Complex Impedance, DSC and Lithium-7 NMR Studies of Poly(propylene oxide) Complexed with LiN(SO$_2$CF$_3$)$_2$
and with LiAsF$_6$

by

S.D. Brown, S.G. Greenbaum, M.G. McLin, M.C. Wintersgill and J.J. Fontanella

Prepared for Publication in

Solid State Ionics

Hunter College of CUNY
Department of Physics
New York, NY 10021

and

U.S. Naval Academy
Department of Physics
Annapolis, MD 21402-5026

April 29, 1994

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale:
its distribution is unlimited.
Title and Subtitle:
Complex Impedance, DSC and Lithium-7 NMR Studies of Poly(propylene Oxide) Complexed with LIN (SO₂CF₃)₂ and with LiAsF₆

Author(s):
S. G. Brown, S. Greenbaum, M. G. McLin, M. C. Wintersgill and J. J. Fontanella

Performing Organization Name(s) and Address(es):
Hunter College of CUNY, Dept. of Physics
695 Park Ave., New York, NY 10021

Sponsoring/Monitoring Agency Name(s) and Address(es):
Office of Naval Research, Chemistry Division
800 N. Quincy Street, Arlington, VA 22217-5660

Abstract:
Complex impedance/electrical conductivity, differential scanning calorimetry and Li nuclear magnetic resonance measurements on poly(propylene oxide) complexed with two lithium salts LIN(SO₂CF₃)₂ and LiAsF₆, with compositions of eight ether oxygens per lithium, are reported. Ionic mobility, as probed by NMR linewidth and spin-lattice relaxation measurements, is strongly coupled to polymer segmental motion above *Tg*. The electrical conductivity for PPO₈LiAsF₆ is about an order of magnitude smaller than for PPO₈LiN(SO₂CF₃)₂. This is a consequence of the higher glass transition temperature for PPO₈LiAsF₆. The stretched exponential parameter *α* obtained in fits to electric modulus data, was found to be about 0.51 for PPO₈LiN(SO₂CF₃)₂ and 0.57 for PPO₈LiAsF₆.

Subject Terms:
Polymer Electrolytes; Lithium-7 NMR Poly(propylene oxide)
TECHNICAL REPORT DISTRIBUTION LIST - GENERAL

Office of Naval Research (2)
Chemistry Division, Code 1113
800 North Quincy Street
Arlington, Virginia 22217-5000

Dr. James S. Murday (1)
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Robert Green, Director (1)
Chemistry Division, Code 385
Naval Air Weapons Center
Weapons Division
China Lake, CA 93555-6001

Dr. Elek Lindner (1)
Naval Command, Control and Ocean Surveillance Center
RDT&E Division
San Diego, CA 92152-5000

Dr. Bernard E. Douda (1)
Crane Division
Naval Surface Warfare Center
Crane, Indiana 47522-5000

Dr. Richard W. Drisko (1)
Naval Civil Engineering Laboratory
Code L52
Port Hueneme, CA 93043

Dr. Harold H. Singerman (1)
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Eugene C. Fischer (1)
Code 2840
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Defense Technical Information Center (2)
Building 5, Cameron Station
Alexandria, VA 22314

* Number of copies to forward

<table>
<thead>
<tr>
<th>Accession For</th>
<th>NTIS</th>
<th>CRA&I</th>
<th>DTIC</th>
<th>TAB</th>
<th>Unannounced</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>By Distribution/Availability Codes</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist</td>
<td>Avail and/or Special</td>
<td>A-1</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12
Complex impedance, DSC and lithium-7 NMR studies of poly(propylene oxide) complexed with LiN(SO$_2$CF$_3$)$_2$ and with LiAsF$_6$

S.D. Brown, S.G. Greenbaum
Department of Physics, Hunter College of CUNY, New York, NY 10021, USA

and

M.G. McLin, M.C. Wintersgill, J.J. Fontanella
Department of Physics, U.S. Naval Academy, Annapolis, MD 21402, USA

Received 27 July 1993; accepted for publication 30 November 1993
SOLID STATE IONICS Diffusion and Reactions

Including REACTIVITY OF SOLIDS

EDITORIAL BOARD

Principal Editor:
M. Stanley WHITTINGHAM,
Director, Materials Research Center,
Department of Chemistry,
SUNY at Binghamton
Binghamton, NY 13902-6000, USA
Fax: (607) 777-4000, Phone: (607) 777-4623
E-Mail: IONICS@BINGVAXA

Regional Editor Europe:
Joop SCHOONMAN,
Laboratory of Inorganic Chemistry,
Delft University of Technology, P.O. Box 5045
2600 GA Delft, The Netherlands

Regional Editor Asia:
Osamu YAMAMOTO
Department of Chemistry,
Mie University, Tsu, Mie 514, Japan
Fax: 81-592-31-2252
Phone: 81-592-32-1211

ASSOCIATE EDITORIAL BOARD

S.P.S. Badwal, Clayton, Australia
M. Blesa, Buenos Aires, Argentina
Qingguo Liu, Beijing, P.R. China
P. Duran, Madrid, Spain
J.B. Goodenough, Austin, TX, USA
J.R. Glüster, Zurich, Switzerland
P. Haggenmuller, Talence, France

R.A. Huggins, Ulm, Germany
A.J. Jacobson, Houston, TX, USA
P. Kofstad, Oslo, Norway
J. Maier, Stuttgart, Germany
S. Mrówek, Cracow, Poland
D.W. Murphy, Murray Hill, NJ, USA
P.S. Nicholson, Hamilton, Canada

B.B. Owens, Minneapolis, MN, USA
J. Rouxel, Nantes, France
R. Schöllhorn, Berlin, Germany
B. Scrosati, Rome, Italy
R. Slade, Exeter, UK
Takahashi, Nagoya, Japan
M. Watanabe, Yokohama, Japan

Scope: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue will be devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g., intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory. Related technological applications will also be included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.

Invitation to Authors: Authors are invited to submit their original contribution to one of the editors or associate editors.

Subscription Data: SOLID STATE IONICS is published monthly. For 1993, nine volumes (36 issues) have been announced. The subscription price for these volumes is Dfl. 2790.00 (US$ 1395.00). Postage and handling amount to Dfl. 297.00 (US$ 148.50). Therefore the total price for 1993 is Dfl. 3087.00 (US$ 1543.50). The Dutch guilder price is definitive, dollar prices are for guidance only. Claims for issues not received should be made within three months of publication. If not, they cannot be honoured free of charge. Subscriptions should be sent to the publisher, Elsevier Science Publishers B.V., Journals Department, P.O. Box 211, 1000 AE Amsterdam, The Netherlands, or to any subscription agent or bookseller.

© 1993 Elsevier Science Publishers B.V. All rights reserved.

Published monthly
Printed in The Netherlands
Complex impedance, DSC and lithium-7 NMR studies of poly(propylene oxide) complexed with \(\text{LiN(SO}_2\text{CF}_3)_2 \) and with \(\text{LiAsF}_6 \)

S.D. Brown, S.G. Greenbaum
Department of Physics, Hunter College of CUNY, New York, NY 10021, USA

and

M.G. McLin, M.C. Wintersgill, J.J. Fontanella
Department of Physics, U.S. Naval Academy, Annapolis, MD 21402, USA

Received 27 July 1993; accepted for publication 30 November 1993

1. Introduction

Polymer electrolytes are currently the focus of much attention as potential electrolytes in lithium secondary batteries. The nature of the ion aggregation phenomenon in these materials remains the subject of great controversy. As a contribution to further understanding of this phenomenon a fundamental study of ion-polymer and ion-ion interactions in poly(propylene oxide) (PPO) complexed with two technologically important salts, lithium imide, \(\text{LiN(SO}_2\text{CF}_3)_2 \), and lithium hexafluoroarsenate, \(\text{LiAsF}_6 \), has been undertaken. These salts are electrochemically very stable and have been extensively studied in liquid electrolytes, although much less so in solid polymer electrolytes. Poly(propylene oxide) has been widely studied as a model system for fundamental studies of solvent-free polymer electrolytes because it forms relatively homogeneous, non-crystalline polymer-salt complexes [1,2]. Nuclear magnetic resonance (NMR) measurements of cation nuclei, in particular \(^7\text{Li} \) and \(^23\text{Na} \) have been proven to be of value in probing cation-polyether and, in some cases, cation-anion interactions [3]. Further advances in understanding the ion transport mechanism and ion aggregation in PPO-salt complexes have resulted from analysis of complex impedance data either via traditional electrical conductivity or via the electric modulus representation [4]. In this study the ion-polymer and the ion-ion interactions of \(\text{LiN(SO}_2\text{CF}_3)_2 \) and \(\text{LiAsF}_6 \) complexed with PPO are investigated via NMR measurements of the cation nuclei, differential scanning calorimetry (DSC), and electrical impedance measurements.
2. Experimental

As in previously reported studies of PPO complexes [5], Parel-58 (Hercules, Inc.), which consists primarily (about 95 wt.%) of high molecular weight PPO, was employed as the host polymer. Appropriate mixtures, corresponding to a ratio of 1:8 Li:O, of PPO and lithium salt (imide salt obtained from 3M, and hexafluoroarsenate obtained from Lithco) were dissolved in acetonitrile (Alfa) and poured into shallow teflon dishes. Prior to use, the acetonitrile was distilled and the Li salts were dried under vacuum at 333 K for 48 h. Most of the solvent was removed by room temperature evaporation under partial vacuum (~20 mm) and the final preparation step consisted of heating the samples to 333 K under roughing vacuum for 72 h. Lower drying temperatures for longer periods are preferred for PPO complexes, which are known to exhibit salt-precipitation at higher temperatures [6]. A third sample for additional NMR measurements, PPO\textsubscript{8} LiClO\textsubscript{4}, was prepared in the same manner as the other two. Details concerning the DSC measurements, performed on TA Instruments Thermal Analysis console, are the same as described elsewhere for other materials [6]. \textsuperscript{7}Li NMR relaxation and line width measurements were performed on a JEOL GX-400 NMR spectrometer according to procedures given in a previous paper [7]. Finally, the complex impedance measurements were carried out in a cell designed for liquids described in detail elsewhere [8]. The PPO\textsubscript{8} LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2} sample was formed into the cell at about 423 K in a vacuum oven which had the secondary purpose of further drying the sample. The PPO\textsubscript{8} LiAsF\textsubscript{6} sample was formed into the cell in situ at only 380 K since decomposition of the material was found to occur at higher temperatures. Each sample was subsequently transferred to the vacuum dewar where the electrical measurements were carried out.

3. Results and discussion

3.1. DSC

DSC thermograms (recorded at 10 K/min) for PPO\textsubscript{8} LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2} and PPO\textsubscript{8} LiAsF\textsubscript{6} are shown in fig. 1 along with the results for the host material. It is apparent that the central glass transition temperature is about 259 K for PPO\textsubscript{8} LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2} and about 291 K for PPO\textsubscript{8} LiAsF\textsubscript{6}. The latter \(T_g \) is typical of PPO-salt complexes with an 8:1 O:Li or O:Na ratio. For example, the central \(T_g \) in PPO\textsubscript{8} LiClO\textsubscript{4} is 281 K [4]. For comparison, \(T_g \) in uncomplexed PPO is 213 K [5]. The elevation in \(T_g \) upon complex formation is a well known phenomenon in polymer electrolytes [1,2]. It is apparent from fig. 1 that some overshoot (an apparent endotherm) is observed just above the glass transitions of the polymer-salt complexes. This feature is commonly observed when the heating rate is different from previous cooling or heating rates that the material has experienced. Consequently, this feature is not considered further in the context of the present investigation. The PPO\textsubscript{8} LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2} complex having a very low glass transition temperature is consistent with the well known "plasticizing" ability of the imide anion. Previously reported data on LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2}-containing polymer electrolytes in the literature concern poly(ethylene oxide)-based electrolytes which are typically semi-crystalline complexes [9]. These LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2}-poly (ethylene oxide) (PEO) complexes exhibited both higher amorphous contents and lower glass transition temperatures than analogous PEO-based materials containing the same concentration of other salts such as LiClO\textsubscript{4}. In the case of PPO\textsubscript{8} LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2} the apparent "plasticizing" ability of the anion can be directly observed without
the additional morphological effects observed in PEO complexes of the salt. For a fixed salt concentration, effects of changing the anion on T_a are commonly observed, if not always well understood. For example, PPO$_4$-salt complexes have T_a's which vary from a minimum of 259 K in the present LiN(SO$_2$CF$_3$)$_2$ sample to 306 K for a NaB(C$_6$H$_5$)$_4$ complex [4]. The idea of “transient crosslinking” of polyether segments by cations, which is invoked to explain the T_a elevation phenomenon referred to earlier [1,2], can be extended to anions when cation-anion interactions are significant. The low T_a of the PPO-imide material may be attributed to both the flexibility of the anion and the greater degree of ionic dissociation in the complex, relative to other salts. Reduced ionic association in imide relative to other lithium salts has been demonstrated in liquid electrolytes [10]. It is assumed that the imide salt retains this property in solid PPO complexes. Because ion pairing effects can contribute to structural rigidity in polymer electrolytes, it is reasoned that these effects contribute to the higher T_a's of PPO complexed with other salts (besides the imide), along with the more rigid and symmetric structures of the other anions.

3.2. Complex impedance

The results of typical complex impedance measurements are shown in fig. 2. The bulk dc resistance was deduced from such plots and transformed to electrical conductivity using the appropriate geometrical factor for each sample. The resultant electrical conductivity as a function of temperature is shown by the squares in fig. 3 for PPO$_4$LiN(SO$_2$CF$_3$)$_2$ along with the apparent ac electrical conductivity, represented by the line segments. At high temperatures the dc conductivity is larger than the apparent ac conductivity because blocking electrode effects act to decrease the latter at the lowest frequencies. At low temperatures, the ac conductivity is larger than the dc conductivity because additional loss processes intrinsic to the material, such as dielectric relaxation (described in more detail later), begin to contribute to the apparent ac conductivity. The dc conductivity values extracted from the complex impedance analysis exhibit the expected VTF or WLF behavior [11-13] and were fitted by the equation:

$$\sigma = AT^{-1/2} \exp\left(-\frac{E_a}{k(T-T_0)}\right).$$

(1)

The data and best-fit VTF equation are replotted in fig. 4. The best fit parameters were found to be $T_0 = 213.7$ K, $E_a = 0.105$ eV, and $\log_{10}(A) = 1.04$ with an rms deviation in $\log_{10}(\sigma)$ of 0.0084. Consequently, T_0 is found to be 45 K below the central glass transition temperature, as determined by DSC. This is not unusual since $T_a - T_0$ is typically 40–50 K [6].

With the exception of much lower conductivity, the results for PPO$_4$LiAsF$_6$ are similar in appearance.
Electric modulus results for the imide complex are shown in fig. 5 where they are plotted versus temperature. Data at thirteen other frequencies between 10 and 100,000 Hz were also obtained. In fig. 5, two peaks are observed: a weak peak occurring at low temperatures, and strong peak occurring at higher temperatures. The weak peak is attributed to dielectric relaxation in the material. As discussed above, this relaxation is at least in part responsible for the difference between the dc and ac conductivities at low temperatures. This peak will not be considered further in the present paper. The strong peak, which occurs at higher temperature, is the conductivity relaxation. In order to characterize this peak further, the data were transformed into frequency plots such as that shown in fig. 6, where the electric modulus is plotted as a function of frequency at a fixed temperature (275 K). A stretched exponential was found to be about 0.51 for PPO\textsubscript{8}LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2} and 0.57 for PPO\textsubscript{8}LiAsF\textsubscript{6}. Electric modulus plots obtained at other temperatures (not shown) yielded essentially the same results. The value for PPO\textsubscript{8}LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2} is close to 0.48 which was reported for seven of eight different salts in PPO [4]. The value for PPO\textsubscript{8}LiAsF\textsubscript{6} is somewhat higher than expected.

For completeness, the WLF equation:

$$\log_{10}[\sigma(T)/\sigma(T_0)] = [C_1(T-T_0)]/[C_2+(T-T_0)]$$

and equivalent “standard” VTF equation:

$$\sigma = A' \exp[-E'/k(T-T_0)]$$

were also best-fit to the data. Using the central glass transition temperature of 259 K for PPO\textsubscript{8}LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2}, the WLF parameters in eq. (2) were found to be $C_1=11.5$, $C_2=44.4$, and $\log_{10}(\sigma(T_0)) = -11.8$. The “standard” VTF parameters were $T_0=214.6$ K, $E'_\sigma=0.101$ eV, and $\log_{10}(A')=-0.335$. The rms deviation is 0.0077.

Using the central glass transition temperature of 291 K for PPO\textsubscript{8}LiAsF\textsubscript{6}, the WLF parameters in eq. (2) were found to be $C_1=11.6$, $C_2=58.8$, and $\log_{10}(\sigma(T_0)) = -11.5$. The “standard” VTF parameters were $T_0=232.2$ K, $E'_\sigma=0.136$ eV, and $\log_{10}(A')=0.177$. The rms deviation is 0.012.

The impedance data were converted to electric modulus as described elsewhere [4]. The electric modulus results for the imide complex are shown in fig. 5 where they are plotted versus temperature. Data at thirteen other frequencies between 10 and 100,000 Hz were also obtained. In fig. 5, two peaks are observed: a weak peak occurring at low temperatures, and strong peak occurring at higher temperatures. The weak peak is attributed to dielectric relaxation in the material. As discussed above, this relaxation is at least in part responsible for the difference between the dc and ac conductivities at low temperatures. This peak will not be considered further in the present paper. The strong peak, which occurs at higher temperature, is the conductivity relaxation. In order to characterize this peak further, the data were transformed into frequency plots such as that shown in fig. 6, where the electric modulus is plotted as a function of frequency at a fixed temperature (275 K). A stretched exponential was found to be about 0.51 for PPO\textsubscript{8}LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2} and 0.57 for PPO\textsubscript{8}LiAsF\textsubscript{6}. Electric modulus plots obtained at other temperatures (not shown) yielded essentially the same results. The value for PPO\textsubscript{8}LiN(SO\textsubscript{2}CF\textsubscript{3})\textsubscript{2} is close to 0.48 which was reported for seven of eight different salts in PPO [4]. The value for PPO\textsubscript{8}LiAsF\textsubscript{6} is somewhat higher than expected.
LiAsF$_6$ and LiN(SO$_2$CF$_3$)$_2$ PPO complexes appears to be unexceptional, compared to other amorphous polymer electrolytes, given the typical values for the best-fit β_m parameter for the conductivity relaxation in the imaginary part of the electric modulus and the observed values of $T_g - T_0$, as well as the observed VTF behavior of the ionic conductivity. The dc conductivity of the LiAsF$_6$ complex (not shown) is about an order of magnitude smaller than that of the LiN(SO$_2$CF$_3$)$_2$ complex over the entire temperature range measured. Due to the similarities in their conductivity and modulus behaviors, the higher conductivity of the imide complex is attributed primarily to its lower T_g (and its correspondingly lower T_0). However an additional contribution to conductivity enhancement from reduced cation–anion interaction in the imide is also possible.

3.3. NMR

The 7Li NMR spectrum of PPO$_8$LiN(SO$_2$CF$_3$)$_2$ at 218 K, well below T_g, is shown in fig. 7. The spectrum is characterized by ~20 kHz shoulders flanking a ~6 kHz (full width at half maximum) central line, the latter associated with the $\pm 1/2$ central transition while the shoulders correspond to a distribution of satellite transition ($\pm 3/2 \leftrightarrow \pm 1/2$) frequencies. This distribution is attributable to the heterogeneous Li-polyether oxygen environment associated with the amorphous polymer complex. The low temperature NMR spectrum is essentially unchanged until approximately T_g, at which point the satellite transitions vanish and the central transition begins to narrow. The temperature dependencies of the NMR central linewidths for the two polymer complexes (imide and hexafluororsenate) and a third sample, PPO$_8$LiClO$_4$, are displayed in fig. 8. The onset of motional line-narrowing of the imide complex clearly occurs at lower temperature than in the other two samples, in accord with the lower T_g of the first material. Motional narrowing is attributed to modulation of the 7Li–1H (the protons are, of course, in the polyether chain) magnetic dipole–dipole interaction resulting from polymer segmental motion above T_g. Similar results for Li salt–polyether com-
plexes have been reported elsewhere [7,15]. Spin-lattice relaxation (T_1) data for the three PPO lithium salt complexes are presented in an Arrhenius plot in Fig. 9. For all samples T_1 exhibits a monotonic decrease with increasing temperature, up to the highest observation temperature (390 K). It was not possible to observe the expected T_1 minima due to limitations of the variable-temperature NMR probe. The data do, however, convey the result that high frequency motions probed by the spin-lattice relaxation process are enhanced in the imide complex relative to the other two materials. That is T_1, which is roughly proportional to the ionic motional correlation time at temperatures below the T_1 minimum [16], is lowest in the imide sample.

4. Conclusions

DSC and electrical studies of PPO$_4$LiX, where X = AsF$_6$ and N(SO$_2$CF$_3$)$_2$, show that the former material is quite similar to other PPO$_4$-lithium salt complexes. The latter material exhibits an order of magnitude higher electrical conductivity, which is attributed to its significantly lower glass transition temperature. Electric modulus results, representative of the conductivity relaxation, for both materials are well described by a stretched exponential decay function, as found for other PPO-salt complexes [4]. Li$^+$ ion dynamics as probed by NMR line-narrowing and spin-lattice relaxation (T_1) indicate that the lower T_g of the imide complex is manifested by a lower temperature onset of line-narrowing as well as a shorter T_1, relative to the other samples.

Acknowledgement

This work was supported in part by the Office of Naval Research.

References
