) to $^9 \Pi_0$ is actually an $\Omega = 5$ state. Here we label this state as [17.6]5.

Transitions originating from the $X^9 \Sigma^-$ and $a^7 \Sigma^-$ states were examined in the present study. For $\Omega^- \Sigma$ or $\Omega^- \Sigma$ transitions in the Hund's case (c)–case (b) limit, there are 21 or 27 allowed rotational branches for $\Omega \neq 0$, respectively. Each of the Σ-state spin components has P, Q, and R branches. We use a $^\Delta \Delta J(J')$ branch notation, similar to the standard $^\Delta \Delta J(N')$ labels used for Hund's case (b)–case (b) transitions (9).

EXPERIMENTAL DETAILS

The apparatus used for this work has been described previously (10). 156GdO vapor was obtained by resistively heating 0.1 g of isotopically pure 156Gd metal to around 2400 K in the presence of 5 Torr of Ar buffer gas. GdO originated from the oxidized surface of the sample, and from reactions of the metal vapor with residual oxygen present in the vacuum system. A continuous wave ring dye laser (Coherent 699-29), capable of continuous tuning over ranges exceeding 100 cm$^{-1}$, was used to obtain laser excitation spectra. Wavelength-selected fluorescence excitation spectra (WSFES) were recorded using a 0.3-m McPherson monochromator to isolate the emissions of interest. Monochromator slit widths of 7–50 µm (3–20 cm$^{-1}$) were used for these measurements.

RESULTS AND ANALYSIS OF THE SPECTRUM

The electronic spectrum of GdO in the gas phase is very similar to the spectrum of GdO trapped in solid neon (11). There are two band systems in the blue region with multiheaded structures (462 nm and 489 nm bands) and several strong bands in the 525–550, 586–620, and 635–670 nm regions. Weak bands with single heads are seen in the near infrared region (2–5, 7, 8).

High resolution excitation spectra for the [17.6]5–$X^9 \Sigma^-$ (568 nm (7)), [18.4]4–$X^7 \Sigma^-$ (541 nm (8)), and [19.0]0–$a^7 \Sigma^-$ (580 nm) (0, 0) bands were recorded with Doppler-limited resolution (0.03 cm$^{-1}$). About 600 lines of the [17.6]5–$X^9 \Sigma^-$ transition were measured and assigned. Lines from all 27 rotational branches were observed. The lines for 156GdO were shifted from their 158GdO counterparts by less than 0.1 cm$^{-1}$. Consequently, the assignments of Dmitriev et al. (7) for 158GdO were used to guide our rotational analysis. Assignments and positions for the first lines of the 156GdO 568 nm band are given in Table I. $\Omega = 5$ was determined for the upper state from the J' values for the first P, Q, and R lines in eighteen sub-branches. We identified a total of 17 misassignments in the analysis of Dmitriev et al. (7), all of which were for nonexisting lines with $J' < 5$. These misassignments were due to the extreme congestion in the vicinity of the band origin.

Approximately 300 lines of the [18.4]4–$X^9 \Sigma^-$ transition were measured and assigned. Differences between the line positions measured in the present work and those reported by Carrette et al. (8) were typically less than 0.03 cm$^{-1}$. We identified 17 misassignments in the previous analysis (8), all of which were for lines with $J' < 10$. The congestion, resulting from the presence of five Gd isotopes of significant natural abundance, is the most probable reason for these misassignments.
Assignments and Positions of the First Rotational Lines of the \([17.6\text{-}X^\pi\Sigma^-]\) Transition (cm\(^{-1}\))

<table>
<thead>
<tr>
<th>(\Delta N)</th>
<th>Type</th>
<th>(J^*)</th>
<th>(\Delta NR)</th>
<th>(J^*)</th>
<th>(\Delta NQ)</th>
<th>(J^*)</th>
<th>(\Delta NP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(U)</td>
<td>4</td>
<td>17609.350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(V)</td>
<td>4</td>
<td>17609.239</td>
<td>5</td>
<td>17607.928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(T)</td>
<td>4</td>
<td>17606.597</td>
<td>5</td>
<td>17607.411</td>
<td>6</td>
<td>17606.167</td>
</tr>
<tr>
<td>2</td>
<td>(S)</td>
<td>4</td>
<td>17604.660</td>
<td>5</td>
<td>17604.857</td>
<td>6</td>
<td>17605.021</td>
</tr>
<tr>
<td>1</td>
<td>(R)</td>
<td>4</td>
<td>17601.629</td>
<td>5</td>
<td>17602.004</td>
<td>6</td>
<td>17602.147</td>
</tr>
<tr>
<td>0</td>
<td>(Q)</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>-1</td>
<td>(P)</td>
<td>4</td>
<td>17593.297</td>
<td>5</td>
<td>17593.733</td>
<td>6</td>
<td>17594.116</td>
</tr>
<tr>
<td>-2</td>
<td>(O)</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>17588.392</td>
<td>6</td>
<td>17588.882</td>
</tr>
<tr>
<td>-3</td>
<td>(N)</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>6</td>
<td>17582.812</td>
</tr>
<tr>
<td>-4</td>
<td>(M)</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>(L)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

\(\Delta N(J^*)\) branch notation for the Hund's case (c) - case (b) limit.

Rotationally resolved spectra for the 580 nm band have not been reported previously. About 500 lines of this feature were measured and assigned. Ten rotational branches that terminated on \(f\)-parity levels of the upper state were observed. Attempts to find transitions terminating on \(e\)-parity levels of this upper state were unsuccessful. There was a local perturbation at \(J^* = 43\), where the upper state level was displaced upwards by 0.11 cm\(^{-1}\). The presence of a remote perturber was indicated by the need to use an unusually large cubic distortion constant in order to fit the rotational energies (cf. Table III). Based on the apparent absence of \(e\)-parity levels, we tentatively assign the upper state of the 580 nm band as \(\Omega = 0^-\). However, we cannot exclude the possibility of assignment to the \(f\)-component of a high multiplicity \(\Sigma\) state with a large \(\lambda\) value.

Rotational Hamiltonian for the \(X^\pi\Sigma^-\) and \(a^7\Sigma^-\) States

We chose to calculate the \(X^\pi\Sigma^-\) and \(a^7\Sigma^-\) Hamiltonian matrices using a Hund's case (a) basis set (9). The effective Hamiltonian contained the terms (12)

\[
H = H_{\text{rot.}} + H_{\text{so.}} + H_{\text{sr.}},
\]

where

\[
H_{\text{rot.}} = BR^2 - DR^4
\]

\[
H_{\text{so.}} = \frac{1}{3} \lambda (3S^2_1 - S^2) + \frac{1}{12} \theta (35S^4_1 - 30S^2_1S^2_2 + 25S^2_2 - 6S^2 + 3S^4)
\]

\[+ \frac{1}{3} \lambda_0 (3S^2_2 - S^2, R^2)_+ \]

TABLE I

Rotationally resolved spectra for the 580 nm band have not been reported previously. About 500 lines of this feature were measured and assigned. Ten rotational branches that terminated on \(f\)-parity levels of the upper state were observed. Attempts to find transitions terminating on \(e\)-parity levels of this upper state were unsuccessful. There was a local perturbation at \(J^* = 43\), where the upper state level was displaced upwards by 0.11 cm\(^{-1}\). The presence of a remote perturber was indicated by the need to use an unusually large cubic distortion constant in order to fit the rotational energies (cf. Table III). Based on the apparent absence of \(e\)-parity levels, we tentatively assign the upper state of the 580 nm band as \(\Omega = 0^-\). However, we cannot exclude the possibility of assignment to the \(f\)-component of a high multiplicity \(\Sigma\) state with a large \(\lambda\) value.
ELECTRONIC SPECTROSCOPY OF GdO

\[H_{\text{sr}} = \gamma R \cdot S + \frac{1}{2} \gamma_d [R^2, R \cdot S]. \]

(4)

and \(R = J - L - S \). The symbol \([x, y]_\ast\) denotes the anticommutator.

Cheung et al. (12) discussed the higher-order terms from Eqs. (3) and (4) that are required for states of high multiplicity. In general, \(^7\Sigma \) and \(^9\Sigma \) states require three and four parameters, respectively, to completely describe their (nonrotating) spin–spin intervals. The explicit forms of the matrix elements for a \(^7\Sigma \) state in a Hund’s case (a) basis are given in Ref. (13).² Varberg et al. (13) used fourth-order degenerate perturbation theory to include the off-diagonal matrix elements of \(H_{\text{so}} \). In the process of fitting our data for the \(a^7\Sigma^- \) state we found that the inclusion of still higher-order spin–orbit interaction terms was necessary. For \(\Sigma \) states of septet and higher multiplicity the effects of the off-diagonal matrix elements of \(H_{\text{so}} \) were incorporated using sixth-order degenerate perturbation theory. By application of the Stevens “operator equivalents” method (14) we obtained the sixth-order correction

\[
\langle \Delta \Sigma | H_{\text{so}}^{(6)} | \Delta \Sigma \rangle = \frac{\tau}{1260} [231 \Sigma^6 - 315 S(S + 1) \Sigma^4 + 735 \Sigma^4 \\
+ 105(S(S + 1))^2 \Sigma^2 - 525 S(S + 1) \Sigma^2 + 294 \Sigma^2 - 5(S(S + 1))^3 \\
+ 40(S(S + 1))^2 - 60 S(S + 1)],
\]

(5)

where \(\tau \) is a molecular constant that corresponds to \(b_0^2 \) in the notation used for solid state materials (15). Hamiltonian matrix elements for a \(^9\Sigma \) state, evaluated in a parity adapted case (a) basis set, are given in Table II.

Determination of Molecular Constants

Molecular constants for the \(X^7\Sigma^- \), \(a^7\Sigma^- \), \([17.6]5, [18.4]4, \) and \([19.0]0 \) states were obtained from least-squares fits that involved numerical diagonalization of the appropriate matrices. Upper state term energies were represented by the expression

\[T(J) = T_0 + B J(J + 1) - D(J)(J + 1))^2. \]

(6)

For description of the \([19.0]0 \) state, the cubic distortion term \(H(J)(J + 1))^3 \) term was found to be significant. Results from the least-squares fits are given in Table III. The data were not sufficiently accurate for determination of the third-order spin–rotation terms, \(\gamma_m \) for \(X^\pi\Sigma^- \) or \(a^7\Sigma^- \), and these parameters were held at zero in the fits. Similarly, centrifugal distortion of the spin–rotation interaction, represented by the parameter \(\gamma_D \), was statistically insignificant for \(a^7\Sigma^- \). The constant representing sixth-order spin–orbit coupling was determined for \(a^7\Sigma^- \), but it was too small to be characterized for \(X^\pi \).

A complete list of the line positions (in wavenumbers) measured in this study is available from the authors on request. A few copies have been deposited in the editorial office of this journal. A list of the term energies is also available. For the latter the energy zero was taken to be the \(J = 4 \) \((N = 0)\) level of the \(F_1 \) component of the \(X^\pi\Sigma^- \) state. The energy center-of-gravity for \(a^7\Sigma^- \) was used to define the electronic term energy for this state.

² An error should be noted in the \(\langle 3 | H | 2 \rangle \) element given in Table II of this reference; instead of term \(-2D(2x - 2)\) this term should read \(-D(2x - 2) \) (not \(\frac{1}{2} \)). The additional diagonal elements associated with Eq. (6) of the present work should be added.
Table II

Hamiltonian Matrix Elements for a $^5\Sigma^-$ State

<table>
<thead>
<tr>
<th>14 ></th>
<th>13 ></th>
<th>12 ></th>
<th>11 ></th>
<th>10 ></th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2(3/2)7/2(3/2)9/2(1/2)</td>
<td>-(8/3+1/2)1/2(1/2)9/2(1/2)</td>
<td>-(7/3-1/2)1/2(1/2)9/2(1/2)</td>
<td>2(1/2)</td>
<td>-3/2(1/2)</td>
</tr>
<tr>
<td>16</td>
<td>2(1/2)</td>
<td>1/2(1/2)</td>
<td>-2(1/2)</td>
<td>-3/2(1/2)</td>
</tr>
<tr>
<td>-2(1/2)</td>
<td>-3/2(1/2)</td>
<td>1/2(1/2)</td>
<td>2(1/2)</td>
<td>3/2(1/2)</td>
</tr>
<tr>
<td>-3/2(1/2)</td>
<td>1/2(1/2)</td>
<td>2(1/2)</td>
<td>3/2(1/2)</td>
<td>4/2(1/2)</td>
</tr>
<tr>
<td>-4/2(1/2)</td>
<td>1/2(1/2)</td>
<td>2(1/2)</td>
<td>3/2(1/2)</td>
<td>4/2(1/2)</td>
</tr>
<tr>
<td>-5/2(1/2)</td>
<td>1/2(1/2)</td>
<td>2(1/2)</td>
<td>3/2(1/2)</td>
<td>4/2(1/2)</td>
</tr>
<tr>
<td>-6/2(1/2)</td>
<td>1/2(1/2)</td>
<td>2(1/2)</td>
<td>3/2(1/2)</td>
<td>4/2(1/2)</td>
</tr>
<tr>
<td>-7/2(1/2)</td>
<td>1/2(1/2)</td>
<td>2(1/2)</td>
<td>3/2(1/2)</td>
<td>4/2(1/2)</td>
</tr>
<tr>
<td>-8/2(1/2)</td>
<td>1/2(1/2)</td>
<td>2(1/2)</td>
<td>3/2(1/2)</td>
<td>4/2(1/2)</td>
</tr>
<tr>
<td>-9/2(1/2)</td>
<td>1/2(1/2)</td>
<td>2(1/2)</td>
<td>3/2(1/2)</td>
<td>4/2(1/2)</td>
</tr>
<tr>
<td>-10/2(1/2)</td>
<td>1/2(1/2)</td>
<td>2(1/2)</td>
<td>3/2(1/2)</td>
<td>4/2(1/2)</td>
</tr>
</tbody>
</table>

Note. $X=\mu(J+1)$. The upper and lower signs for the < 11 | 11 > element correspond to matrices of f and e symmetry, respectively. The f levels are given by the complete 5 x 5 matrix. The e levels are described by only the upper left 4 x 4 matrix, as the 10 e basis functions are not involved.

This matrix was constructed using a parity adapted Hund’s case (a) basis set.

Discussion

Fine Structure Parameters for the States Correlating with Gd$^{2+}$($4f^{10}6s$)O$^{2-}$

The present values for the $X^5\Sigma^-$ fine-structure parameters ($\lambda = -0.10353(5)$ cm$^{-1}$ and $\theta = -1.24(5) \times 10^{-4}$ cm$^{-1}$) are in good agreement with results of Van Zee et al. (6), who examined the ESR spectrum of GdO trapped in solid Ar. The equivalent parameters derived from the solid were $|b_{_{2}}^{\|}|/2 = 0.10390(15)$ and $|b_{_{3}}^{\|}|/5 = 8(1) \times 10^{-5}$ cm$^{-1}$.

In previous studies, analytical expressions for the rotational energies of a $^5\Sigma^-$ state were used. We evaluated the accuracy of these expressions by comparing the energies they predicted with those obtained by diagonalizing the $^5\Sigma^-$ Hamiltonian matrix. For parameters in the range of those found for GdO, agreement to within ±0.05 cm$^{-1}$ was obtained. Note that the signs of the $X^5\Sigma^-$ λ and γ parameters (7, 8) are corrected here.

Several of the $X^5\Sigma^-$ and $a^5\Sigma^-$ state fine-structure parameters are explicitly related to interactions with nearby electronic states. It is important to note a significant difference between the ligand-induced state mixings for the $X^5\Sigma^-$ and $a^5\Sigma^-$ states. In the absence of configurational mixing the nonet states of GdO must be pure $f^{10}(6S)$, whereas the septet states may possess some $f^{10}(6P)$ character (16). As a consequence,
TABLE III

Constants for 159GdO Derived from Laser Excitation Spectra (cm$^{-1}$)

<table>
<thead>
<tr>
<th></th>
<th>$\chi^2\Sigma^-$</th>
<th>$\alpha^2\Sigma^-$</th>
<th>$[17.65]^a$</th>
<th>$[18.4]^d$</th>
<th>$[19.0]^b$</th>
<th>$[21.6]^2\Sigma^-$</th>
<th>$[22.2]^2\Sigma^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.707</td>
<td>d^6</td>
<td>17598.748(1)</td>
<td>18471.833(2)</td>
<td>17142.612(1)</td>
<td>21653(2)b</td>
<td>22263b</td>
</tr>
<tr>
<td>B</td>
<td>0.355074(7)</td>
<td>0.356302(10)</td>
<td>0.353169(7)</td>
<td>0.349065(6)</td>
<td>0.356852(11)</td>
<td>0.338(1)b</td>
<td>0.349(1)b</td>
</tr>
<tr>
<td>D_{10}^7</td>
<td>2.335(16)</td>
<td>2.626(29)</td>
<td>2.601(23)</td>
<td>2.6 (Fixed)</td>
<td>-1.198(49)</td>
<td>-3.01(10)</td>
<td></td>
</tr>
<tr>
<td>H_{10}^{11}</td>
<td>0.353074(7)</td>
<td>0.356302(10)</td>
<td>0.353169(7)</td>
<td>0.349065(6)</td>
<td>0.356852(11)</td>
<td>0.338(1)b</td>
<td>0.349(1)b</td>
</tr>
<tr>
<td>λ</td>
<td>0.10333(5)</td>
<td>-0.64712(11)</td>
<td></td>
<td></td>
<td></td>
<td>0.353074(7)</td>
<td>0.356302(10)</td>
</tr>
<tr>
<td>θ_{10}^4</td>
<td>-1.24(5)</td>
<td>9.49(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_{10}^4</td>
<td>0 (Fixed)</td>
<td>-6.4(22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_{010}^7</td>
<td>-9.4(7)</td>
<td>-9.2(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_{10}^3</td>
<td>0.100(13)</td>
<td>1.2764(60)</td>
<td></td>
<td></td>
<td></td>
<td>-15(1)b</td>
<td>37(6)b</td>
</tr>
<tr>
<td>ψ_{10}^8</td>
<td>4.6(8)</td>
<td>0 (Fixed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ_{12}</td>
<td>0 (Fixed)</td>
<td>0 (Fixed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note. Error limits in parentheses are one standard deviation in units of the last digits reported.

* The excited states are labeled using the notation $[T_0] \Omega$, where T_0 is the term energy relative to $X^2\Sigma^-$, $\Omega = 0$, given in units of 10^{-2} cm$^{-1}$.

* Ω assignment is tentative.

* The $J = 4$ level of the F_1 component of the $X^2\Sigma^-$ state was taken as the energy zero.

* $z = 1838.3(15)$ cm$^{-1}$.

* Ref. (7).

* Calculated by the authors using information from Ref. (7).

It is expected that the effects of spin-orbit interactions will be more pronounced in the $a^2\Sigma^-$ state. As can be seen in Table III, this is the observed behavior. An analogous situation occurs for the $X^2\Sigma^-$ and $a^2\Sigma^-$ states of the isoelectronic species EuF, and the $X^2\Sigma^+$ and $a^2\Sigma^+$ states of MnF. For these molecules the ground states correlate with predominantly atomic S configurations while the a states may contain P character. Relatively large spin-orbit interaction parameters have been determined for the a states of EuF ($\lambda = -0.13$ cm$^{-1}$) (17) and MnF ($\lambda = 0.4139$ cm$^{-1}$) (18), while the λ values for the ground states were very much smaller (these parameters could not be determined from the available spectra). For MnF it was also noted that the $X^2\Sigma^+$ state was well represented by a single configuration, whereas the electron and nuclear spin interaction parameters for the $a^2\Sigma^+$ state could not be accounted for using a single-configuration model (18).

Ligand Field Theory Model for Gd$^{2+}(4f^7(6S)6p)O^{2-}$

A LFT model for the excited states of GdO was previously developed by Carrette et al. (8). Unfortunately, this model relied heavily on an energy interval involving the formerly misassigned $[17.65]$ state. We have, therefore, performed new LFT calculations that take into account the revised assignment.
Atomic selection rules indicate that metal-centered \(4f(8S)6p \leftrightarrow 4f(8S)6s\) transitions should be prominent in the GdO spectrum. LFT calculation (8) predicts that the centers of gravity for the \(4f(8S)6p\) and \(4f(8S)6s\) configurations will be separated by roughly 18 000 cm\(^{-1}\), giving rise to a family of transitions that span most of the visible spectral region. Hence we used a semiempirical LFT model to explore the possibility of assigning some of the excited states to the \(4f(8S)6p\) configuration. To begin with, it is helpful to note that this configuration gives rise to a single \(\Omega = 5\) state (formally \(^9\Pi_5\)). It is highly probable that the \([17.6]5-X\) transition, which is the strongest feature in the visible absorption spectrum, terminates on the unique \(S_{1/2} = 5\) state. With this assignment we found that the LFT parameters (cm\(^{-1}\)) \(G(4f, 6p) = 82\) (19), \(\zeta(6p) = 3050\) (19), \((\sigma - \pi)_{6p} = 4100\), and \(\Delta B^0_6(6s/6p) = 18000\) predicted a pattern of energy levels (see Table IV) that was consistent with the positions of the known states. This pattern is most easily described by considering the effect of the ligand field on the \(6p\) electron. Roughly speaking, the electric field shifts both the \(6p(^2P_3/2)\) and \(6p(^2P_1/2)\) states, and splits the former into \(\Omega_{6p} = \pm \frac{1}{2}\) and \(\Omega_{6p} = \pm \frac{3}{2}\) components. These effects are illustrated in Fig. 2, which shows the correlation between the Gd\(^{2+}\) \(4f(8S)6p\) free-ion and the Gd\(^{2+}\) \(4f(8S)6p\)O\(^{2-}\) states. Coupling between the \(4f(8S)\) core and the \(6p\) electron is weak, and states belonging to a particular \(|\Omega_{6p}|\) component are readily identified. Furthermore, inspection of the eigenvectors shows that \(|\Lambda_{6p}|\) is a reasonably good quantum number. All of the states correlating with \(6p(^2P_{3/2})|\Omega_{6p}| = \frac{1}{2}\) have \(\Lambda_{6p} = 0\), and they correspond to \(^9\Sigma^-\) and \(^7\Sigma^-\) states. Here we tentatively assign the \([21.6]9\Sigma^-\) and \([22.2]7\Sigma^-\) states reported by Dmitriev et al. (7) and Carrette et al. (8) to the \(6p(^2P_{3/2})|\Omega_{6p}| = \frac{1}{2}\) configuration. The remaining

<table>
<thead>
<tr>
<th>(\Omega)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17598</td>
<td>15180</td>
<td>13954</td>
<td>14081</td>
<td>14209</td>
</tr>
<tr>
<td>2</td>
<td>17956</td>
<td>14941</td>
<td>14740</td>
<td>14570</td>
<td>14471e</td>
</tr>
<tr>
<td>3</td>
<td>21152</td>
<td>18253</td>
<td>18514</td>
<td>18753</td>
<td>18950f</td>
</tr>
<tr>
<td>4</td>
<td>21100</td>
<td>19382</td>
<td>19186</td>
<td>19003e</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22729</td>
<td>21067</td>
<td>21049</td>
<td>21043f</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>22758</td>
<td>22776</td>
<td>22781e</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Running index of states which have the same \(\Omega\) values, in increasing order of energy.

Gd\(^{2+}\) free-ion parameters (19):

\[
G(4f, 6p) = 82 \text{ cm}^{-1}; \quad \zeta(6p) = 3050 \text{ cm}^{-1}.
\]

Ligand field parameters:

\[
(\sigma - \pi)_{6p} = 4100 \text{ cm}^{-1}; \quad \text{value corresponding to } B^0_6(6p, 6p) = 6833 \text{ cm}^{-1}.
\]

For definition of the \(B^0_6(nl, n'l')\) parameters see Ref. (20).
FIG. 2. Correlation between the Gd$^{3+}$(4f^7S$6p$) free-ion (23) and the Gd$^{3+}$(4f^7S$6p$)O$^{2-}$ states (see Table IV).

states arising from $4f^7$S$6p^2P$ are formally components of the $^9\Pi$ and $^7\Pi$ multiplets; they correlate with the $6p^2P_{3/2}|\Omega_{6p}| = \frac{1}{2}$ and $6p^2P_{1/2}|\Omega_{6p}| = \frac{1}{2}$ configurations (the multiplicities and configurations are not correlated). Note that the separations between the $6p^2P_{3/2}|\Omega_{6p}| = \frac{1}{2}$ and $6p^2P_{1/2}|\Omega_{6p}| = \frac{1}{2}$ states are primarily governed by the $(\sigma - \pi)_{6p}$ "Stark splitting" term. Based on the $(\sigma - \pi)_{6p}$ values for other LnO molecules (cf. Table V), this parameter was estimated to be around 4100 cm$^{-1}$. From the data in Table III it is evident that the excited states examined in the present work lie approximately 4000 cm$^{-1}$ below the [21.6]$^9\Sigma^-$ and [22.2]$^7\Sigma^-$ states. The LFT model reproduces these separations when the canonical value for $(\sigma - \pi)_{6p}$ is assumed. Thus, we tentatively assign the [17.6]5, [18.4]4, and [19.0]0 states to the $6p^2P_{3/2}|\Omega_{6p}| = \frac{1}{2}$ configuration. Note that the LFT calculation supports the
TABLE V
LFT Parameters for the 4f **6p States of LnO Molecules (cm⁻¹)

<table>
<thead>
<tr>
<th>LnO</th>
<th>lower</th>
<th>upper</th>
<th>ΔB^(s/6p)_0</th>
<th>(ζ-μ)^0_6p</th>
<th>ΔG_{1/2}</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaO</td>
<td>6s</td>
<td>6p</td>
<td>6300</td>
<td>4100</td>
<td>795</td>
<td>(10)</td>
</tr>
<tr>
<td>CeO</td>
<td>4f6s</td>
<td>4f6p</td>
<td>10800</td>
<td>4100</td>
<td>786</td>
<td>(10)</td>
</tr>
<tr>
<td>GdO</td>
<td>4f(8S)6s</td>
<td>4f(8S)6p</td>
<td>18000</td>
<td>4100</td>
<td>t.w.⁵</td>
<td></td>
</tr>
<tr>
<td>TbO</td>
<td>4f(7F)6s</td>
<td>4f(7F)6p</td>
<td>18000</td>
<td>4100</td>
<td>779</td>
<td>(20)</td>
</tr>
<tr>
<td>LuO</td>
<td>4f^{4g}s</td>
<td>4f^{4g}p</td>
<td>20900</td>
<td>3500</td>
<td>786</td>
<td>(21)</td>
</tr>
</tbody>
</table>

*Accuracy for these values is estimated to be ±2000 cm⁻¹. ΔB^(s/6p)_0 = B^(s/6p)_0 − B^(6p/6p)_0.

| Ω assignment for the [19.0]O⁻ state, and the 6s/6p stabilization energy (ΔB^(s/6p)_0) derived from the data for GdO is in good accord with the stabilization energies for other LnO molecules. Table V lists the relevant LFT parameters for comparison.

SUMMARY

Improved molecular constants have been obtained for states correlating with Gd²⁺(4f⁻⁷(8S)6s)O²⁻. A large difference between the λ values for the X⁹Σ⁻ and a⁹Σ⁻ states was noted. This was probably due to the fact that nonet states are almost pure f⁻⁷(8S), whereas the septet states can have some f⁻⁷(6P) character. High-order spin–orbit interaction terms were needed to describe the rotational levels of the a⁹Σ⁻ state. Additional expressions for the off-diagonal matrix elements of the spin–orbit operator, which are potentially significant for Σ states of septet or higher multiplicity, were derived using sixth-order degenerate perturbation theory.

A ligand field theory model for states arising from the Gd²⁺(4f⁻⁷(8S)6p)O²⁻ configuration was investigated. On the basis of the model, five excited state assignments were proposed. We emphasize that these Gd²⁺(4f⁻⁷(8S)6p)O²⁻ configurational assignments are provisional. They should be further investigated through measurements of vibrational intervals and Lande g values.

ACKNOWLEDGMENTS

We thank Professor Myron Kaufman for the use of the ring dye laser system. This work was performed under subcontract to Mission Research Corporation under contract F19628-90-C-0025 with the Philips Laboratory, and was sponsored by the Defense Nuclear Agency (MIPR 92-586. Work Unit 00002).

RECEIVED: December 7, 1993

REFERENCES

