Synthesis and Solid-State NMR Characterization of 13C- and 15N-labelled N-Methylphthalimide: A Model Compound for Studying Polyimides

W. L. Jarrett, C. G. Johnson, L. J. Mathias

13a. TYPE OF REPORT
Technical

13b. TIME COVERED
FROM 6/1/93 to 31/94

14. DATE OF REPORT (Year, Month, Day) 7/15/94

15. PAGE COUNT

16. SUPPLEMENTARY NOTATION
See attached.

17. COSATI CODES

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19. SECURITY CLASSIFICATION OF THIS PAGE Unlimited

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

21. ABSTRACT SECURITY CLASSIFICATION

22a. NAME OF RESPONSIBLE INDIVIDUAL
Lon J. Mathias

22b. TELEPHONE (Include Area Code) 601-266-4871

22c. OFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.
Solid-state CP/MAS NMR spectra were obtained on a Bruker 3L-200 equipped with a Bruker MAS probe operating at 50.32 and .287 MHz for 13C and 15N, respectively. Powdered samples were used in fused zirconia rotors fitted with Kel-F caps and spun with air, with rotation rates of 4 to 5 kHz for carbon MAS and 2 to 3 z for nitrogen MAS. The 13C spectra were referenced to external amantane (29.5 ppm), while 15N spectra were referenced downfield m external glycine (0 ppm). The 1H 90° pulse was 4.5 μs for 13C acquisition and 6.0 μs for 15N acquisition, while a mixing pulse of 210 and 50 ms acquisition were used for both nuclei. A relay delay 210 s, corresponding to -3^h 1H τ_s, was used for observation of th nuclech. The same parameters were used to acquire static spectra except for the spinning rate, which was set to zero. 1H τ_s were determined by monitoring the nitrogen or carbon signal using a $^{180}_{\circ}$$-90_\circ$-CP inversion-recovery pulse sequence.

Chemical shift anisotropy (CSA) spectra were simulated using POWFIT program developed by Dr. T. G. Oas.3 All simulations were done MicroVax 3100.

Potassium phthalimide, $[^{13}$C] methyl iodide, and methyl iodide were obtained from Aldrich Chemical Company and used without purification. Dimethylformamide (DMF) was reagent grade used as received.

A typical procedure for the preparation of an N-methylphthalimide is as follows: A clean, dry flask was charged with an equimolar amounts of $[^{15}$N] potassium phthalimide and methyl iodide followed by enough N,N-dimethylformamide (DMF) to give a mixture that was 15 to 20 % solids by weight. The flask was submerged in a preheated oil bath at -60°C for 2 to 3 hours. The cooled reaction mixture was poured into rapidly stirring water (10 times its volume), the precipitate collected and recrystallized from aqueous ethanol (70 to 85 % yield).

RESULTS AND DISCUSSION

The Gabriel method allows preparation of imide derivatives from methyl iodide in good yields. The 1H T_2's were approximately 65-78 s for all protons, including the aromatic protons. 13C CP/MAS NMR spectra of the model N-methylphthalimides showed multiple peaks for the aromatic carbons which may be due to differences in crystal packing. However, the 15N spectra show a single peak ($\delta_{ref} = 119.7$ ppm) for imides 2 and 3.

13C and 15N static powder spectra for the model imides are shown in Figures 1 and 2, respectively. For both figures the upper spectrum (a) corresponds to the singly labelled material, while the lower spectrum (b) corresponds to the doubly labelled compound. For all spectra presented the x axis is in ppm, with upfield shifts corresponding to lower ppm values. A Kaiser digital filter function was applied to the FID prior to Fourier transformation, with the α parameter set to 1 and the cutoff value varied between 3-5 ms. Even though the imides were labelled with equal amounts of isotope, approximately 500 transients were taken for the 15N static spectra to achieve a signal-to-noise ratio of 100, while 32 transients for 13C were taken to achieve the similar signal-to-noise. This probably reflects the differences in sensitivity between the two nuclei as well as changes in the probe's tuning characteristics in going from 50 to 20 MHz.

One of the initial purposes in synthesizing the singly 15C labelled material was to obtain the unperturbed 15C CSA spectrum for use in simulating the 15N-13C dipolar-coupled spectrum. However, the presence of the 99% naturally abundant 15N isotope clearly distorts the spectrum due to its dipolar coupling and large quadrupolar moment (I=1 spin). Although it is possible to simulate I=1/2 spins coupled to quadrupolar nuclei, such a study is beyond the scope of this work.

Figure 2 shows the 15N-labelled and the 13C-15N doubly labelled material. A classic anisotropic CSA spectrum was obtained for the 15N-labelled compound, and from computer simulation the tensor elements δ_1, δ_2, and δ_3 were found to be 56.4 ppm, 126.3 ppm, and 177.3 ppm, respectively. These values of the δ tensor were used for simulating the 15N-13C dipolar coupled spectrum. A comparison of the experimental and simulated spectra is shown in Figure 3. The value of the dipolar coupling constant (872 Hz) indicates that the N-CH$_2$ bond distance is 1.52 Å. The polar coordinates α and β, which describe the orientation of the 15N-13C bond vector with respect to the principal axis of the chemical shift tensor, were 68.0° and -45.9°, with the δ_3 tensor element aligned approximately along the N-CH$_2$ bond (Figure 4). For our analysis, the δ_2 tensor was assumed to be perpendicular to the imide plane; similar assumptions have been used for the amide moiety of polyamides.3

CONCLUSION

A procedure has been developed for incorporating 15N and 13C isotopic labelling into N-methylphthalimide, a model imide. From solid-state 15N NMR spectroscopic methods the values and orientation of the δ shift tensor with respect to the N-CH$_2$ bond as well as the N-CH$_3$ bond length have been determined. Future work concerning the determination of the δ tensor for some model polyimides is in progress.
ACKNOWLEDGEMENTS

The authors would like to acknowledge the Office of Naval Research for providing funds for the purchase of the MSL-200 spectrometer and Dr. Terry Oas for providing the POWFIT program.

REFERENCES

