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1. INTRODUCTION

As modem high-performance aircraft improve in performance and maneuverability, their

design becomes more and more statically unstable. These aircraft depend on inner-loop

stability/control system augmentation to increase bare airframe stability while providing the pilot
with high performance and superior maneuverability under a wide range of flight conditions. This

poses a challenge to the flight control system (FCS) designer: the extreme range of flight
conditions introduces significant uncertainties and nonlinearities that the FCS design must allow

for. In addition, the FCS must be adaptive and reconfigurable, in order to maintain stability if one

of the control effectors fails.

The current FCS design approach is 1) to generate linearized models of the flight dynamics

for a large set of trim conditions, 2) next to use linear control-system theory to design controllers

and controller gains that are valid only for a limited region of the state/control space around the trim

point, and 3) to design a gain schedule by interpolating the gains between the different trim

conditions. While such a procedure has resulted in satisfactory FCS performance in the past, it has

many disadvantages: a time-consuming and expensive trial-and-error process; a lack of adaptability

of the design to changes in the dynamics; a difficulty in handling extremely nonlinear flight

conditions, such as what occurs at high angles of attack; and a tendency toward a conservative

design that improves robustness to uncertainties at the expense of reduced maneuverability.

One alternative to linear control methods is to use neural networks to control nonlinear

systems. An artificial neural network (ANN) approach to FCS design might provide a means of

eliminating or reducing many of the disadvantages of control methods that rely on linearized

models. Recently proposed types of neural networks can accomplish complex tasks-such as pattern

classification, function approximation and generalization from examples, content-addressable

information retrieval, error correction, optimization, adaptation, and learning. These abilities of

neural networks might provide several potential advantages over the conventional control-design

methods of FCS systems:

" Neural networks can approximate nonlinear smooth mappings arbitrarily closely, and this

might provide accurate models and nonlinear controllers that can achieve superior

performance and maneuverability over a wide range of flight regimes.

" Neural networks offer not only a rapidly adaptable but also an on-line learning solution.

Hence, neural networks offer benefits beyond those of adaptive control techniques. Rapid

adaptation capability has a significant value in a high-performance operational environment

with aircraft configurations, stores and missions that change constantly, while the learning

1
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capability is crucial for robustness under hardware failures and control surface/body

damage.

Optimizing neural networks, such as Hopfield-like recurrent networks, might give real-time
adaptive solutions to many of the control design problems. Many of these problems (e.g.,
pole assignment, optimal control design, parameter estimation and state observer design) can
be formulated as optimization of suitable objective functions. Optimizing neural networks
can provide a cheap real-time on-board solution to these optimization problems. This will
reduce the need for predesigned control and increase adaptability to both changes in mission
requirements and changes in dynamics, such as those that might result from battle damage.

" Neural networks can improve productivity in the off-line design of FCSs. ANN's can
automate every stage of the design process that involves trial-and-error. For example, an
ANN might be trained to identify the quality of a particular design, based on some
parameters. This network can then find the controller parameters that yield a good FCS
design.

" ANNs can improve implementation efficiency on the emerging neural computers. Given the
availability of relatively inexpensive VLSI designs for neural network structures, FCS
designs which could not be implemented in real-time on serial machines can now be
considered for practical applications.

1.1 Applications of Neural Networks in Control

There are many different ways that neural network techniques might help solve control
problems. Some of these techniques are summarized by Atkeson (1991). A recent survey for the
application of neural networks in control is given by Hunt, Sbarbaro, Zbikowski, et al., Hunt,
Sbarbaro, Zbikowski, et al. (1992). Over the past few years, there have been many attempts at
applying neural networks in control, using different control and network architectures, with
varying degrees of success. Among the recent papers that have examined the application of neural
networks in control are Psaltis, Sideris and Yamamura, Psaltis, Sideris and Yamamura (1988);
Marzuki and Omatu, Marzuki and Omatu (1992); Narendra and Mukhopadhyay (1992); Schiffman
and Geffers, Schiffman and Geffers (1993); Chen and Khalil, Chen and Khalil (1992); Pao,
Phillips and Sobajic, Pao, Phillips and Sobajic (1992); Levin and Narendra (1993); Kuschewski,
Hui and Zak, Kuschewski, Hui and Zak (1993); Sanner and Slotine (1992); Jordan and Rumelhart
(1992); Atkeson, (1991), and the papers cited therein. We will summarize in this section some of
the proposed neural-network applications in control.

2
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An inverse model is the most direct way for using a neural network as a controller. The

inverse neural network model is simply an associative network, having as its input the desired

output(s) xd and the current states of the system x, and as its output the control action(s) that

should be applied. An inverse model of the dynamics can be used in a variety of configurations in a

control system. These different configurations will be discussed in a later chapter.

Another possible application for neural networks in control is to encode the outcome of a

control action as a function of the states and controls. This has been called forward modeling.

Unlike inverse models, forward models, by definition, always exist for deterministic systems. In

the case of forward models, finding the control command to use in order to reach a certain desired

state from a given state is not as straightforward as it is in the case of the inverse model. Root

finding or optimization techniques may be used to solve for the control commands as a function of

the states and desired change in the states Atkeson (1991). Hoskins, Hwang and Vagners,

Hoskins, Hwang and Vagners (1992) use back propagation techniques for the iterative inversion

of the forward model, and they propose its application in adaptive control. Forward models serve

as predictors of the behavior of the dynamic systems they model and can optimize coitrollers.

There might be more than one neural network in a single control system. For example,

forward models can be used for a predictor model and an inverse model for a controller. The role

of the plant-dynamics forward model is to predict the response of the system and to propagate back

the error in the output (Jordan, 1989). More generally, it can propagate back any performance

gradient in order to adjust the controller parameters. An inverse model might make an initial guess

for the root finding algorithm for the forward model and correct the errors in approximating the

forward model.

Neural networks used as pattern classifiers might also have applications in control. The

classifier acts as a nonlinear switch between a discrete set of controllers that is based on

measurements of the states and desired outputs of the system and the desired mission. The switch

can also change smoothly from one controller to the next. This can be thought of as a more

generalized method of gain scheduling. The controllers themselves need not be fixed and can be

some other function approximators or neural networks. This type of use of neural network

classifiers in control may be useful, for example, when the controller function varies considerably

in the different areas of the state space or depends heavily on the desired mission. This is one

possible application for the competitive networks paradigm described by Jacobs et al. (Jacobs,

Jordan, Nowlan, et al. 1991; Jacobs and Jordan 1993). Narendra and Mukhopadhyay, (1992)

have also suggested the use of neural network classifiers as a switch to select a controller for the

case when it is known a priori that the controlled plant can only be in one of a finite number of

configurations.

3
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Neural networks can be state observers for state feedback control when not all the states

can be measured. Recurrent neural networks have been previously proposed and tested for such

tasks. The states encoded with such networks may not necessarily have a physical meaning, but

can be a nonlinear function of meaningful state variables.

Another potential use of neural networks in control is to build a model of some measure of

performance of the system as a function of some parameters and then use this model to find the

parameters that optimize this measure of performance, using nonlinear optimization techniques.

Recurrent neural networks of the Hopfield type might serve as cheap real-time computing

elements. Variants of such networks have been proposed for continuous and combinatorial

optimization and linear algebra problems such as computation of matrix inverses, the solution of

general matrix equations, the estimation of eigenvalues and singular value decomposition (Cichocki

and Unbehauen, 1992).

1.2 Application of ANN in FCS

Specific applications of ANNs in FCS include:

* automatic trim computation

* gain scheduling

* adaptive and optimal control

* identification of nonlinear dynamics

* on-line optimization of handling quality

* self-repairing flight control

* automatic trajectory guidance

* integrated fire'flight control

Some of the potential applications of neural networks and fuzzy logic in flight control are

summarized in Steinberg (1992). Recently, there have been many reports describing applications

of neural networks to flight control problems. For instance, DiGirolamo, DiGirolamo (1992)
trained a feedforward neural network to generate control gain schedules based on measurements of
the states. The method was successfully applied to the tracking of the pitch rate of a nonlinear
longitudinal F/A-18 model. Similarly, Sadeghi, Tascillo, Simons, et al, (1992) trained a

feedforward network as a nonlinear feedback controller. They found that the performance of the
neural network was inferior to self-tuning adaptive control law. Linse (1990) modeled the

4
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longitudinal trim state of a commercial transport aircraft. Ahmed-Zaid and colleagues (Ahmed-

Zaid, Ioannou, Polycarpou, et al., 1992) modeled the pitch dynamics of an F-16 aircraft using a

radial basis functions (RBF) neural network. They then used the neural network model and its

partial derivatives to control the pitch dynamics. The neural network approach was found to be

superior than a simple linear controller. Caglayan and Allen (1990) trained a multilayer perceptron

to model optimum guidance trajectories for the aeroassisted orbital plane change scenario. Calise,

Kim, Kam, et al. (1992) trained two neural networks to model the inverse dynamics of the rolling

rate. The neural networks were able to generate the differential deflection of the tail surfaces as a

function of the roll rate command, the aircraft state vector and the rudder deflection. Rokhsaz and

Steck (1993) used feedforward neural networks to model the nonlinear aerudynamics and flight

dynamics of aircrafts under different conditions. They conclude that neural networks have good

generalization properties for the aerodynamic modeling problems, but do not perform as well in

modeling the flight dynamics. Troudet, Garg and Merrill (1993) propose the use of a feedforward

neural network as a controller for command tracking and apply it to the control of a linearized

model of the longitudinal dynamics of an aircraft. They conclude that although the nominal

performance of the neurocontroller is better than a standard H.. controller, the stability

characteristics are poor. The use of a Hopfield neural network in synthesizing the optimal inputs

for a command tracker FCS has been demonstrated in Mears, Smith, Chandler, et al. (1993).

Application of neural networks to failure detection problems in flight control has been reported by

Caglayan and Allen (1990) and Barron, Celluci and Jordan (1990).

Few of the published reports show negative results, and most of the above reported results

show promising use of neural networks for different functions of FCS. We believe that a

successful FCS design should exploit the abilities of neural networks, namely the ability to map

smooth nonlinear functions with high accuracy given few observations, fast computation, and

learning and adaptability, while at the same time incorporating domain specific knowledge about

the particular dynamics and the existing FCS design expertise that have accumulated over the

years.

1.3 Goals of the Current Study

The objective of the current study is to explore and evaluate the feasibility of using different

neural network architectures for a self-designing FCS, one which can continuously optimize

performance and accommodate changing mission requirements and failures in hardware and battle

damages. We will focus in particular on the neural implementation of three major functions

associated with FCS design, namely the modeling of the inverse dynamics and inverse trim,

parameter estimation and optimal control. For each of these functions we will develop a neural

network implementation, and we will evaluate its performance using a high performance aircraft

5



simulation. We plan to explore and analyze some of the practical problems associated with the
impleetion of each of these neural network modules for FCS, and to propose possible

alternative solutions.

1.4 A Neural FCS for Longitudinal Dynamics

The proposed self-designing FCS architecture that we will explore is as shown in

figure 1.4-1.

Figure 1.4-1: Proposed Neural FCS Controller Architecture

The inverse model computes the control commands as a function of the desired state

trajectory, generated by the pilot and the handling qualities model, and of the measured current

state vector. The optimal control network computes an optimal trajectory perturbation based on

measurements of the current state vector of the aircraft, an objective function, and the estimated
parameters supplied by the parameter estimation module. The parameter ID network provides an

estimate ofse modiu the jacobia ofnthe dynamic respona of the system with respect to the state and control

vectors, using as input the previous histories of the control and state trajectories.

It is important to emphasize here that the proposed FCS design, shown in figure 1.4- 1, is

chosen only to show the power of neural networks in FCS design. No attempt is made to optimize

the design with respect to the issues of robustness to noise or sensitivity to modeling inaccuracies.

Other feedback-control loops might improve stability and robustness in the current neural

controller. For instance, the inverse model can be used to linearize the aircraft nonlinear dynamics.

A robust optimal linear feedback controller is then used for noise rejection and increased stability of

the resultant linear system.

6
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A nonlinear model of the longitudinal dynamics of an F/A-18 aircraft is used to test the

developed neural network controllers. The state vector used in the simulations reported here is

composed of five state variables: the angle of attack ( a), the pitch angle ( 0 ), the pitch rate ( q )

the total speed ( vt) and the altitude ( h ). Two control effectors are used in the simulation, the

engine thrust ( 8 hr ) and the average elevator deflection ( e,).

1.5 Achieved Objectives

We propose and develop different optimizing recurrent neural network architectures which

satisfy the dynamic constraints for the optimal control module. We analyze and compare the

performance of the different architectures with respect to ease of implementation, accuracy,

robustness and speed of computation. We discuss how to implement limits on the states

and/or controls and how to extend these neural network architectures to find the optimal

control of nonlinear systems.

" We propose and develop a parameter estimation neural network which can implement

optimization-based parameter estimation algorithms. We discuss methods for implementing

forgetting factors and relationships between parameters. We also propose a feedforward

neural network for estimating the jacobian of the nonlinear dynamic equations (stability and

control derivatives) based on measurement of the current state and control vectors of the

aircraft. We propose a parameter ID module which uses the optimization-based neural

network in parallel with a feedforward neural network to reduce the need for dithering

signals for parameter identification and help identify failures. We also discuss efficient

Hopfield-like neural network architectures for implementing state space parameter

identification techniques, that are based on subspace methods (Moonen, DeMoor,

Vandenberghe, et al. 1992, Swindelhurst, Roy, Ottersten, et al, 1992).

" We implement and test a radial basis functions neural network (RBF) which models the

inverse flight dynamics. The network is found to perform well on training and test sets as

well as in tracking simulated trajectories. In addition, we train an RBF neural network to

estimate the trim controls and angle of attack, given desired aircraft altitude and speed. We

discuss methods of training such a network on-line and incorporating the inverse dynamics

in the control loop.

7



R901 Qfts River A=Vtic

2. THE OPTIMAL CONTROL MODULE

The role of the optimal control module is to find the control inputs which achieve a desired

goal optimally. The desired goal is formulated as an objective functional to minimize. For the FCS
design proposed in this report and shown in figure 1.3-1, the goal of the optimal controller is only
to optimize the control command perturbations (8u) around the current operating point. The output

of the inverse model network determines the operating-point control command (uc) itself. Since the
state and control perturbations ( 8x and Su ) around the operating point are assumed to be small,

linearized models can be used. The parameter identification module, described in the next chapter,

will provide the linearized system parameters that will be used by the optimal controller.

Current linear optimal controller design involves finding the optimal feedback steady-state
gains by solving an algebraic Riccati equation, which is a function of the system parameters and

the objective functional weights. It must be noted here that the derived feedback gains are only

optimal at steady state. For objective functions that have a small time horizon compared to the

system dynamics, or are explicit functions of time, the optimal feedback gains are, in general, time

varying. For nonlinear systems, many constant linear feedback gains are derived at different

operating points, then gain scheduling is used to interpolate the value of the feedback gains to be
used at the current operating point.

In the current work, we study a different approach for implementing the optimal controller.

Instead of providing the closed-loop optimal feedback gains, the optimal controller module
computes the optimal open-loop trajectory, based on the current state of the system and the current

objective function. The optimal control trajectory is recomputed at each instant of time. Since the

optimal trajectory generated always depends on the current state vector, this approach, in essence,

is equivalent to a closed-loop optimal controller. However, this approach differs from a closed-

loop con.oiler in that the equivalent feedback gains here are, in general time varying in the case of

a limited horizon objective function, even when the system dynamics are linear and time invariant.

In order to achieve closed-loop performance, the open-loop controller should be able to

observe the current state of the system and compute the optimal trajectory in real-time. Practically,

this is a difficult task due to the amount of computation involved in finding the optimal trajectory.

Recently, few researchers have proposed using optimizing neural networks, such as Hopfield

networks, to find the optimal trajectory for optimal control problems of linear systems (Lan and

Chand, 1990; Mears, et al., 1993). In the current study, we extend the work of previous
researchers and discuss different novel approaches for mapping optimal control problems into

Hopfield-like neural networks. We explore the advantages and disadvantages of the different

techniques. We test the proposed techniques on a linearized F/A-18 dynamics, and we compare the

8
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performance of the Hopfield controllers with the performance of an optimal controller derived by

solving the necessary conditions of optimality.

2.1 Function Optimization Using Hopfleid Networks

Hopfield networks with continuous valued units belong to the class of recurrent neural

networks. A major difference between this class of networks and feedforward neural networks is

the presence of dynamics. The architecture of a Hopfield network is shown schematically in figure
2.1-1.

W12 8+ C14

• 1 n

W2n

Figure 2.1-1: A Schematic Representation of a Hopfield network

The input to each unit is a weighted summation of the output of all the other units as

represented by equation 2.1-1. The output of each unit is a monotonically increasing function of

the input, called the activation function.

vi =g( ui )=g( wijvj) (2.1-1)

J

where ui and vi are the input and output of unit i respectively and g( ) is the activation function.

The connection weights Wij form a symmetric connectivity matrix. Three different methods have

been suggested for finding the output of the different units at steady state: asynchronous,

synchronous and continuous. In the asynchronous update, each unit is updated randomly and

independently from all other units. In the synchronous update, the units are updated

simultaneously at each clock cycle. In the continuous update, the output of each unit is represented

by a first-order nonlinear differential equation of the form of equation 2.

9
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dvi
Irl = -vi + g( ui )(2.-2)

In this study, we are only interested in the continuous update, since it is easy to implement

it using analog hardware. It has been shown, using Lyapunov stability theorems, that for a

symmetric connectivity matrix with zero diagonal elements, and using a monotonically increasing

function, the set of equations (2.1-2) represents a stable system.

To use a Hopfield network for the minimization of a multivariable cost function we follow

the following steps (Hertz, Krogh and Palmer, 1991):

1. Define an energy function H( v ) which is bounded from below. The minimum of the energy

function should correspond to the minimum of the cost function to be optimized.

2. Use vj = g( uj ), where g(. ) is a monotonically increasing function.

3 Use the following update equation:

dui dH(v)d-t-ff dvi

4. The connectivity matrix of the network is determined by the function dH(v)/dvi. For

example, if the energy function H( v ) has a quadratic form:

H( v ) = vT W v (2.1-4)

then the connectivity matrix is equal to W.

The system of differential equations (2.1-3) will converge to a local minimum of the energy

function. In the case of a convex energy function, such as is the case with quadratic objective
functions, the equations will converge to the global minimum. For complex nonlinear objective
functions, it is possible to improve the quality of the solution by using techniques such as mean

field annealing.

2.2 Optimal Control as a Static Optimization Problem

We will restrict our analysis here to discrete dynamic systems. Continuous dynamic

systems can be approximated with discrete systems. A discrete linear-quadratic optimal control

problem described by the quadratic objective function represented by equation (2.2-1)

N-I
J(x,u) = xT(N) QN x(N) + kxT(k)Qkx(k) + uT(k)Rku(k) (2.2-1)

k=)

and the dynamic system equations (2.2-2)

10
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z(k+l)=A(k)z(k)+B(k)u(k) k=O,...,N-l (2.2-2)
z(O) =xo

where x e 9P and ue 9t1w, can be formulated as a static constrained optimization problem as

shown in equation (2.2-3) and (2.2-4).

n J(v) f vTH v (2.2-3)

subject to :

MTv=c (2.2-4)

where:

x(1)
z(2)

v= u(0)

u(1) (2.2-5)

u(N- 1)

is the N (n + m) vector of state and control variables,

Q, 0

0 QM
H- RL,• 0

0 .. (2.2-6)o 0 RN._

is an N (n + m) x N (n + m) block diagonal matrix,

I -B
- A .. 0.. 0

MT-
"" 6 " 0 " (2.2-7)o -A I -B

11
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isanNn X N (n + m) maix t defines the system dynamics, and c is an N ( n + m) vector that

depends on the initial and boundary conditions.

2.3 Hopfleld Networks for Optimal Control

We will discuss in this section different possible implementations of the optimal controller
using Hopfield-like networks. This work represents an extension to the Hopfield optimal

controllers proposed previously by Lan and Chand (1990); and Mears, et al. (1993), which is
based on the penalty function methods for constrained opmtiization. Using computer simulations,

we will compare the following three implns:

"• The penalty method

"* The gradient projection algorithm

"* The Lagrange multipliers methodsxo, Lx(+)
Hopfield Network U (t)

Estimated X(t)

System Dynamics t
(AB matrices) Specifications

* Desired trajectory

* Q, R matrices

* Um its on states and/or controls
* Time horizon

Figure 2.3-1: Optimal Controller

A diagram of a general Hopfield optimal controller is shown in figure 2.3-1. The network
uses the estimated system dynamics and the measured current state of the system to compute the
optimal trajectories x(t) and u(t) with respect to the given specifications. Depending on the method
used, the costate trajectories X(t) may also be computed as a byproduct of the optimizing network.

2.3.1 Optimal Control using Penalty Functions

Lan and Chand (1990) and Mears, et al. (1993) have proposed transforming the
constrained optimization problem (equations 2.2-3 and 2.24) into an unconstrained problem, by
appending the constraints to the objective function as an additional penalty term, as shown in
equation (2.3.1-1):

12
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J'(v)=vTHv + II MTv -C 112  (2.3.1-1)

where I» >> 0 is the penalty coefficient. Equation (2.3.1-1) defines an energy function which can
then be minimized with respect to v using equation (2.3.1-2)

F(dv,dt) = - E (2.3.1-2)

Equation (2.3.1-2) can be implemented using a recurrent Hopfield-like neural network with

N(n+m) processing units, representing the components of the vector v. Stability is easy to prove,

since equation (2.3.1-2) represents a gradient descent equation to an energy function which has a

lower bound. Since the energy function J' is a convex function, convergence to the global

minimum of J' is guaranteed. However, it must be kept in mind that the global minimum of J' is

only an approximation to the correct global minimum of the objective function J. The connectivity

matrix and bias inputs for the different processing units can be derived from the jacobian matrix

Z- by expanding equation (2.3.1-2), as shown below:

dvd- =- Wv+MC (2.3.1-3)

where W = H + c M MT represents the connectivity matrix and M c represents a bias input.

There are some disadvantages to the above implementation of optimal control. These
disadvantages are mainly due to the penalty function implementation of the constraints. In order not

to violate the dynamic constraints, the penalty coefficients should be very high. This makes the

optimization problem ill-conditioned and consequently results in very slow convergence to the

optimal point. Reducing the penalty coefficient on the other hand may result in completely

erroneous results, due to the possible violation of the dynamic constraints. A partial solution to this

problem is to use a time varying penalty coefficient. The value of the penalty coefficient is

gradually increased, as the solution approaches the optimal point.

Although the penalty function technique may work well for constrained optimization

problems with few constraints, it does not yield good results when the number of constraints is

very large, as is the case of optimal control with a long time horizon.

2.3.1.1 Flight Control Example

To illustrate the problems associated with the penalty method in finding the optimal control

trajectories, we tested its performance on an aircraft optimal control problem. The aircraft model

used is a 5th order linearized model, obtained by trimming a nonlinear model of the longitudinal
dynamics of an F/A- 18 aircraft at an altitude of 40,000 ft. and a speed of 700 ftlsec. The states are

13



R19301 Chaim Rive Ainlydc

the perturbadons in speed, angle of attack, pitch angle, pitch rate and altitude. The control variables
awe the pertubations in the stabilator angle (Be) and thrust (8fr). The goal is to increase the altitude
by 1000 ft. in 5 sec., with minimum perturbations in the other aircraft states. A ramp function 'with
slope of 200 ft I sec is used to represent the change in altitude. The aircraft dynamics were sampled
every 0.1 sec. This results in a Hopfield network with 350 units. Two different simulations are
shown in figure 2.3.1.1-1 and 2.3.1.1-2 for a penalty coefficient equal to 108 and 1010
respectively. Shown in the figures are the steady state values achieved by the networks (solid lines)
compared to the exact optimal trajectories (dotted lines). As shown in the figures, even with a
penalty as high as 1010 there is a big discrepancy between the exact optimal trajectories and those
achieved by the networks. It is also important to note that at a value of the penalty equal to 1010 the
network convergence is extremely slow and may not be useful for real-time applications.

14



R930BI Cbeiesm River Aimlytks

"-.,. " ! ., ............ ,,,\. .......-.; ".......... ...........:........... . . ..............
.................

".....

I !" ........ ......

i imI Is- A ISA a a

4M.

a5 a M. 8 33 4 4A56 000 1 IA a a.s a 8S 4 4A a

": .. .... .. .. ...... .. .. .. .. .. .. .. .. .. .. ....,

......

I 2 4 15 o I I ai 4 45 "

Figure 2.3.1.1-1: Optimal Trajectories Using A Penalty Hopfield Network
With K = 108
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equilibrium point that satisfies the linear constraints that represent the dynamic system (2.2-4)

16



R9301 Chales River Aalytics

exactly. These networks are based on well-known constrained optimization techniques.

Convergence to the global optimum and stability can be proven for the case of linear systems with

quadratic costs. In this chapter, we will present two networks, one based on the gradient projection

algorithm and the second based on the Lagrange multipliers methods.

2.4.1: Gradient Projection Hopfleld Network

One possible exact numerical solution to the optimal control problem is through the use of

gradient projection (Kirk, 1970). The idea behind this approach is to project the gradient descent

equation of the objective function into the hypersurface representing the dynamic constraints, as

summarized below.

Define the projection matrix

P = I - M (MTM)"I MT (2.4.1-1)

The projection matrix projects any change in the vector v to the hypersurface of the

constraints, provided that we start from a valid solution that satisfies the constraints. The projection

matrix is symmetric, idempotent and positive semidefinite. If we then use the update rule (2.4.1 -

2), it is possible to prove that the equations will converge to the globally optimal solution, given an

initial feasible trajectory.

dv C7"
dt-=- P- (2.4.1-2)

which can be written as
dv

Se 
W v (2.4.1-3)

where W = P H defines the connectivity matrix. The value of the coefficient e and the
connectivity matrix W determine the rate of convergence to the optimal trajectory.

2.4.1.1 Equivalence Between Gradient Projection and the Penalty Method

It is important to note here that the gradient projection method can be viewed as a modified

penalty method with an infinite penalty coefficient, hence an exact solution, but at the same time

possesses a relatively well-conditioned connectivity matrix. This result can be shown by changing

the update rule (2.3.1-3) for the penalty method, to make it well-conditioned without changing the

equilibrium point. This can be easily done by multiplying the right hand side of equation (2.3.1-3)

by a nonsingular square matrix F to obtain the following equation:

- -FWv+FMc (2.4.1.1-1)

17
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Since the matrix F, which has the same dimension as W, is chosen to be nonsingular, it
does not alter the equilibrium points of the original dynamic equations. It is only added to improve

the eigenvalue ratio of the linear system of equations (2.3.1-3). Since the ill-conditioning of the
connectivity matrix is mainly due to the penalty coefficient, a simple way to reduce this ill-
conditioning is by approximately canceling the effect of Ic. One possible choice of F for
performing this cancellation is given by equation 2.4.1.1-2:

F = [E + 1 MT M]-I (2.4.1.1-2)

where E is a symmetric positive definite matrix. The best value of E is of course H, which will

result in all eigenvalues being equal. Another possibility is to use:

E= I (2.4.1.1-3)

where I is the identity matrix. Using the matrix inversion lemma (Bertsekas, 1982) and taking the
limit as K -4+ 0, the matrix F reduces to:

F = I - M(MTM)-1 MT (2.4.1.1-4)

which is exactly the same as the projection matrix P defined above.

Although the gradient projection algorithm gives the exact optimal trajectory and has much
better convergence properties than the penalty methods, it has some important disadvantages. One

disadvantage is that, unlike the penalty method which results in a sparse connectivity matrix W, the
connectivity matrix that results from the gradient projection algorithm is not sparse. This may
represent a problem for parallel implementation. Another disadvantage is that the gradient

projection network should always be initialized to a valid solution. Any initial error in the
initialization will result in an error in the final solution. In addition, many of the eigenvalues of the
projection matrix W will be zero, due to the multiplication with the projection matrix P. This
makes the network less robust to imprecisions in the connectivity matrix values and requires exact
implementation of the connectivity matrix. The high precision and the dense connectivity makes the
gradient projection network less attractive for hardware implementation.

2.4.1.2 Flight Control Example

We tested the gradient projection network on the same aircraft optimal control problem used

to test the penalty method. The gradient projection network size is the same as the penalty network,
although much more dense. The optimal trajectories obtained using the gradient projection matrix
are shown in figure 2.4.1.2-1 (solid lines). As predicted the network gives an exact solution. The
results shown are after 10-4 sec of simulation, using a time constant equal to 10-6 sec.

18
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Figure 2.4.1.2-1: Optimal Trajectories using a Gradient Projection Hopfield
Network

2.4.2 Lagrange Multipliers Hopfleld Networks

Another approach for mapping a discrete linear quadratic optimal control problem to a
•Hopfield neural network is through the use of Lagrange multipliers.

19
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if we define

L=[~ B -M (2.4.2-1)

where the matrices H, M and c have the same definitions as before, then we can express the

necessary conditions of optimality (Kirk, 1970) in matrix form as follows:

L~v] (2.4.2-2)

where X is the (N n x 1) vector of the discretized Lagrange multipliers.

The matrix L is nonsingular if the optimal trajectory is unique. One possible
implementation for the solution of the linear system of equations (2.4.2-2) using a Hopfield
network is to construct the energy function

E I ) (2.4.2-3)

If we then construct the connectivity matrix

W=-LTL (2.4.2-4)

and use the update rule:

1= W[] + I,[O] (2.4.2-5)

the dynamic system defined by equation (2.4.2-5) will be stable and will converge to the optimal
state, control and costate trajectories.

One serious problem with the above approach is that, although all the eigenvalues of the

matrix W are guaranteed to be negative and real for positive definite Q and R matrices, and always

stable for a detectable system,* the condition number of the matrix W is the square of the condition

number of the matrix L. This may result in ill-conditioning of the matrix W and consequently a

very slow convergence to the optimum point

A better alternative that works well for linear systems with quadratic costs is to use the

duality property of the Lagrange function (Bertsekas, 1982), which states that the solution of the
constrained minimization problem is equivalent to the minimization over v and the maximization

A (A,4/'j system is dectable iffhe unobservable eigenvectoas ae stable

20
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with respect to X of the Lagrangian function. We can then use a gradient descent (ascent) algorithm

to minimize (maximize) the Lagrangian function with respect to v ( X ). This is guaranteed to

converge for linear systems with quadratic costs, since the Lagrange function is convex with

respect to v. For example, we can choose the connectivity matrix W to be

W [-H M]I
W=fMw 0 (2.4.2-6)

In this case the condition number of W will be similar to that of the matrix L. The

eigenvalues of W will have a negative real part but they are complex in general, since the matrix W

is no longer symmetric. A more complex heuristic update rule for the Lagrange multipliers has

been proposed by Barhen, Gulati and Zak (1989). The update rule they propose is harder to

implement in hardware, and this study will not pursue it further.

Although the Hopfield network implementation of the Lagrange multipliers method has a

bigger size than the gradient projection network, it is much more sparse, which makes it much
easier tu implement in hardware. In addition, since the connectivity matrix W is derived directly

from the system matrices, the computation time required to build the Hopfield network

implementing the Lagrange method is very small, which is better for real-time adaptive adjustment

of the network weights. A representation of the different inputs and connection strengths
associated with each unit is shown schematically in figure 2.4.2-1. In this figure, the circles

represent a set of units, for example the state, control and costate vectors at time step k.

-Q -R

B A(k)

A
x(k- 11 x(k)

X(k) X(k + 1) X(k)

Figure 2.4.2-1: Connectivity of a Lagrange Multipliers Recurrent Network

2.4.2.1 Flight Control Example

We tested the Lagrange multipliers network on the same aircraft optimal control problem

used in the previous sections. The network size in this case is larger than the previous networks

since the Lagrange multipliers network contain extra units for the costates (Lagrange multipliers).
The total number of units for a 0.1 sec. sampling rate equals to 650 units. However the
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connectivity of the network is very sparse as compared to the gradient projection network. The

optimal trajectories obtained using the Lagrange multipliers network are shown in figure 2.4.2.1-1
(solid lines) together with the exact trajectory obtained using the exact solution of the necessary

conditions of optimality. As predicted, the network gives an almost exact solution. The results
shown are after 10-3 sec of simulation, using a time constant equal to 10-6 sec.

14i

Ifti° i
I:I

II

U00. 1 1.5 2 3s 3 15 4 4.6 5 6. 1 1.6 2 2's 1 &a 4 4.s 5

IIw

Thu" ((s

- ~100

... .4...o....

0.n

o a. t 1.5 2 15 8 8 4 4.5 5 0 .5 I 1 1 25 8 S 4 4

22

• ~~~~~ ~O I



R93091 Chuldes River Awlytics

Figure 2.4.11: Optimal Trajectories using a Lagrange Multipliers Recurrent
Network

2.4.3 Implementation of Control and State Limits

In many control applications, there may be physical limits on the values of the control or

state variable&. Simple inequality constraints can represent these, and can be implemented easily by

constantly monitoring the state and control variables. If these variables are at the specified limits,

and the rate of change of these variables is in the direction of exceeding these limits, then their rate

of change is set to zero, and they are held at the specified limits. This is easy to do in hardware, by

passing the controls or states through squashing functions, such as sigmoids, which limit the

outputs of these controls and states to the desired values. The addition of the squashing functions

will not alter the stability of the network, but it might result in a change of the rate of convergence.

If the linear inequality constraints are each a function of more than one control and/or state

variables, it might be possible to implement these constraints by transforming them into equality

constraints using slack variables.

2.4.4 Conclusion

In this chapter, we analyzed three different methods for finding the optimal control

trajectories for linear systems, given an objective function. We tested the different methods on a

linearized aircraft-model of longitudinal dynamics. A summary of the properties of the different

techniques is shown in table 2.4.4-1. From this table, Lagrange multiplier method satifies most of

the desired objective criteria.

Table 2.4.4-1: Comparison Between Three Different Recurrent Neural Network
Implementations Of Optimal Control

Penalty Method Gradlent Lagrange Multipliers

Projection

Accuracy Not Exact Exact Exact

Robuetnese Robust Not Robust Robust

Relative Network Size Small Small Large

Network Connectivity Sperso Dan.e Sparse

Convergence Properties Slow Fast Fast

W Matrix Computation Simple mapping of A.a. a. R. K Matrix inversion Simple mapping of A. B. a, R
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3. PARAMETER IDENTIFICATION

The real-time optimal controllers, developed in the previous chapter, require an adaptive

real-time parameter estimation module. The role of the parameter estimation module is to provide

the controllers with fast and accurate estimates of the linearized system matrices, by measuring the
input/output history of the different state and control variables of the aircraft We can look at the

parameter ID problem as a mapping from input-output data histories to unknown parameters,

defined with respect to a particular class of models, for instance linear state space systems.

Techniques for parameter estimation typically involve finding the parameters that optimize some

objective criteria: such as minimizing the error between the measured and predicted outputs, or

maximizing the likelihood that the input-output data result from the proposed model. More

recently, there has been an increasing interest in state space parameter estimation using subspace

model identification techniques. State space subspace system identification (S4ID) methods use
linear algebra tools, such as QR and Singular Value Decomposition, to find the subspace that best

fits the input-output data. If we have only input-output data measurements, the definition of states

is not unique.

In this chapter, we will explore the use of different neural network architectures for the

implementation of real-time parameter identification techniques. Neural networks offer many

desirable features that might be useful for parameter identification. These features include :

Fast optimization of linear and nonlinear objective functions: Hopfleld-type neural networks,

discussed in the previous chapter, possess such a capability. This feature can be used to

implement optimization-based system identification algorithms in real-time. In a more
indirect way, these networks are also capable of implementing S41D estimation algorithms,

by performing many of the matrix computations involved in implementing S411D algorithms

such as computing QR and Singular Value Decomposition.

Ability to store knowledge and previous experience about the dynamic system. This feature

may turn out to be particularly important in data-poor environments, where the states are

either unavailable for measurements or highly corrupted with noise. The availability of
previous knowledge may reduce the amount of data required to accurately estimate the

parameters. For example, in normal aircraft operation, a content addressable memory can be

trained to generate the jacobian matrices of the dynamic system, given only current

measurements of the state and control vectors. This is not possible with conventional
parameter estimation techniques, where usually the history of the state and control variables

are needed for a robust estimation. In addition the control signal should be persistently

exciting. Of course, since the memory-based network bases its decision only on the current
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state and control variable and its previous experience about the behavior of the dynamic

system in similar conditions, it may not detect a fast change in the dynamics of the system.

Therefore, the memory-based network can augment a conventional parameter estimation

technique which observes both state and control histories but cannot substitute it completely.

Both modules can work in parallel, with the conventional parameter estimation technique

providing continuous training for the memory-based network.

3.1 Previous Neural Network Approaches to Parameter Estimation

There has been relatively little published research on using neural networks for the

estimation of parameters of dynamic systems. This may be due to the success of conventional

parameter estimation techniques and the relatively small added value that neural networks may

offer. Wang and Mendel (1991) trained a structured network to estimate the parameters of a
moving average (MA) process using higher order statistics of the outputs. They also proposed

techniques for extending their technique to autoregressive moving average (ARMA) processes.

Other researchers have used limited histories of input/output data to train a feedforward network to

estimate the parameters of a dynamic process (Samad and Mathur 1991; Foslien, Konar and

Samad, 1992). One obvious problem with this approach is that the dimension of the feedforward

neural network is very large for robust identification. Chu, Shoureshi and colleagues proposed

using Hopfield networks for the identification of the parameters of linear systems in state-space

form (Chu, Shoureshi and Healey, 1992); Chu and Shoureshi, 1992; Chu, Shoureshi and

Tenorio, 1990).

3.2 Implementation of Optimization-Based Parameter ID Using Hopfleld

Networks

In this section, we describe optimization-based methods for the estimation of parameters of

dynamic systems represented in state-space form. We then discuss how these methods can be

implemented using Hopfield neural networks. We extend the work of Chu and Shoureshi to

include the estimation of parameters in the case of known relationships between parameters. We

will also discuss how to implement a forgetting factor for fast adaptation.

A Hopfield-based parameter identifier is illustrated in figure 3.2-1. The connectivity matrix

encodes the input/output response history of the dynamic system, measurement error covariances

and known parameter relationships. Initial parameter estimates, if available, help initialize the state

of the network. We will describe now in detail how to synthesize the parameter ID Hopfield

network to satisfy the above requirements.
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Figure 3.2-1: A Hopfield Network Parameter Identification Module for
Linear Systems

3.2.1 Hopfield Parameter ID network

Given a particular model structure with unknown parameters, a parameter ID problem can
be defined as finding the parameters which optimize a certain objective function such as the
minimization of the error between model predictions and measured outputs, or the maximization of
the likelihood that the unknown parameters produced the measured data. As we demonstrated in
the previous chapters, recurrent networks may solve such optimization problems. We present here
the derivation of a Hopfield parameter ID recurrent network for linear systems and discuss its
possible advantages and disadvantages.

The system state equations for a discretized linear system can be defined as:

Xk+1 = Axk + BUk (3.2.1-1)

Our objective is to find the matrices A and B that, given xk and uk, can predict, in a least square

sense, the output xk+1. If we define the prediction error

ek = Xk+l - AXk - Buk (3.2.1-2)

where e is an N-dimensional vector, and define an energy function

I N-1
E =ITr 7l ekekT (3.2.1-3)

k=O

It is easy to prove that the matrix differential equations:
dA 8-- aE •(3.2.1-4)
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-- =-_ _- (3.2.1-5)

have an equilibrium point at the minimum of the energy function, therefore the matrices A and B

converge to the optimal least squared enrr solution.

Substituting for the energy function from equation (3.2.1-3) above, the differential

equations (3.2.1-4), (3.2.1-5) can be written as:

__e k *A q xk4,1 1 (3.2.1-6)

Connectivity matrx W BisatxS

where N is the number of data points in the measurement window. The dimension of the
connectivity matrix W is (n+m) x (n+m), where n is the state dimension and m is the control

dimension. The bias matrix S is of dimension (n+m) x n. The number of units in the Hopfield

network representing the above system of equations is the same as the dimension of S.
Monotonically increasing functions may be added to the above system of equations, but they are

not necessary. It is important to realize that the connectivity matrix W is not constant and is a

function of the correlations between input and output data. This makes it more difficult to

implement in hardware.

The above parameter ID Hopfield network may be extended in different ways to obtain

better estimates of the parameters as described below.

A Weighted Least Square Estimation

For nonlinear and time varying systems, the system parameters change with time. To track

these time-varying parameters, more recent data are considered to be more relevant and given more

weight. The weighting parameter, also called forgetting factor, can be easily incorporated into the

connectivity matrices and bias terms of the Hopfield network, as shown by equation (3.2.1-7).

M-1 -IXkk~1  Nt I - (3.2.1-7)

where Ak is the forgetting factor, usually chosen to be k = aN-k, with 0 < a < 1
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Ideni1cation Of Parameters With Equality Constraints

As pointed out by Chandler, Pachter and Mears (1993) the exploitation of a priori
information about relationships between the different parameters to be identified reduces the
uncertainty in the estimation of these parameters. As mentioned in the previous chapter, it is
possible to implement linear constraints in a Hopfield network using Lagrange multipliers.

3.2.2 Practical Issues In The Implementation Of State-Space Parameter ID
Using Hopfleld Networks

Since the Hopfield network is an implementation of the classical optimization based
parameter ID methods, it shares many of the practical issues a ciated with these techniques, such
as the requirement of persistently exciting inputs and the ability to stably track the parameters of a
nonlinear or time-varying system. In addition, there are other problems that are due to the Hopfield
implementation. One major problem is the possibility of ill-conditioning of the matrix W. This is
can be remedied by scaling the different input and state variables, or equivalently, by using
different time constants for the different parameters.

3.2.3 Flight Control Example

In this example, we used a Hopfield network to identify the parameters of the linearized
longitudinal dynamics model of the F/A-18 aircraft at an altitude of 30,000 ft and a speed of 700
ftlsec. We used the optimal control inputs that were generated using the Lagrange multipliers
Hopfield network optimal controller. A window of 100 data points at a sampling rate of 20Hz was
used in the identification. We added white noise to the state variables with a magnitude equal to
10% of their variance. We used the parameters estimated using the Hopfield network and the
control inputs to reconstruct the states. Figure 3.2.3-1 shows a comparison between the noisy state
measurements and the state trajectories generated using the estimated parameters. As shown in the
figure the Hopfield network was able to reproduce the states with a high accuracy.

In the above example, in order to make the Hopfield network work, we had to scale the
altitude variable. Without scaling, the connectivity matrix becomes extremely ill-conditioned and
requires a very small integration step.

Although Hopfield type neural networks are capable of performing state space parameter
identification, as shown in the above example, they may not have any advantage over current
techniques for small systems.
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4. LEARNING THE INVERSE DYNAMICS

We investigate in this chapter learning the inverse dynamics for use in computing the

dynami trim for aircraft FCS applications.

Problem Formulation

The inverse dynamics of a plant defined by the state equations (4-1):

dzK-= f(x.u) (4-1)

wherex e 90andu• r m canbe defined as:

u, = tx,*t, uj *) i = 1, ...,m (4-2)

where uji is an %"m- vector formed by excluding the control variable ui from the control vector
u. In general, the inverse t. (.) may not exist. If the control variables represent a nonredundant

system, that is there is a unique control vector u which produces a given desired rate of change of

the states d, then the dependence of each control variables on the other control variables may be

dropped and the inverse equations may be written as shown in equation (4-3):
U =- g(x, dxt) -3

However, it must be noted here that the inverse function g(.) is not defined everywhere. It

is only defined in a small submanifold r c ".2n. The submanifold r defines the set of reachable

states and achievable rates of change of the states. For example, for a linear system, the achievable

rates of change of the states from a paricular state are defined by the hyperplane:

t=Ax+Bu (4-4)

For example if the system is a second order and the B matrix = [0 1]T and x = [0 0]T then

the vector-j can only be in the direction of B = [0 I]T. In such a case the inverse function

U = g(xx d) at x = [0 O0T and [ =[0c]T is not defined. If the number of control variables m is

equal to the order of the system n, the columns of the matrix B are aW independent and there are no
limits on the control variables then the submanifold r = 92n. Obviously these conditions are too

restrictive and are seldom met in practice. Therefore, it is important to define the submanifold
where the inverse is valid. Since the desired rates of change of the states do not, in general,

coincide with the submanifold where the inverse is defined, it is important to find a suitable

approximation to the inverse function g(. ) in the region where such an inverse does not exist. This
can be done either during the training of a neural network to perform the inverse or even during run
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time. For example, at run time, one possible method to approximate the inverse outside the
manifold where it is defined is to project the desired rates of change of the states into the manifold

r and then use the inverse modeL There is another approach that can be used to overcome the

problem that the dimensionality of the rates of change of the states is usually higher than the
dimensionality of the available controls: to define the inverse function u = g(x,v), where the

vector v is of the same dimension as the control vector u. We can then project the desired rates of
change of the states to the variable v, using for example a gain matrix K ( e.g. v = K :).

Methods for training neural networks to perform the inverse function will be discussed in
detail in the next section.

4.1 The Inverse Model as a Controller

In general, control system design can be viewed as an attempt to produce a well behaved
inverse of the plant dynamics that has desirable robustness, stability and dynamic response

characteristics. An exact inverse model of the dynamics is not always desirable if it does not
possess good dynamic characteristics. In this chapter we discuss different techniques for building

an adaptive neural network model of the inverse dynamics. We develop one such network for
modeling the inverse longitudinal dynamics of a nonlinear F/A-18 simulator. We discuss methods
for overcoming many of the shortcomings of inverse dynamics control.

There are many different ways to train a neural network to produce the inverse of a

dynamic system. Three of these ways are shown schematically in figure 4.1-1. Kawato and Gomi
(1992) summarize the advantages and disadvantages of each of these three techniques. The
simplest possible scheme for acquiring an inverse is what is called the direct inverse modeling

(figure 4.1-1.a). In this scheme, the inverse model observes the realized trajectory of the plant and

attempts to estimate the control command that generated that trajectory. The error between the
inverse model estimate and the actual control command is used to train the inverse model. This

scheme has been successfully applied by Atkeson (1989) to train a neural network to estimate the
torques necessary to drive a robot arm along a desired trajectory. However, this technique by itself

does not solve the problems associated with inverse modeling discussed in the previous section,

namely that it will fail when the inverse is not unique. This problem can be solved by adding extra
constraints which make the network choose only a unique inverse. Also, this technique will fail

when the desired state change cannot be achieved, since the neural network will not have any

training examples in that region. One solution in such cases might be to use the control values of
the nearest experiences.

The second approach to learning the inverse dynamics, developed and used by Jordan
(Jordan, 1989); (Jordan and Rumelhart, 1992), is to first transform errors in the states I to errors
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in control a by propagating t backward through a forward model of the plant dynamics, as

shown in figure 4.1-l.b. This approach solves the problem of finding the control values when the

inverse is not unique, since the objective function to be minimized in this case is the output error.

This is unlike the direct inverse, where the learning objective is to minimize the error in the

estimated control. Moreover, it is possible to add a regularization term to the backpropagation

algorithm to achieve better control qualities. For example the objective function in training the

inverse model for a discrete dynamic system can be expressed as shown in equation (4.1-1) below:

nJn (FN(Xk.ukW) _ Yk)TQ (FN(xkukW) - yk) + ukRu, (4.1-1)

where FN(xk,ukW) represents the neural network forward model, Yk is the desired output vector

for training point k, and Xk is the output of the plant resulting from applying control Uk. The

matrices Q and R are weighting matrices.
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c. Inverse Learning Using Feedback Error

Figure 4.1-1. Different Techniques for Learning the Inverse Model

W represents the parameters of the feedforward neural network. The change in the control 'ak for

updating the value of Uk can be found usiag any of the nonlinear optimization techniques. For

example using gradient descent this update rule can be written as:

Gk cFN(xk1u-W) Q2 + Ru (4.1-2)
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The update nrle for the inverse model neural network parameters can then be derived:

AVV (4.1-3)

where IM(xkxk+l,V) represents the inverse model and V represents the inverse-model neural

network parameters. One of the advantages of the backpropagation through the forward model

technique is that it is possible to make the inverse more sensitive to a particular state through the

choice of the Q matrix. For example if the measurements of a particular state are very noisy, we

can reduce the sensitivity of the inverse with respect to that particular state by reducing the

corresponding values of the Q matrix. It is also possible to regulate the degree of utilization of the

different controls through a proper choice of the matrix PK Of course, the major disadvantage for

the backpropagation through the forward model technique is that it requires building a forward

model of the dynamic system in addition to the inverse model. An approach similar to the

feedforward backpropagation has been suggested by few researchers. In this approach, only the

forward model is learned and adapted to changes in plant dynamics. Then using nonlinear root-

finding techniques, similar to those used in aircraft trimming, it may be possible to find the

controls that produce the desired response. The obvious disadvantage with this approach is that it

requires real-time solution of coupled nonlinear equations, which may be computationally

expensive.

The third approach to learning an inverse model, shown in figure 4.1-l.c and called

feedback error learni-g, is described by Kawato and Gomi (1992). In this technique, the output of

an error feedback control1 -r is used as an error signal to train the inverse model. It is important to

note that even though the feedback controller may be linear, the neural network inverse model is, in
general, non linear after training. However, the learned inverse model still depends on the quality
of the feedback controller and its preferences. For instance if the feedback controller consists of
high feedback gains corresponding to unstable states and lower gains for originally stable states,
the resultant inverse model will also reflect the same priorities. The same can also be said for the
relative utilization of the different control variables.

4.2 Learning the Inverse Longitudinal Trim Function of the F/A-18

A neural network can be trained to produce the control surface commands to trim the

aircraft at given flight conditions and aircraft trim states. The inverse trim network is a specialized

model of the full inverse dynamics, where the desired rates of change of the states are all set to

zero. This reduces the input space of the inverse trim network considerably and makes it much

easier to train with fewer training examples. Although trimming the aircraft can be done using
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conventional numerical-trim-finding algorithms, the advantage of using a neural network approach

is the possible adaptation to aircraft dynamics.

We implemented an inverse trim neural network of the longitudinal dynamics of the F/A- 18

aircraft. The inverse trim neural network consisted of two inputs and three outputs. It took as

input the desired altitude and speed of the aircraft and produced as output the elevator angle (8e),

the total thrust and the angle of attack (a) required to trim the aircraft.

The first step to train the inverse trim neural network was to generate a trim database. We

used a numerical-trim-finding algorithm to generate the database. The training set contained 200

data points. Each data point consisted of the trim quintuple (speed VT, altitude hT, angle of attack

aT, elevator angle 8eT and the thrust thrr). The values of VT and hT were randomly and uniformly

chosen to be in the range of [300-900 ftisec] and [0 - 60,000 ft.] respectively. The trim condition

was for a level flight, therefore the pitch angle 0 was set equal to the angle of attack a and the pitch

rate q is equal to zero. Therefore we did not need to include the value of 0 and q in the computation

of the inverse trim model.

The neural network model for the inverse trim consisted of three HyperBF networks with

Gaussian basis functions of variable widths. Each HyperBF network computed one of the trim

variables aT, 8 eT and Stbrr. The HyperBF network structure and the training algorithms used to

compute the network parameters are presented in detail in Appendix A. Each network contained 80

basis functions, with centers randomly and uniformly distributed in the range of the training set.

For each network, the parameters to be identified consisted of the 80 linear coefficients Ci and 2

parameters for a diagonal weight matrix W (see Appendix A for an explanation of the meaning of

the parameters). We used a least square error minimization between the estimated and exact output

values as the criteria for choosing the network parameters. The relative rms error defined as:

Erms =x• (4.2-1)

was used to evaluate the performance on the training set, where xri represents the exact trim value

and xei is the estimated value and 200 is the number of data points in the training seL This error

was found to be less than 0.01 for all the three variables aT, 8eT and 8duT.

To test the performance of the inverse trim network, we compared its output with the exact

output generated using a numerical trim solver. The data used in the test set were different from

those used in training the inverse trim networks. Figure 4.2-1 compares the exact outputs with the

outputs generated using the inverse trim networks at different trim states. The results shown are for
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trimming the aircraft at different altitudes and at a constant trim speed vT of 700 ft/sec. As shown

in the figures, the estimated trim values match the numerically computed ones. The error is higher

near the boundaries, where the amount of training data arm not sufficient for exact g a ion.
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Figure 4.2-1. Comparison Between Neural Network Inverse Model For Trim
(Solid Line) And Numerically Computed Trim Values (Dotted Line) At A Constant

Vt = 700 Ft/Sec.
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4.3 Learning the Inverse Longitudinal Dynamics of an F/A-18 Aircraft

Modeling the inverse trim function presented in the previous section is a specialized version

of a full inverse model. Equation (4.3-1) defines a general inverse model for the longitudinal

dynamics of an aircraft.

8e = gl(uO,h,vq, dh, ih, ,, 6 )

8W = g2(z,h9v,q, ht, ,, w, q) (4.3-1)

The fact that we can choose all the states and their rates of change independently makes the

input space much larger than in the case of the inverse trim model. For the inverse longitudinal

dynamics model of the F/A-18 that we used, the input space was formed of five states and their

rates of change, for a total of 10 dimensions, as shown in equation (4.3-1). There were two

outputs, the stabilator angle and the thrust. We used two HyperBF networks with Gaussian units,

one for each output. The Gaussian RBF units had variable widths along the different input

dimensions. The HyperBF parameters were estimated using the heuristic method described in

Appendix A, in which the widths of the Gaussians are function of the average sensitivity of the

inverse model in the different directions, in addition to the range of the different variables.

4.3.1 Training the Gaussian HyperBF Inverse Model

We trained the two HyperBF networks using 2000 training points randomly and uniformly

distributed in the input space. Each training point consisted of twelve dimensions, ten for the

inputs and two for the output of the inverse model. The training points were generated using the

direct inverse method described above. At each given random state, we applied a random input to

the aircraft model and observed the resulting rate of change of the states. We then used the states

and the rates of change of the states as inputs to the neural network inverse model and trained the

network so that its output approximated the controls that produced the change in states. The

network contained 250 Gaussian HyperBF functions, with their centers randomly and uniformly

distributed in the same range as the input data We tested the resulting inverse model network on a

different 2000 points. We used equation (4.2-1) to quantify the error in the estimation. The relative

rms errors in estimating the stabilator angle and the thrust for both the training and test sets are

shown in table 4.2-1 below:

Table 4.2-1. Relative Rms Error In The Estimation Of The Training And Test Sets
Using A Neural Network Inverse Model.

.I Stabi.atr Ancale rror •I • ne Thrust Error
Tranin not I C o
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As shown in the table, although the error in estimating the test set is about twice as lare the

size of the error in estimating the training set, it is still small, given the very small number of

training data relative to the input space. Figures 4.3-1 and 4.3-2 compae the correct outputs with
the outputs computed using the inverse model network, for 50 points of the training and test sets

respectively.
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Figure 4.3-1: Performance Of The HyperBF Inverse Dynamics Model On 50
Points Of The Training Set. Dashed Lines Represent The Correct Values And

Solid Lines Are The Estimated Values. Dotted Lines Represent The Errors.
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Figure 4.3-2: Performance Of The HyperBF Inverse Dynamics Model On 50
Points Of The Test Set. Dashed Lines Represent T"he Correct Values And Solid

Linn Are The Estimated Values. Dotted Lines Represent The Errors.
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4.4 Using the Direct Inverse Model Network to Control die F/A-18
Longitduinal Dynamics.

We tested the trained inverse model network for the control of the longitudinal dynamics of

the F/A-18 aircraf The control loop used is illustrated in figure 4.4-1.

*d

Figure 4.4-1. Control Loop To Test The Inverse Model Network

A desired state trajectory is generated off-line. The difference between the desired and

actual trajectories are multiplied by a gain matrix (a diagonal matrix K in our case), to compute

desired rates of change of the states. The actual states and the desired rates of change of the states

form the inputs to the inverse model networks, which compute the controls to use to reach the

desired trajectories.

When we used the direct inverse network generated using the above approach, the resulting

control loop was unstable. This result was surprising given the very good approximation of the

inverse model. However after a closer analysis, it was found that since the network was trained

only to generate controls for feasible rates of change of the states, the inverse model network

performance outside this r-gion could not be predicted. This is the problem of the non-existence of

the inverse discussed at the beginning of this chapter.

A Stable Inverse Model Network

To remedy the problem that the inverse may not exist, we have to provide the network with

some training data in the region outside the feasible set of rates of change of the states. As

discussed at the beginning of this chapter, we can use a criterion for selecting the control as a

function of the current state. For example we can use feedback error learning Kawato and Gomi
(1992) to train the network. We tried here an off-line approach to train the HyperBF networks.

Part of the training examples were generated in the following way:

"* Select random states and desired rates of change of the states within a specified range.

" Linearize the nonlinear aircraft model around the chosen state by computing the jacobian of

the nonlinear dynamics at the current state using numerical methods. The linear aircraft

model is described by equation (4.4-1)
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*d,, A it+1 I (4.4-1)

whee Ad, represents the desired rate of change of the states and xr is the chosen random state.

Find the control vector u using the following equation:

ur = S((BTB)'IBT(*,, - A x)) (4.4-2)

where the function g(. ) limits the values of the controls to within the allowed region. For the

simulations that follow we used a linear function g(. ) with unity slope and with hard saturation at

the limits of allowed controls.

* Use the set (xr, t d, ur) as a training example to train the inverse model neural network.

We used a training set of 2000 examples, with 400 examples generated using the above

procedure. The remaining training examples were generated using the direct inverse approach, as

before.

Results

We tested the inverse model HyperBF network generated using the above procedure for

Jking three different trajectories. The control loop used is as illustrated in figure 4.4-2. Desired

trajectories were generated as follows:

Either a desired altitude or speed trajectory was first specified, the other variable was kept

constant. We used a fifth order polynomial to generate a smooth desired trajectory.

The angle of attacks required to trim the aircraft at the initial and final states were specified.

The angle of attack trajectory was taken to be the linear interpolation between the two trim

angle of attacks.

* The pitch angle and pitch rate were computed from the other three states to achieve the

desired trajectory.

It is important to note that the desired trajectories may not have been achievable exactly for

all the states, since we only used kinematic relations between the states to derive the trajectories.

The desired rates of change of states were generated using a simple gain, multiplying the error

between the current state and the desired current state as shown in equation (4.4-3).

*d,(t) = K (xd(t) - x(t)) (4.4-3)

K is assumed to be a diagonal matrix. At a sampling rate of 20Hz, the numerical values used for
the gains are k. 20, kq = 5, k. = 10, k. =10 ; k = 10, k. =1
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We ued thee gains for the three examples that we describe below.

Example 1

The control objective in this example is to track a smooth increase in altitude from 20,000 ft

to 40,000 ft in 250 sec. The speed is required to be constant at a value of 700 ftisec. The angle of

attack is a linear interpolation between the trim value at (20,000 ft / 700 ft/sec) and (30,000 ftl/700

ftisec.). The pitch angle is derived by first computing the flight path angle (y) from the desired

altitude and speed trajectories and then computing 0(t) = 00(t) + Mt).

Using the gains mentioned above and the trained HyperBF inverse networks, the

trajectories obtained for the different variables are plotted in figure 4. 4-2. The dotted lines represent

the desired ideal trajectories and the solid lines represent the simulated trajectories using the inverse

dynamics HyperBF neural networks. As shown in the figures, the simulated trajectories are very

close to the desired ones. The discontinuities shown in the figure are due to the nonlinear software

simulation of the dynamics and not due to the controller.
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Figure 4.4-2: Comparison Between.Desired (Dotted Line) And Simulated (Solid
Line) Trajectories For Tracking An Altitude Command on Nonlinear Simulator

Example 2

In this example, we desire to track a speed change from 500 fti/sec. to 800 ftisec. in 20

sec, while keeping the altitude constant at 30,000 ft. The desired and the simulated trajectories are
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Figure 4.4-3: Comparison Between Desired (Dotted Line) And Simulated (Solid
Line) Trajectories For Tracking A Slow Speed Command
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Example 3

This example is similar to the previous one, except that in this simulation it is required to
achieve the desired trajectory in 10 sec. only. This will test the inverse model controller near the
limits of the controls. Again in this case, the performance was still satisfactory. The thrust
computed using the inverse model HyperBF network exceeded the maximum values of 60,000 lbs.
and had to be limited at this value for the simulation. This shows the ability of the trained HyperBF
inverse dynamic model to extrapolate the controls necessary to achieve a high rate of change of the
states (the network was only trained for controls up to 60,000 lbs.). The results of the simulation
are shown in figure 4.3-4.
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Figure 4.4-4: Comparison Between Desired And Simulated Trajectories For
Tracking A Fast Speed Command

4.4 Summary and Conclusions

In this chapter we presented several procedures for generating an inverse dynamic model.
We used HyperBF networks to model the longitudinal inverse dynamics of an F/A-18 simulator.
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The HyperBF networks with Gaussian units were al le to generalize very well, given the extreme

sparsity of the training examples. Theoretically, this is only possible if the inverse dynamics as a

function of the states and the rates of change of the state is smooth. If the inverse dynamics are not

smooth, it may be desirable to approximate it with a smoother function to achieve better and faster

learning of the inverse function. Since the inverse dynamics do not exist everywhere, it is also

necessary to provide the network with examples where the strict inverse does not exist. Therefore,
the direct inverse model for training a neural network is not adequate and may result in unstable

systems in most cases, if not augmented with an additional controller to generate controls when the

desired trajectories are not achievable.
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S. CONCLUSIONS AND PHASE H1 RECOMMENDATiONS

5.1 Phase I Contributions

In this phase I effort we investigated the feasibility and possible advantages of using

different neural network architectures for performing different control functions. Our major

contributions in this phase are the following:

"Studying the properties of the different techniques for implementing real-time optimal

control using dynamic neural networks of the Hopfield-type.

" Developing and testing a new constraint satisfying dynamic neural network, based on

Lagrange multipliers method, that is suitable for real-time adaptive optimal controL

" Proposing and testing different alternatives for implementing system parameter identification
using different neural network architectures. We conclude that dynamic neural networks of

the Hopfield type can perform parameter ID, but they offer little advantage over other real-
time computational techniques for small size systems. We propose a parameter ID network
based on associative memory, which is trained to estimate the network parameters based on

the current state of the dynamical system. This network does not need persistence of

excitation for adequate identification, but it is very slow at recognizing rapid changes in

system dynamics. It can augment the performance of a conventional parameter ID system

and help in failure detection.

" Studying different techniques for training and implementing an inverse dynamics neural

network and investigating the advantages and disadvantages of these techniques.

* Implementing and testing a novel inverse trim based on HyperBF neural network.

" Successfully implementing an inverse dynamics model for the F/A- 18 longitudinal dynamics

using Gaussian HyperBF neural networks.

"* Testing the HyperBF controller for the control of three different trajectories.

5.2 Conclusions

We believe that the biggest potential for neural networks in control is the exploitation of the

ability to design adaptive nonlinear controllers. Based on the simulations performed in this phase I

study, we show that Hopfield and RBF feedforward network architectures may have a great

potential in the control of nonlinear systems. In particular, Hopfield implementation of Lagrange

multiplier method is suitable for real-time adaptive optimal control. Similarly, RBF feedforward
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neural network architectures are suitable for learning inverse dynamics and inverse trim in aircraft

FCS applications. In addition, RBF feedforward are easier to train than backpropagation sigmoid

networks since RBF formulation results in linear parameters.

The initial simulations we performed show very promising results as exemplified by the

small control errors in closed-loop simulations using the nonlinear F/A-18 longtitudinal dynamics.

Further studies are needed to test the applicability of the techniques to real world problems and to

study the robustness, stability and general reliability of the proposed neural techniques. Neural

networks by themselves cannot be the panacea to all the nonlinear control problems. An effort has

to be made to incorporate all the available knowledge about the dynamic system to achieve good

performance. In the next section we propose several extensions to the current effort to analyze and

improve the performance of neural network controllers.

5.3 Phase H Recommendations :

We describe below several extensions to the research reported here which may help solve

many of the problems associated with the current neural network approaches. Table 5.3-1

summarizes the recommendations we propose for a phase II study and relate these

recommendations to what has been achieved in phase I. The proposed phase II recommendations

are discussed in more detail in the next section.

Use of domain specific knowledge

In this phase I study, our main focus was the proof of the concept that neural networks can

be used successfully in control. We mainly used brut force learning and in optimization techniques

to prove our ideas. In phase II, we propose to use more specific knowledge about flight control in

designing the architecture of the neural networks, in its training, and optimization. We believe that

the inclusion of domain specific knowledge , such as relationships between variables or known

effects of a particular input variable, can reduce the amount of training considerably and increase

the accuracy of the generated neural networks.

Integration of the different modules

In the phase I effort, we tested the performance of each neural network module separately.

However, we did not test the performance of the whole dynamic system. In Phase II, we propose

to test the complete control system for performing large maneuvers. We will simulate situations

such as failure to test the robustness and adaptation of the proposed techniques. We also propose

to develop and incorporate a handling qualities model in the control loop.
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Improving the robustness of the neural networks modules

Under the current study, we used ideal simulations with no noise to train and test the

performance of the developed neural network modules. The performance of these systems may be

different in real time applications where noise is present. In phase H, we propose to study the

robustness of the neural network modules to noise and to explore different methods to improve

their performance when noise is present. Methods that we plan to explore include: artificially

inducing noise in training, using domain specific knowledge, exploring different architectures that

are more immune to noise, and adding a noise robustness term in the objective function used to

train the neural networks.

On-line design of optimal controllers

Many of the techniques used in designing control systems can be formulated as the

optimization of an objective function. Techniques such as pole placement, LQG, loop transfer

recovery, H. design and gI-synthesis are examples of such techniques. In the current study, we

explored different methods for optimization using dynamic neural networks. We propose to extend

these methods to the on-line design of controllers that can be formulated as the optimization of an

objective function.

Using bi-directional associative memories in control

Bi-directional associative memories (BAM) do not classify the different variables as inputs

or outputs to the network. Any variable can be either an input or an output variable. The role of the

BAM network is to predict the values of the missing variables. BAM networks may prove to be

very useful in applications such as an inverse trim network, where the variables specified vary

depending on the control objective. In phase II, we plan to explore methods for implementing

BAM networks and explore their use in control systems.

Reducing the dimensionality of the inverse dynamics network:

In phase I, we developed full inverse dynamics models. This resulted in a high-

dimensional neural network that requires a large number of data points for training. We also have

shown that there is a smaller dimensional space where the inverse is properly defined. Moreover, it

may be unrealistic to specify the desired rates of change for all states of the dynamic system. In

phase H, we plan to explore methods for reducing the number of input dimensions in the inverse

model.
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On-line learning of the inverse function

In the current work, the training of the inverse dynamics was done off-line and then the

trained inverse model was tested using the nnnlinear longitudinal flight simulator. No learning

occurred in real-time. In phase I1, we propose to implement continuous training of the inverse

model. Moreover, we propose to test the real-time adaptability of the inverse model network by

varying the system dynamics. We plan to compare both Kawato's feedback error learning and

Jordan's back-propagation through a forward modeL

Optimization of optimal control and identification

Many control and identification problems ame formulated as the optimization of an objective

function. However, the choice of the objective function itself relies on heuristics and trial-and-error

procedures. In phase I, we assumed these objective functions to be completely specified by the

control system designer. In a phase II study, we plan to explore ways for automating the choice of

the objective functions based on more abstract goals. We plan to explore fuzzy logic and neural

network techniques which map the abstract goals into objective function parameters and weights.

Moreover, we propose to explore neural network techniques for multi-objective optimization.

Multi-objective optimization may be useful when there are conflicting goals to optimize, such as the

case in the control-identification tradeoff discussed in the parameter ID chapter.

Different neural network implementations of system ID

In phase I, we only tested the implementation of state space models system ID using

Hopfield optimization networks. In a phase H effort, we propose to implement different

approaches to parameter ID. In particular, we plan to implement S4ID using Hopfield optimization

networks and implement parameter ID based on associative memories.

Expanded aircraft simulations

In the current effort, we limited our simulations to the longitudinal dynamics of an F/A-18

fighter aircraft. Moreover, the maneuvers we simulated were limited to the available nonlinear

flight simulator capabilities. Under a phase II study, we plan to acquire a more detailed flight

simulator, expand our simulations to the aircraft full dynamics, and simulate a wider range of

maneuvers. This will allow us to test our neuro-controllers under a wide variety of situations and

will allow us to study the limitations of the techniques we developed.
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Software Implementation of neuro-control systems:

The design and implementation of neuro-control modules is a time consuming and

expensive process. We propose to use the experience we gained in Phase I to develop a

neuro-control toolbox with advanced user interface, based on our CASYS software design tool

Table 5.3-1 Features Of Phase I And Phase H Efforts

Fature pPhase II
Objective Demonstrate applIcability of Produce a nAeuocontrol toolbox

neural network controllers Application In aircraft control
Domain - knowleg Not fully exploited Exploit prior knowledg about On offect of

different controls. relationships between
tStes ...

System Integration Tested each module sepamitly Full tee of the compiote control system under
different flight conditions

Robustness Not tested Test perormance with noise.
Explore methods of neural network training
that Improv robustness

On-line design of optimal controllers Hoplield optimal trajectory Polo placement
generation LQGALTR

H,.

Bl-directional associative memories Not tested Use SAM to implement Inverse trim
(SAM)

Dimensionality of Inverse model Full dimensionality Reduce dimensionallty to improve lesming and
control

On-line tests Only off-line tralning Test on-line traning and control

Opltmization of objective function Not explored • Explore fuzzy logic
parameters * MultI-objectlve optimization

Neuro Control Toolbox Prototypes using different CASYS with CC..+
languages: C. Fortran. MatlabTM
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Appendix A: Radial Basis Functions Networks for Function Approximation

The Radial Basis Functions (RBF) approach to approximating continuous functions

belongs to the class of non-parameteric approximation techniques. Non-parametric techniques also

include feedforward neural networks, projection pursuit regression, nearest neighbor

approximation and local weighted regression. RBF approximation consists of modeling an input

output mapping as a linear combination of radially symmetric functions (Powell 1987; Girosi and

Poggio, 1990; Broomhead and Lowe, 1988; Moody and Darken, 1989). It was first developed as

an exact interpolation approach; that is, it reproduces the outputs of the given examples exactly.

The output of the interpolating function is described by the following equation:

y(x) = CiC x-xiI (A-I)

where x e tn and y 6 9 represent the input and output respectively, I . I represent the

Euclidean norm, Ci's are the coefficients to be estimated, and N is the number of data points in the

training set.

Depending on the type of RBF used, a polynomial term of the form

ý.• ttjPj (x.) (A-2)

is added to equation (A-I), where the gj are unknown coefficients, and Pjm are polynomials of

degree : m. In such a case, since the number of parameters is larger than the number of data

points, the following extra constraints are added to make the parameter estimation problem well

posed (Powell, 1987).

j CjiP(xj) = 0 i= 1, ... p (A-3)
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"Gaussians (ro) = exp(--)

" Hardy Muluadrics 0(roj) = rij2 + C2

"• Hardy Inverse Multiquadrics D (Qj) = 1 I

" Cubic Splines 
q 2 + C2

" UneL Splines (rij) = rij
r 2 -d log (r) r even

"* Thin Plate Splines 0 (rj) = r14-d r odd

2k>d,dis the dimension of the input and k
is a smoothness parameter.

where rj = 11 xi - xj I.

Some of these RBFs (e.g. Gaussians and multiquadrics) have an explicit width parameter c
that needs to be determined. However we can also fix this width parameter, for example to have a
value of one and scale the data instead. In the applications we report in this work, we use Gaussian
RBFs.

To find the coefficients Cj for exact interpolation, we have to invert a square matrix which
is theoretically guaranteed to be nonsingular for a wide class of radial basis functions, given, of
course distinct data (Micchelli, 1986). Since the equations are linear, there are a number of batch
and recursive algorithms that exist for finding the exact value of the coefficients. The linearity of
the function with respect to the coefficients Cj guarantees the convergence to the globally optimal
parameters. Since many of the optimization algorithms require the inversion of a matrix of rank n,
the computational complexity for finding the optimal parameters is 0(n3), where n is the number of
data points and also the number of coefficients in the case of exact interpolation. Exact interpolation
may not be desirable if the data are noisy or if the computational burden is high.

A.1 Mathematlcal Interpretation of RBFs

As mentioned by Poggio and Giosi, (1989), many of the radial basis functions are the
Green functions obtained by solving different regularization problems of the form:

n
ýl(yt - f(xo)2 + 1 IPf f12  (A.1-1)
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Where P in the above equation is a radially symmetric differential operator. For example Gaussian

RBFs result from operators P of the form:

whe•r P2a = V2m and P2+I- = V V2m, V2 is the Laplacian operator and the coefficients am =

.21Similar regularization functions may also be derived for other types of RBFs. Since

regularization is also related to Bayesian estimation, we can think of RBFs as a special case of

Bayesian estimation (Girosi, Poggio and Caprile, 1990), where the prior probability of the

function f(x) is assumed to be

P(f) c& exp(- X 1II Pf 12 (A.1-3)

Another interesting interpretation for some forms of RBFs made by Schagen (1980) is to

regard the given training examples as point realizations of a stationary stochastic process Z(x).

The stationarity of Z(x) implies that the mean and variance of the process at any point are constants

and that the covariance between two points is only a function of the difference between these two

points. If we make the stronger assumption that the covariance between two points g(xi,xj)

depends only on the distance between these two points(ie., g(xi,xj) = g(IIxi - xjIU)) and given
that the function g(r) satisfies the covariance properties, namely g(0) = 1, g(r) < 1 for r > 0 and the

covariance matrix is nonnegative definite, some RBF solutions may be interpreted as the best linear

unbiased estimate of the stochastic process given the data points. For the derivation of this result,

we refer the reader to the paper by Schagen (Schagen, 1980). Gaussian RBFs satisfy all these

assumptions and constraints. Note that not all RBF functions mentioned above satisfy all the
assumptions required for this interpretation. RBFs with increasing function values as the distance

from the center increases cannot model a covariance since g(r) k g(0) for some r > 0.

Both of the above interpretations of radial basis functions make some a priori assumptions
about the degree of smoothness of the function to be approximated. These a priori assumptions

determine the shape of the radial basis function used.

A.2 Extenions to RBF: GRBF and HyperBF

To reduce the problems of exact interpolation, many researchers have suggested using a

smaller number of basis functions (Broomhead and Lowe, 1988; Girosi and Poggio, 1989; Moody

and Darken, 1989). In this case it is not possible to reproduce the exact outputs in general. To

choose the centers of the basis functions we can use optimization techniques (Girosi and Poggio,

1989) or also heuristic algorithms based on the distribution of the data (Moody and Darken, 1989).
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The RBF approximation with movable centers has been called Generalized Radial Basis Functions
(GRBF) (Girosi and Poggio, 1989). The estimation of the location of the centers of the GRBFs
using least square error optimization techniques is not an easy problem. This is because the error
surface is not convex, and the number of parameters to be estimated is large. From our experience
with different computer simulations and using second order nonlinear optimization techniques, we

found that it is very hard to adjust the centers and that usually the gain in performance is small.

Another extension to the RBF approach, described also by Poggio and Girosi (Girosi and
Poggio, 1989) is known as Hyper Basis Functions (HyperBF). This is a further generalization of
the GRBF technique, which includes using radial basis functions of different widths or also non-
radial basis functions. Similar types of basis functions have been described by Saha, Christian,
Tang, et al. (1991) for image coding and analysis and have been termed Oriented Non-Radial Basis
Functions (ONRBF). Saha, et al. (1991) suggest a gradient descent algorithm for finding the

parameters of the ONRBFs. Varying the widths of the RBFs is also equivalent to using a general
norm rather than the Euclidean norm to compute the distance of a point from the center of the basis
function.

The equation describing the output in terms of the basis functions and the different inputs is

as follows:

y(X) = Ci+( -xJ~w) (A.2-1)

where

I x- x.w = (xi- xj)T WTW (xi- xj) and W is a square matrix.

From our practical experience, it is found that the W matrix plays a very important role in

the quality of generalization. This is especially true for functions which do not meet the

smoothness assumptions implied a priori by using a certain type of RBFs.

We use HyperBF networks with Gaussian units and diagonal weight matrix W in

modeling the aircraft longitudinal inverse dynamics, the inverse trim function, and the associative
parameter ID module. In the next section we describe different methods for estimating the diagonal
weight matrix W, given the input-output data.

A.3 Estimating a Diagonal Weight Matrix W for Gaussian RBFs

There are many possible ways for estimating the weight matrix W. One class of methods,
based on optimization techniques, is to find a W which minimizes the sum of the square of the
errors between the output of the RBFs and the training set output. Nonlinear optimization
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techniques, that might be used include gradient descent, second-order nonlinear optimization

techniques or variations of random search. Gradient and second order methods are not guaranteed

to converge to the global minima and are sensitive to the initial choice of parameters. Also, for

large amounts of data and RBFs, the amount of computation involved in second order methods

becomes very large. In random search, the amount of computation for each step is relatively small,

but a very large number of steps may be needed to converge, especially when the number of
parameters to be estimated is large. The main advantage of random search is that it can escape from

local minima. Caprile and Girosi (1990) present a simple random search technique that has been

found to work well in practice.

Another alternative method for determining the best diagonal weight matrix W is to use

cross-validation techniques to estimate the wi's in the different input dimensions. This has the

advantage over minimum training error techniques in that it attempts to minimize the predicted

mean square error, as opposed to the mean square error of the training set only, and therefore may

generalize better. Hutchinson, Kalma and Johnson (1984) have attempted to use generalized cross
validation to find scaling parameters for one input variable. More work is needed to generalize this

technique to more than one input variable in an efficient way. However, in general, cross

validation techniques tend to be computationally very expensive, and it may be very difficult to

adapt these techniques to real time applications.

Many researchers have explored some heuristic methods for the estimation of the RBF

widths and center locations. Moody and Darken (1989) describe methods based on adaptive

clustering of the input data. In their analysis, they totally ignore the characteristics of the function

to be approximated. Platt (1991) describes a resource allocating network tha, laptively adds basis

functions based on a novelty measure. The novelty measure is based on two factors: the accuracy

of the approximation and the distance of the new experience from the previous data points. The

width of the RBFs is proportional to the distance to the k-nearest neighbor. Although the output

data in this method are used in the choice of the center locations, the estimation of the RBF widths

is still completely dependent on the input distribution only. Hutchinson (1993) proposes a heuristic

algorithm for finding a reasonable set of initial values of the parameters of the RBFs. His algorithm

is a generalization of Moody and Darken algorithm and allows for the possibility of estimating the

widths of RBFs based on the output as well as the input data. Methods that depend only on the

input distribution to determine the RBF width parameters may not work well if the dependence of

the function to be approximated in the different directions of the input space is not uniform. Mel

and Omohundro (1991) describe a method that depends on the second order derivatives of the

function to be approximated with respect to the different input variables.
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In the simulations reported in this work, we use a heuristic technique for estimating for

estimating a diagonal W for Gaussian RBFs. This method is based on approximating the first

order partial derivatives of the function to be approximated with respect to the different input

variables. Although this method is not proven to optimize any cost function, it is found to

approximate and sometimes surpass the results obtained using nonlinear optimization techniques

(Botros and Atkeson, 1991). The diagonal width parameters are assumed to depend on the average

variation of the function in each direction, as measured by the sum of the square of the first partial

derivatives in each direction, in addition to the variance of the input data in the different

dimensions. Define the average gradient g to be:

g =fd[- ... Mf fdx (A.3-1)

and the normalized vector g We find empirically that a good approximation for the

diagonal of W is as follows:
k

wii = jii k (A.3-2)
"4E{ (xi- ti)2}

where the subscript i denotes the ith input variable, Ef . I represents the expected value, and ti is

the ith component of the centers of the RBFs. The parameter k is a constant that can be determined

by cross validation or least mean square optimization. From simulations we find that the

approximation is not very sensitive to a range of the values of k. However, the choice of a good k

is important for the conditioning of the coefficients of the RBF. The bigger the value of k, the

smaller will be the equivalent width of the RBFs, and the estimation of the coefficients will be less

singular.

To understand why this suggested form of W makes sense, we can divide the equation for

W into two terms. The first term is the normalized gradient functional and the second is a

normalization factor that normalizes the input space so that the different inputs have approximately

similar range of values. The gradient functional term results in making the first order terms in the

regularizer operator for Gaussian RBFs (equation b-5) have approximately equal magnitude. This,

in turn, satisfies the assumptions made by the regularizer. Intuitively, the width of the Gaussian

functions will be smaller in the directions where the approximated function varies the most. Note

also that if one variable is irrelevant, its derivative function will be zero, and therefore the

corresponding w component will also be zero.
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The idea of separating the estimation of the norm metric from the estimation of the other

function approximation parameters has been recognized by many other researchers Girosi (1992)

Moody and Darken (1989); Samarov (1991) Li (1992) Zhao (1992). Some of these researchers

have also suggested the use of different forms of derivative flmctionals for other function

approximatiop techniques (Samarov, 1991; Zhao,1992; Li, '1992). Both Samarov and Li have

described methods for estimating these derivative functionals or expected derivatives from the data

and mentioned the assumptions under which these estimations are valid. We use an iterative

technique for the estimation of the matrix W. This technkqw starts by first estimating the function

to be approximated using a diagonal W matrix equal to the inverse of the variance of the input data

in the different input directions, and then estimating the derivative functional using the

approximated function. We then use the derivative functional to update the value of the W matrix

and use this latter to improve the function approximation. In practice, this procedure usually

converges in 3 or 4 iterations. However a more detailed mathematical analysis is needed to

understand the convergence properties of this algorithm.
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