Title: Gravity Wave Forcing and Influences Near the Mesopause

Agency: Naval Research Laboratory
Grant Number: N00014-92-J-2005
Principal Investigator: David C. Fritts
Laboratory for Atmospheric and Space Physics
University of Colorado
Boulder, CO 80309-0392

Program Manager: Dr. William A. Hoppel

Research Objectives

Our goals in this research were to address gravity wave effects near the mesopause using largely analytic and modeling techniques. A first approach employed an analytic description of the gravity wave field to develop a parameterization scheme for the most important wave effects at greater altitudes that was based on the observed characteristics of the wave spectrum. A second approach was intended to apply pseudo-spectral collocation techniques for studies of wave excitation, instability, dissipation, and interaction processes thought to play important roles in the circulation, structure, and variability throughout the atmosphere. As seen below, these goals were accomplished.

Research Results

The contributions made in each of the major areas of proposed research are described separately below. These include analytic source studies, gravity wave instability modeling, and parameterization development.

a. analytic gravity wave source studies

A study of gravity wave forcing in the middle atmosphere by a solar eclipse followed our earlier use of Fourier integral and Green's function techniques to assess the potential for gravity wave generation by geostrophic adjustment processes. This approach was taken as most previous efforts have focused on excitation of gravity
waves at relatively smaller scales, despite observational evidence suggesting a clear dominance of the energy within the gravity wave spectrum by motions with large scales and low frequencies. Our study described the 3-D wave field resulting from such a forcing and defined the altitudes where the maximum responses were expected. This effort was described by Fritts and Luo (1993).

b. development of a gravity wave parameterization scheme

An important component of the research effort funded by SDIO/IST and NRL was the development of a spectral parameterization of gravity wave energy and momentum fluxes for use in large-scale models of the lower and middle atmosphere. The development of this scheme and its applications to canonical mean wind and stability profiles and to tidally-varying winds were described by Fritts and VanZandt (1993), Fritts and Lu (1993), and Lu and Fritts (1993). The intent in this development effort was to create a parameterization that would conform as closely as possible to observations of the atmospheric gravity wave spectrum, its spectral shape, and its variations with altitude. This, we believed, would lead to more realistic fluxes of energy and momentum with altitude than predicted by schemes relying on discrete and noninteracting waves.

The parameterization scheme relies on a spectral description of the atmospheric gravity wave field that is largely consistent with observations throughout the atmosphere. It also accounts for wave filtering and anisotropy in a manner consistent with theory and the observations that are currently available. As a result, predicted energy and momentum fluxes are constrained realistically and are in broad agreement with observed mean and variable values. The parameterization was designed to be implemented efficiently in large-scale models of the middle atmosphere (it is presently operational in the NCAR TIME-GCM developed by Dr. Ray Roble, in the NCAR ACD middle atmosphere chemistry model, and in several middle atmosphere models in Europe). It was also designed to incorporate variable wave energies and anisotropies in response to variable gravity wave sources and source strengths in the lower atmosphere, but this variability has yet to be determined in a quantitative manner.

The spectral parameterization at present specifies mean gravity wave energies at a model lower boundary and computes the variations in wave energy, anisotropy, and energy and momentum fluxes with altitude as functions of the mean wind and stability. This assumes a uniform distribution of wave sources contributing to spectral energies at lower levels. Future improvements will include a means of describing variable wave sources at lower levels, more quantitative specification of seasonal wave variability, and temporally variable wave energy and momentum fluxes in response to tidal forcing.
c. modeling achievements

Under SDIO/IST and NRL support, we have developed 2-D and 3-D nonlinear, compressible pseudo-spectral collocation codes in association with Norwegian colleagues and applied them in studies of gravity wave breaking, instability, and turbulence generation relevant to the middle atmosphere. The code capabilities and the results obtained are summarized below.

Our initial gravity wave breaking simulations focussed on a wave motion with a high intrinsic frequency in order to limit the computer resources required to describe the evolution. We also performed parallel simulations in two and three dimensions in order to quantify the different influences on the incident wave amplitude and fluxes and to assess the validity of the 2-D results. Our simulations revealed dramatic differences in the two evolutions, suggesting that gravity wave instability is inherently 3-D and that 2-D models are unable to follow the physics of the wave breaking process or predict the influences on wave amplitudes, transports, or turbulent mixing. A comparison of the 2-D and 3-D results and an assessment of the instability structure and its effects were provided by Andreassen et al. (1993) and Fritts et al. (1993). Vortex breakdown and the subsequent evolution toward smaller, more isotropic scales were discussed by Isler et al. (1993).

Whereas instability in the 2-D simulation was confined to the plane of wave propagation (artificially), 3-D instability was found to comprise counter-rotating vortex structures aligned along the direction of wave propagation and elongated along the unstable phase of the incident wave motion. Relative to the 2-D results, the 3-D wave structure experiences rapid collapse and strong amplitude limits, supporting the convective adjustment hypothesis and suggesting that 2-D simulations are unable to describe the physics of the wave breaking process or the implications for wave and turbulent transports. Dramatic differences in the 2-D and 3-D evolutions are also apparent in the transports of energy and momentum and in the evolution of eddy kinetic energy, providing further evidence that 2-D simulations are not suitable for studies of gravity wave interactions, instability, or induced mixing processes in the middle atmosphere.
4. Publications Citing this SDIO/IST and NRL Support

Fritts, D. C., 1993: Gravity wave sources, source variability, and lower and middle atmosphere effects, Coupling Processes in the Lower and Middle Atmosphere, NATO ASI Workshop, 387, 191-208.


Fritts, D. C., 1994: Gravity wave forcing and effects in the mesosphere and lower thermosphere, The Upper Mesosphere and Lower Thermosphere, Chapman Conf. on the Upper Mesosphere and Lower Thermosphere, Chapman Conf. on the Upper Mesosphere and Lower Thermosphere, in press.
