OFFICE OF NAVAL RESEARCH

GRANT N00014-91-J-1752

R&T code: 4133033—01
Robert J. Nowak, Program Manager

FINAL REPORT

Application of Scanning Tunneling Microscopy to Studies of Electrode Surfaces.

by

Allen J. Bard
Department of Chemistry and Biochemistry
University of Texas
Austin, TX 78712

July 14, 1994

Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited.
ABSTRACT

This project involved the study of a variety of different surfaces and structures in gaseous and liquid environments using the scanning tunneling microscope (STM) and other scanning probe microscopes with the aim of obtaining a better understanding of electrode surfaces and the processes occurring on these surfaces. With the STM we investigated chemical changes on the surface of electrodes, e.g., corrosion, passivation, and biochemical activities, and studied the energetics for electron transfer at the surfaces of semiconductors. We also investigated nanostructures (for example, very small semiconductor particles, porous Si, and self-assembled monolayers) using this technique.
Summary

This project involved the study of a variety of different surfaces and structures in gaseous and liquid environments using the scanning tunneling microscope (STM) and other scanning probe microscopes (SPM's) with the aim of obtaining a better understanding of electrode surfaces and the processes occurring on these surfaces. With the STM we investigated chemical changes on the surface of electrodes, e.g., corrosion, passivation, and biochemical activities, and studied the energetics for electron transfer at the surfaces of semiconductors. We also investigated nanostructures (for example, very small semiconductor particles, porous Si, and self-assembled monolayers (SAM)) using this technique.

In the final year of this project, SPM's were used to study several interesting electrochemical problems. (1) **SAM on Au(111)**. In our continued study of the packing of alkylthiols on the Au substrate, the formation of multilayers was observed when the Au substrates were immersed in a solution containing alkylthiols for more than 4-5h. (2) **Corrosion of Ni(001) in 1 M NaOH**. We used the STM to examine the anodic oxides formed on Ni(001) under potential control in 1 M NaOH. Atomic images of nickel oxides were obtained and the dynamics of oxide film growth were observed. (3) **Porous Silicon**. SPM, XPS, FTIR, and laser ionization microanalysis (LIMA) techniques have been used to examine the surface morphology and chemical nature of porous silicon. The results suggest that the photoluminescence from porous Si might be caused by a chemically modified layer on the surface. (4) **Enzyme microelectrodes for the scanning electrochemical microscope**. We demonstrated that the utilization of horseradish peroxidase microelectrodes can be used for mechanistic studies of oxygen reduction and the detection of immobilized oxidases without the need for artificial redox mediators. (5) **Cu(111) Dissolution in aqueous chloride**. In situ STM analysis was used to ascertain the mechanism of the anodic dissolution of Cu(111) in aqueous chloride media with atomic resolution. STM imaging at potentials where Cu dissolution begins revealed that the preferred reaction sites were step edges, and that the retreating edges ran along steps in the [211] direction.

Personnel Supported by N00014-91-J-1752

Yeon-taik Kim, postdoctoral associate
Shueh-lin Yau, postdoctoral associate
Michael Mirkin, postdoctoral associate
D. Wayne Suggs, postdoctoral associate
Sam Hendricks, graduate student
Fu-Ren "Frank" Fan, research associate
Publications in Refereed Journals

1) This study and related ones listed in the publications list focused on the anodic etching of silicon and the nature of the porous silicon that forms on a silicon surface. A number of techniques, including STM, were used to characterize the silicon surface, and it was demonstrated in this paper for the first time that one can obtain chemiluminescent reactions of the porous silicon layer. This strongly suggests the presence of a silicon compound with hydrogen and oxygen as the source of the visible emission.

Allen J. Bard
ONR Final Report: N00014-91-J-1752

2) We demonstrate here that one can image resistive semiconductors by irradiating the semiconductor; thus, information about the energy levels and band gap of these materials can be obtained.

3) There have been relatively few studies of active metals exposed to an aqueous environment. Studies of this sort are of interest in probing surface films that form on metals during corrosion and the atomic level mechanism of corrosion processes. This paper is one of the earliest examples of such a study, which allowed atomic resolution imaging of nickel and nickel oxides.

Submitted:

Invited Presentations:

I was invited to give the introductory lecture at a Faraday discussion devoted to the liquid/solid interface at high resolution. In the lecture I discussed the general nature of the interface and gave a number of examples based on our recent work on the use of scanning probe microscopy in characterizing this interface.

Honors/Awards/Prizes:

G. M. Kosolapoff Award, American Chemical Society (Allen J. Bard)

Luigi Galvani Medal, Società Chimica Italiana (Allen J. Bard)

I was fortunate to receive the Galvani medal from the Italian Chemical Society recognizing our research in the general area of electrochemistry. The lecture discussed scanning probe microscopy as applied to electrochemical problems.

Other Funding:

National Science Foundation. Photoelectrochemistry and Heterogeneous Photoprocesses at Semiconductors. Current year: $120,000. Total award: $395,795. 1/1/92 - 12/31/94.

IGEN. Electrognerated Chemiluminescence. Total Award: $45,000.

Transitions: none