Title: Intestinal Parasitism in an Owl Monkey

Author: Dale G. Dunn

Performing Organization: Walter Reed Army Institute of Research
Washington, DC 20307-5100

Sponsoring Agency: U.S. Army Medical Research & Development Command
Ft. Detrick, Frederick, MD 21702-5012

Distribution Statement: Approved for public release; distribution unlimited

Abstract: Case report, no abstract.

Subject Terms:
- Owl Monkey, Aotus
- Intestinal Parasitism
- Phaneropsolus
Diagnostic Exercise:
Intestinal Parasitism in an Owl Monkey

Dale G. Dunn

History
Sections of a small metazoan parasite were observed during routine histopathological examination of the duodenum of a 6-year-old, wild-caught, female, owl monkey (Aotus nancymai). Twelve minute organisms were recovered from the fixed specimen of duodenum and identified subsequently by a parasitologist. The animal originated in Peru and had been housed in a research colony in the United States for 5 years. Clinical illness was not observed prior to the animal's euthanasia as part of a research protocol.

Pathology
Parasites were barely visible to the naked eye and were firmly attached to the duodenal mucosa upon gross examination. Organisms were pyriform to oval and 650 μm x 800 μm at greatest width and length, respectively, when examined under a coverslip in saline (Figure 1A). Histologically, the parasites were deep within and expanded the intestinal glands (Figures 1B, 1C). Morphologic features of the organism included an oral and ventral sucker, thin spiny cuticle, parenchymatous matrix, intestinal tract, vitellaria, testes, prostate gland, and uterus. Uteri were filled with oval, thickshelled, refractile, operculated eggs measuring an average of 18 μm x 32 μm (Figure 1D). Low numbers of lymphocytes and plasma cells were scattered throughout the lamina propria adjacent to some of the parasites.

Questions
What is the parasite's identity and life cycle? Is there a potential public health concern?

Diagnosis and Discussion
Based on morphologic and histologic features, this parasite was identified as the lecithodendriid trematode, Phaneroplosus orbicularis. Reports of trematodiasis in owl monkeys are rare. Two dicroceliid trematodes, Athesmia heterolecithodes and Zonorchis goliathe, are known to parasitize Aotus sp., however, these are found in the bile duct and are considerably larger (1.5 to 2.0 mm x 8.0 to 9.0 mm and 2.5 to 3.7 mm x 9.5 to 13.0 mm, respectively) than P. orbicularis (1).

Species of the genus Phaneroplosus Looss, 1899, are intestinal parasites of mammals, birds, and reptiles (2), primarily of tropical regions of North America, South America, Africa, and Asia. Thirteen species have been collected from mammals, two of which, P. bonnei and P. spinicirrus, are reported human parasites in Indonesia and Thailand (3). P. bonnei also has been recovered from crab-eating macaques (M. iris, M. fascicularis), and slow lorises (Nycticebus coucang) from Malaysia, and rhesus monkeys (M. mulatta) from India (4). Reported hosts of P. orbicularis include the white-faced sapajou (Cebus capucinus), squirrel monkey (Saimiri sciureus), long-tusked marmoset or tamarin (Saguinus sp.), and night monkey (Aotus sp.) (5).

Flukes of veterinary importance are primarily digeneans (6). The order Digenaea is so called because its members develop indirectly with sexual and asexual generations parasitizing alternate hosts (6). The digenean life cycle is complex and has many variations, each involving at least two hosts: a mollusk, usually a snail, in which asexual multiplication occurs, and a vertebrate, in which the adult worm develops (5, 6). Flukes are discriminating in the choice of a snail intermediate host (6). The complex life cycle and specificity for snail intermediate hosts serve to limit the geographic range of specific trematodes and make infection of laboratory or commercially reared animals rare (5).

The life cycle of Phaneroplosus is not completely known; however, it is presumed to be similar to that of other Digenaea. Although the snail intermediate host for P. bonnei has not been identified, insects of the order Odonata have been shown to be second intermediate hosts (7). This complex life cycle requiring multiple intermediate hosts effectively eliminates any public health risk in the research environment.

When trematodiasis is found in the laboratory setting, it usually involves animals that have been brought in from their natural environment. Alternatively, laboratory cases may involve animals fed food contaminated with the encysted metacercaria produced by some species of trematode (5). The absence of reported cases of Phaneroplosus infection occurring naturally in any species indigenous to the United States suggests that the parasite may not occur in this area. Due to the complexity of the digenean life cycle and specificity for intermediate hosts, the infection in this case must have been acquired in the wild. Little is known about the life span of trematodes in their vertebrate host. Interestingly,
Figure 1. (A) An adult Phaneropsolus orbicularis, recovered from the formalin fixed duodenum of an owl monkey, as viewed under a coverslip in saline. The dark lateral fields denote the egg-filled uterus. H & E. Bar = 100 μm. (B) Subgross view of the duodenum. Note the two adult trematodes deep in the intestinal glands (arrows). H & E. Bar = 0.5 mm. (C) Adult *P. orbicularis* with oral sucker containing fragments of intestinal mucosa (arrow). H & E. Bar = 62 μm. (D) Higher magnification demonstrating a thin spiny cuticle (solid arrow) and typical thick-shelled refractile eggs (open arrow). H&E. Bar = 35 μm.
the length of time this monkey spent in captivity would suggest that adult *Phaneropsolus* sp. may live for up to 5 years. There were no significant pathological changes attributable to the parasites in this case. While this could indicate a long-standing host-parasite relationship in which the two species are well adapted to each other, not enough is known or written about *Phaneropsolus* in nonhuman primates to make such a claim. Our limited knowledge of *Phaneropsolus* infection may be ascribable to its diminutive size. The organisms may be overlooked during gross pathologic and fecal examinations, and thus, the paucity of reports in the literature may not reflect the true incidence of *Phaneropsolus* infection in owl monkeys or other nonhuman primates. A more rigorous assessment of the incidence of parasitism in host species will reveal the significance of this parasite in the nonhuman primate.

Acknowledgements
Special thanks to Dr. Bill Font, Southeastern Louisiana University, Hammond, LA, and Dr. Jeffrey Lotz, Gulf Coast Research Lab, Ocean Springs, MS, for confirming the identity of the parasite.

Financial support for this series is provided by Harlan Sprague Dawley, Inc. and presented by the Registry of Comparative Pathology, which is supported in part by grant RR00301 from the National Center for Research Resources, National Institutes of Health, Bethesda, MD, under the auspices of Universities Associated for Research and Education in Pathology. Sponsors of this series are not associated with the cases described.

Contributions of manuscripts for this series are welcome and should be submitted to the editor.

Reprint requests should be addressed to the author.

References