Switching from Forward-Looking Infrared to Night Vision Goggles: Transitory Effects on Visual Resolution (Reprint)

By

Jeff Rabin

and

Roger W. Wiley

Aircrew Health and Performance Division

June 1994

Approved for public release; distribution unlimited.

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

_signature_
RICHARD R. LEVINE
LTC, MS
Director, Aircrew Health and Performance Division

Released for publication:

_signature_
ROGER W. WILEY, D. D., Ph.D.
Chairman, Scientific Review Committee

_signature_
DAVID H. KARNEY
Colonel, MC, SFS
Commanding
Helmet-mounted displays under development for rotary- and fixed-wing aircraft will allow the user to switch electronically between forward-looking infrared (FLIR) and night vision goggles (NVG) sensors. These sensor transitions potentially involve large changes in display luminance which could transiently impair visual resolution and performance. The purpose of this study was to identify the display luminances which produce a transient reduction in vision when switching from a higher luminance (FLIR) to a lower luminance (NVG) display. A letter recognition task was used to assess the effect of luminance adaptation on visual resolution in five subjects. A significant reduction in letter recognition was observed in the first second after switching from simulated FLIR to simulated NVGs when the FLIR luminance was >10 EL. By varying letter size, contrast, and exposure time, the magnitude and duration of visual loss after switching from a bright (49.2 FL) FLIR display were determined. The visual loss lasted up to 4 sec, and included a 2x reduction in visual acuity, and a 3x reduction in contrast sensitivity. Large differences in sensor display luminance should be avoided to maintain high levels of visual performance and aviation safety. Design features or training may be necessary to achieve a proper balance between FLIR and NVG luminances which optimize performance and safety without sacrificing the quality of the sensor image.
Switching from Forward-Looking Infrared to Night Vision Goggles: Transitory Effects on Visual Resolution

JEFF RABIN, O.D., Ph.D., and ROGER WILEY, O.D., Ph.D.

Helmet-mounted displays being developed for rotary- and fixed-wing aircraft will allow the user to switch electronically between forward-looking infrared (FLIR) and night vision goggle (NVG) sensors. Since these sensors respond to different portions of the infrared spectrum, the capacity for rapid switching will allow performance over a greater range of environmental conditions. While NVG and FLIR displays will be similar in color and size, they may differ in several respects including perspective, contrast and luminance. Notwithstanding the benefit of switching between sensors, the user will be required to adapt to these different display characteristics.

The luminance of the NVG display is typically in the mesopic to low photopic range (0.3-2.0 FL), and cannot be adjusted by the user. It remains relatively constant in any one night sky condition. In comparison, the luminance of the FLIR display can be adjusted by the user to be nearly 100x brighter than NVG’s (5,11,12). Rapid transitions from a bright FLIR display to a much dimmer NVG display may impose adaptational demands on the visual system that lead to a transient decrement in visual performance (1,2,10).

The purpose of this study was to determine the display luminances that produce a transient reduction in vision after switching from a brighter (FLIR) to a dimmer (NVG) display. Since luminance adaptation involves photochemical and neural events that change over time, vision is also in a state of transition, making measurement of visual performance difficult (1-3,9,10). Thus, in the present study, vision was assessed in discrete intervals following adaptation to simulated FLIR displays. Observers adapted to luminances comparable to FLIR, and then attempted to recognize letters presented at the luminance of an NVG display. By varying letter size, contrast, and exposure time, it was possible to estimate the extent and duration of visual loss after switching from a very bright to a dim display. Recommendations are made regarding the proper balance between FLIR and NVG display luminances.

METHODS

A letter recognition task was used to evaluate the effect of switching from a bright (simulated FLIR) to a dim (simulated NVG) display. Stimuli were computer-generated and displayed on a color monitor in an otherwise dark room. Luminance was measured with a calibrated photometer and stored in tabular form. Only the...
green phosphor of the monitor was used to simulate the green displays of NVG’s and FLIR. The simulated FLIR display was uniform, green, and subtended an angle of 5° at a viewing distance of 2.7 m. A small, low contrast cross centered in this display was used to guide fixation. This display, which served as the adaptation field, was replaced periodically by a lower luminance test display (simulated NVG display) consisting of a single letter centered in the screen. The letter was always darker than its background, and the background was held constant at 0.6 fL, representing the luminance of an NVG display in moderate (4¼ moon to starlight) night sky conditions. Monocular viewing was used to prevent fluctuations in binocular posture from possibly influencing the results.

The procedure consisted of having the subject adapt to the simulated FLIR display for 20 s, followed by a 1 s test interval in which the subject attempted to recognize a single letter centered in the screen at the luminance of NVG’s. The adaptation field then reappeared and the adaptation-test cycle was repeated on subsequent trials during which different parameters (adaptation luminance, letter size, contrast, and duration) were varied. In the first session, the luminance of the FLIR display was varied from trial to trial to determine those values which produced an adverse effect on letter recognition with NVG’s. The adaptation luminances ranged from 0.6 to 49.2 fL in approximately 3 steps. Two letter sizes, chosen to be near recognition threshold, were used to assess high contrast (20/21 letter; 99.5% contrast) and low contrast (20/42 letter; 27.1% contrast) letter recognition. Contrast was expressed as Weber values (background-letter/background ≈ 100). Luminances were presented in ascending order to reduce successive adaptation effects.

In separate sessions, letter size, contrast, and exposure duration were varied to determine the magnitude and duration of visual loss following luminance adaptation. The luminance of each 20 s adaptation display was maintained at the highest level (49.2 fL) while the test field was again 0.6 fL. In one session, letter size (20/21, 20/42, 20/84; 99.5% contrast) and letter contrast (27.1%, 51.0%, and 99.5% 20/42 letter) were varied from trial to trial. In a separate session, the duration of letter exposure (0.5, 1, 2, or 4 s) was varied between trials. Each trial was repeated 4 times for each condition (size, contrast, and duration), and the percent correct was determined for each subject.

Five adult volunteer subjects (age 22 to 31; mean = 26.4 years) with normal ocular health and visual acuity corrected with spectacles to 20/20 participated in this study. Following protocol approval by our institutional review board, informed consent was obtained after each subject was briefed on all procedures. Subjects were told they could withdraw at any time.

RESULTS

Fig. 1 shows the relation between letter recognition on a simulated NVG display after switching from a FLIR display of equal or higher luminance. Mean percent correct (five subjects) is plotted against the luminance of the adaptation field. Because results with high and low contrast letters were not significantly different (F1,8 = 2.62; p > 0.10), values were averaged across these two conditions. The response obtained with adaptation and test fields of equal luminance (85% correct) is denoted criterion. Fig. 1 shows that as the luminance of the adaptation field was increased, the percentage of correct responses increased slightly and then decreased, falling 2 SE below the criterion when the adaptation luminance was 10 fL. This indicates that a transient yet significant reduction in visual resolution of NVG targets can occur after switching from a FLIR display which is >10 fL.

While Fig. 1 demonstrates the FLIR luminance which is likely to produce transient visual loss after switching to NVG’s, the magnitude and duration of this effect are not evident in these results. What is the visual consequence of maintaining the FLIR intensity at a high level if one is to switch from FLIR to NVG’s? To explore this issue, letter size, contrast, and exposure duration were varied from trial to trial with adaptation maintained at the highest level (49.2 fL). Thus, we determined the increase in letter size, contrast, and exposure duration necessary to overcome a large luminance adaptation effect. Results are summarized on the right side of Fig. 1 as changes in visual acuity, contrast sensitivity, and response time. Following adaptation to the 49.2 fL field, letter size had to be increased an average of 2 × (20/21 to 20/42), letter contrast 3 × (27.1% to 81.3%), and exposure duration 4 × (from 1 to 4 s) to overcome the adaptation effect and achieve criterion performance. In terms of both magnitude and duration, these transient visual decrements are nontrivial and stress the importance of maintaining a proper balance between FLIR and NVG display luminances.

DISCUSSION

The purpose of this study was to determine the display luminances which produce an adverse effect on...
switching from FLIR to NVG's—RABIN & WILEY

visual resolution after switching from a higher luminance (FLIR) to a lower luminance (NVG) display. A significant reduction in letter recognition was observed in the first 1 s after switching from simulated FLIR to simulated NVG when the FLIR luminance was ≥10 fL. By varying letter size, contrast, and exposure duration, it was possible to estimate the magnitude and duration of visual loss after switching from a very bright (49.2 fL) FLIR display. This visual loss, which lasted up to 4 s, included a 2× reduction in visual acuity, and a 3× reduction in contrast sensitivity.

A transitory reduction in resolution after switching from FLIR to NVG's could interfere with object recognition during critical periods of aircraft control, target acquisition, and firing. It is recommended that large differences in luminance be avoided to optimize visual performance and safety. A FLIR display luminance no greater than 10 fL should minimize any visual loss after switching to NVG's. Because current and planned FLIR systems have no specific user indications of display luminance, it may be necessary to incorporate a perceptual technique in which the pilot matches the brightness of the two displays to ensure that the luminance difference is within the recommended range. A neutral density filter of fixed amount before the FLIR display could be used to match brightness within the desired range. Alternatively, an intensity indicator could be included in the design. The choice of display luminances also may be governed by other factors, such as the quality of FLIR imagery obtained at different luminances, and under varying environmental conditions.

Since the present study was conducted with simulations of FLIR and NVG displays, caution should be exercised in applying the results directly to aviation performance. The simulations subtended a considerably smaller area than the actual displays, and lacked the dynamic imagery experienced in flight. However, these factors should not influence local adaptation effects responsible for the visual loss observed in this study (1,9). It is of interest that luminance adaptation produced a slightly greater reduction in contrast sensitivity than visual acuity for letters of similar size (20/20-20/40). This result, however, may be expected from the shape of the contrast sensitivity function which, for higher spatial frequencies, changes more rapidly for contrast than size (6,7). A clinical application of the present result may be to use small letter contrast sensitivity, rather than acuity, to reveal abnormal luminance adaptation in the clinical photostress recovery test (4,8).

ACKNOWLEDGMENTS
Grateful acknowledgment is extended to James Wicks and James Bohling for their assistance.

REFERENCES
Initial distribution

Commander, U.S. Army Natick Research, Development and Engineering Center
ATTN: SATNC-MIL (Documents Librarian)
Natick, MA 01760-5040

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Chairman
National Transportation Safety Board
800 Independence Avenue, S.W.
Washington, DC 20594

Executive Director, U.S. Army Human Research and Engineering Directorate
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Commander
Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 602-B
Warminster, PA 18974

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Commanding Officer
Armstrong Laboratory
Wright-Patterson
Air Force Base, OH 45433-6573

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: SFAE-IEW-JS
Fort Monmouth, NJ 07703-5305
Product Manager
Aviation Life Support Equipment
ATTN: SFAE-AV-LSE
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

Commander and Director
USAE Waterways Experiment Station
ATTN: CEWES-IM-MI-R,
CD Department
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 24907
New Orleans, LA 70189-0407

Assistant Commandant
U.S. Army Field Artillery School
ATTN: Morris Swott Technical Library
Fort Sill, OK 73503-0312

Mr. Peter Seib
Human Engineering Crew Station
Box 266
Westland Helicopters Limited
Yeovil, Somerset BA20 2YB UK

U.S. Army Dugway Proving Ground
Technical Library, Building 5330
Dugway, UT 84022

U.S. Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

AFFTC Technical Library
6510 TW/TSTL
Edwards Air Force Base,
CA 93523-5000

Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555

Aeromechanics Laboratory
U.S. Army Research and Technical Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Commander
U.S. Army Aeromedical Center
Fort Rucker, AL 36362

Struughton Aeromedical Library
Document Service Section
2511 Kennedy Circle
Brooks Air Force Base, TX 78235-5122

Dr. Diane Damos
Department of Human Factors
ISSM, USC
Los Angeles, CA 90089-0021

U.S. Army White Sands
Missile Range
ATTN: STEWS-IM-ST
White Sands Missile Range, NM 88002

U.S. Army Aviation Engineering
Flight Activity
ATTN: SAVTE-M (Tech Lib) Stop 217
Edwards Air Force Base, CA 93523-5000

Ms. Sandra G. Hart
Ames Research Center
MS 262-3
Moffett Field, CA 94035
Commander
USAMRDALC
ATTN: SGRD-UMZ
Fort Detrick, Frederick, MD 21702-5009

Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

U. S. Army Research Institute
Aviation R&D Activity
ATTN: PERI-IR
Fort Rucker, AL 36362

Commander
U.S. Army Safety Center
Fort Rucker, AL 36362

U.S. Army Aircraft Development
Test Activity
ATTN: STEBG-MP-P
Cairns Army Air Field
Fort Rucker, AL 36362

Commander
USAMRDALC
ATTN: SGRD-PLC (COL R. Gifford)
Fort Detrick, Frederick, MD 21702

TRADOC Aviation LO
Unit 21551, Box A-209-A
APO AE 09777

Netherlands Army Liaison Office
Building 602
Fort Rucker, AL 36362

British Army Liaison Office
Building 602
Fort Rucker, AL 36362

Italian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Directorate of Training Development
Building 502
Fort Rucker, AL 36362

Chief
USAHEL/USAAVNC Field Office
P. O. Box 716
Fort Rucker, AL 36362-5349

Commander, U.S. Army Aviation Center
and Fort Rucker
ATTN: ATZQ-CG
Fort Rucker, AL 36362

Chief
Test & Evaluation Coordinating Board
Cairns Army Air Field
Fort Rucker, AL 36362

Canadian Army Liaison Office
Building 602
Fort Rucker, AL 36362

German Army Liaison Office
Building 602
Fort Rucker, AL 36362

French Army Liaison Office
USAAVNC (Building 602)
Fort Rucker, AL 36362-5021

Australian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Dr. Garrison Rapmund
6 Burning Tree Court
Bethesda, MD 20817
Dr. Christine Schlichting
Behavioral Sciences Department
Box 900, NAVUBASE NRON
Groton, CT 06349-5900

Commander, HQ AAC/SGPA
Aerospace Medicine Branch
162 Dodd Boulevard, Suite 100
Langley Air Force Base,
VA 23665-1995

Commander
Aviation Applied Technology Directorate
ATTN: AMSAT-R-TV
Fort Eustis, VA 23604-5577

COL Yehezkel G. Caine, MD
Surgeon General, Israel Air Force
Aeromedical Center Library
P. O. Box 02166 I.D.F.
Israel

Dr. Christine Schlichting
Director
Aviation Research, Development
and Engineering Center
ATTN: AMSAT-R-Z
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

Commander
USAMRD AL
ATTN: SGRD-ZB (COL C. Fred Tyner)
Fort Detrick, Frederick, MD 21702-5012

Director
Directorate of Combat Developments
ATTN: ATZQ-CD
Building 515
Fort Rucker, AL 36362