A Lower Bound for the Intersection of Regular Forests

by Dennis M. Volpano

October 1993

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, California 93943
Best Available Copy
A Lower Bound for the Intersection of Regular Forests

Dennis M. Volpano

Regular ΣX-forests continue to play an important role in programming languages, specifically in the design of type systems. They arise naturally as terms of constructor-based, recursive data types in logic and functional languages. Deciding whether the intersection of a sequence of regular ΣX-forests is nonempty is an important problem in type inference. We show that this problem is PSPACE-hard and as a corollary that the problem of constructing a regular ΣX-grammar representing their intersection is PSPACE-hard.
A Lower Bound for the Intersection of Regular Forests

Dennis M. Volpano

Department of Computer Science
Naval Postgraduate School
Monterey, California, USA

email: volpano@cs.nps.navy.mil

October 5, 1993

Abstract

Regular EX-forests continue to play an important role in programming languages, specifically in the design of type systems [MiR85, AM91, Vol93]. They arise naturally as terms of constructor-based, recursive data types in logic and functional languages. Deciding whether the intersection of a sequence of regular EX-forests is nonempty is an important problem in type inference. We show that this problem is PSPACE-hard and as a corollary that the problem of constructing a regular EX-grammar representing their intersection is PSPACE-hard.

1 Introduction

Regular EX-forests are playing an increasingly important role in language design and in particular in the design of type systems. Type inference then usually relies upon various operations over regular forests, one of which is RF-INT, deciding the emptiness of their intersection.

Definition 1.1 The problem RF-INT is given a sequence of regular EX-grammars G_1, \ldots, G_m, decide whether $\bigcap_{k=1}^m T(G_k)$ is nonempty.
Regular forests have been used to characterize the types of logic and functional programs [Mis84, MiR85, HeJ90, AM91] as well as overloading introduced through classes in Haskell [Kae88, Vol93]. For example, Heintze and Jaffar propose what amounts to regular ΣX-grammars as inferred "types" or approximations of the semantics of logic programs. Corresponding to a logic program, say

\[
\begin{align*}
p(a). \\
p(f(X)) & \leftarrow p(X). \\
r(b). \\
r(f(Y)) & \leftarrow r(Y). \\
q(Z) & \leftarrow p(Z), r(Z).
\end{align*}
\]

is a set of equations

\[
\begin{align*}
X &= a \cup f(X) \\
Y &= b \cup f(Y) \\
Z &= X \cap Y
\end{align*}
\]

whose simultaneous least fixed point is an approximate meaning of the program. The inferred approximation or "type" is given by

\[
\begin{align*}
X &= a \cup f(X) \\
Y &= b \cup f(Y) \\
Z &= \emptyset
\end{align*}
\]

Solving for variable \(Z\) requires deciding whether the intersection of the two regular forests described by the first two equations is nonempty. One can also view the logic program above as describing a set of valid overloading in Haskell for \(p\) and \(r\) as operators where \(p\) has instances at types \(a\) and \(f\), and \(r\) at \(b\) and \(f\):

\[
\begin{align*}
\text{class } P \alpha \text{ where } p :: \alpha \\
\text{instance } P a \text{ where } p = \ldots \\
\text{instance } P f(X) \Rightarrow P f(X) \text{ where } p = \ldots \\
\text{class } R \alpha \text{ where } r :: \alpha \\
\text{instance } R b \text{ where } r = \ldots \\
\text{instance } R f(Y) \Rightarrow R f(Y) \text{ where } r = \ldots
\end{align*}
\]

Instance declarations for an overloaded operator in Haskell describe a regular forest. So for example, deciding whether term \(p = r\) is typable requires
deciding whether the regular forest arising from p's instance declarations intersects with the forest described by instances for r.

2 Forests and Regular ΣX-grammars

Given an alphabet A, an A-valued tree t is specified by its set of nodes (the "domain" $\text{dom}(t)$) and a valuation of the nodes in A. Formally, a k-ary, A-valued tree is a map $t : \text{dom}(t) \to A$ where $\text{dom}(t) \subseteq \{0, \ldots, k-1\}^*$ is a nonempty set, closed under prefixes. The frontier of t is the set

$$\{w \in \text{dom}(t) \mid \exists i. wi \in \text{dom}(t)\}.$$

It is assumed that A is partitioned into a ranked alphabet Σ and a frontier alphabet X. A ranked alphabet, or signature, is a finite nonempty operator domain. For any Σ and X, we denote the set of all finite ΣX-trees by $F_{\Sigma}(X)$. A forest, or tree language, $T \subseteq F_{\Sigma}(X)$ is called regular if and only if for some finite set C disjoint from Σ and X, T can be obtained from finite subsets of $F_{\Sigma}(X \cup C)$ by applications of union, concatenation \cdot, and closure \ast where $c \in C$ [Tho90].

A regular forest can alternatively be defined as a tree language generated by a regular ΣX-grammar [Ge84].

Definition 2.1 A regular ΣX-grammar G consists of

- a finite nonempty set N of nonterminal symbols,
- a finite set P of productions of the form $A \rightarrow r$ where $A \in N$ and $r \in F_{\Sigma}(N \cup X)$, and
- an initial symbol $S \in N$.

Definition 2.2 If $G = (N, \Sigma, X, P, S)$ is a regular ΣX-grammar then the ΣX-forest generated by G is

$$T(G) = \{t \in F_{\Sigma}(X) \mid S \Rightarrow_{G} t\}$$

Regular ΣX-grammars are a class of context-free grammars that define the same family of forests as those recognized by nondeterministic root-to-frontier (NDR) ΣX-automata. A root-to-frontier automaton can be viewed
as an attribute evaluator for a tree whose attributes are states prescribed by an attribute grammar with inherited attributes only. Formally, a NDR ΣX-automaton A is a tuple (A, A', α) such that

1. A is a finite NDR Σ-algebra (A, Σ),
2. $A' \subseteq A$ is a set of initial states, and
3. $\alpha : X \rightarrow pA$ is a final assignment.

In a NDR Σ-algebra (A, Σ), A is a nonempty set of states and every $\sigma \in \Sigma_\omega$ with $m \geq 1$ is realized as a mapping $\sigma^A : A \rightarrow p(A^m)$. For $\sigma \in \Sigma_0$, σ^A is a subset of A.

For example, a NDR ΣX-automaton $A = (A, A', \alpha)$ recognizing set

$$\{ (x, y), (y, x) \}$$

can be defined as follows. Let $\Sigma = \Sigma_2 = \{ \sigma \}$, $X = \{ x, y \}$, and the set of initial states $A' = \{ S \}$. Define $A = (\{ \hat{x}, \hat{y}, S \}, \Sigma)$ such that

$$\sigma^A(S) = \{ (\hat{x}, \hat{y}), (\hat{y}, \hat{x}) \}$$

and finally define the final assignment α as

$$x\alpha = \{ \hat{y} \}$$
$$y\alpha = \{ \hat{x} \}$$

It is interesting to note that there is no deterministic root-to-frontier ΣX-automaton that accepts the set above. Suppose automaton A accepts $\sigma(x, y)$ and $\sigma(y, x)$ and that $\sigma(a) = (a_1, a_2)$ for some states a, a_1, and a_2 of A. If α is A's final assignment function, then

$$x\alpha = a_1, \ y\alpha = a_2, \ y\alpha = a_1, \ x\alpha = a_2$$

Since A is deterministic, $a_1 = a_2$. So we have $\sigma(a) = (a_1, a_1)$ where $x\alpha = y\alpha = a_1$. Therefore on $\sigma(x, x)$ and $\sigma(y, y)$, A enters the leaves in state a_1 such that $a_1 \in x\alpha$, and $a_1 \in y\alpha$. Thus A accepts $\sigma(x, x)$ and $\sigma(y, y)$ as well.

Given that regular ΣX-grammars define exactly the forests recognized by NDR ΣX-automata, one could formulate RF-INT in terms of the latter representation of regular forests. But we choose regular ΣX-grammars instead since they are better suited for manipulation.

Regular forests are effectively closed under intersection.
Theorem 2.1 If G_1 and G_2 are regular ΣX-grammars, for a given Σ and X, then $T(G_1) \cap T(G_2)$ is a forest generated by a regular ΣX-grammar.

Proof. Suppose $G_1 = (N_1, \Sigma, X, P_1, S_1)$ and $G_2 = (N_2, \Sigma, X, P_2, S_2)$ are regular ΣX-grammars. Let ΣX-grammar $G = (N_1 \times N_2, \Sigma, X, P, [S_1, S_2])$ where

$$[A, B] \rightarrow a([Y_1, Z_1], \ldots, [Y_n, Z_n]) \in P, \text{ for } n \geq 0$$

if and only if

$$A \rightarrow a(Y_1, \ldots, Y_n) \in P_1,$$

$$B \rightarrow a(Z_1, \ldots, Z_n) \in P_2,$$

and $a \in \Sigma$, or $[A, B] \rightarrow a \in P$ if and only if $a \in X$. Then $T(G) = T(G_1) \cap T(G_2)$. □

The theorem implies that the family of regular forests is properly contained within the context-free languages since the latter is not closed under intersection.

We now state and prove the main result.

Theorem 2.2 RF-INT is PSPACE-hard.

Proof. The proof uses a result of [Koz77]. For every deterministic Turing machine M of polynomial space complexity, we give a log-space transducer that on input x, outputs a sequence of regular ΣX-grammars whose intersection is nonempty iff M accepts x.

Let M be a single tape DTM of polynomial space complexity $p(n) \geq n$ and assume that M always makes at least three odd number of moves, has a unique accepting state, q_{acc}, and erases its tape before accepting, positioning its tape head at the left end of the tape. Let $x = a_1 \ldots a_n$ be a string over M's input alphabet and suppose M has states Q and tape symbols Γ such that Q, Γ, and set $\{nil, \#, \#\}$ are pairwise disjoint. If

$$\Delta = \Gamma \cup \{[qX] \mid q \in Q \& X \in \Gamma\}$$

then ranked alphabet $\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ where $\Sigma_0 = \{nil\}$, $\Sigma_1 = \Delta$, $\Sigma_2 = \{\#\}$ and $\Sigma_3 = \{\#\}$. Suppose IDA derives regular forest

$$Z_1(Z_2(\ldots Z_{p(n)}(nil)\ldots))$$
for all \(Z_k \in \Delta, 1 \leq k \leq p(n) \), and \(ID_{i[X_1X_2X_3]} \) derives regular forest

\[
Z_1 (\cdots Z_{i-1} (X_1 (X_2 (X_3 (Z_i (\cdots Z_{p(n)-3} (\text{nil}) \cdots)
\]

for all \(X_1, X_2, X_3, Z_k \in \Delta, 1 \leq k \leq p(n) - 3 \).

A computation of \(M \) consists of a sequence of instantaneous descriptions

\[
ID_0 \vdash ID_1 \vdash \cdots \vdash ID_{2m+1},
\]

each containing the contents of \(M \)'s tape padded with blanks (\(B \)'s) to length \(p(n) \). If according to a move of \(M \), symbols \(Y_1 Y_2 Y_3 \) in positions \(i, i+1, \) and \(i+2 \) respectively of one \(ID \) can follow from symbols \(X_1 X_2 X_3 \) in the same positions of another \(ID \), we write

\[
ID_{i[X_1X_2X_3]} \vdash_M ID_{i[Y_1Y_2Y_3]} \]

We give two regular \(\Sigma X \)-grammars \(F_{i^{\text{odd}}} \) and \(F_{i^{\text{even}}} \) such that \(F_{i^{\text{odd}}} \) ensures that even \(ID \)'s follow from odd ones, and \(F_{i^{\text{even}}} \) that odd ones follow from even ones. Let \(F_{i^{\text{odd}}} \) be a regular \(\Sigma X \)-grammar with empty frontier alphabet, start symbol \(S \) and productions

\[
S \rightarrow \#(ID_\Delta, ID_{i[Z_1Z_2Z_3]}, F_{i[Z_1Z_2Z_3]})
\]

for all \(Z_k \in \Delta, 1 \leq k \leq 3, \)

\[
F_{i[X_1X_2X_3]} \rightarrow \#(ID_{i[Y_1Y_2Y_3]}, ID_{i[Z_1Z_2Z_3]}, F_{i[Z_1Z_2Z_3]})
\]

for all \(X_k, Y_k, Z_k \in \Delta, 1 \leq k \leq 3, \) such that \(ID_{i[X_1X_2X_3]} \vdash_M ID_{i[Y_1Y_2Y_3]} \), and

\[
F_{i[X_1X_2X_3]} \rightarrow \#\#(ID_{i[Y_1Y_2Y_3]}, ID_\Delta)
\]

for all \(X_k, Y_k \in \Delta, 1 \leq k \leq 3, \) such that \(ID_{i[X_1X_2X_3]} \vdash_M ID_{i[Y_1Y_2Y_3]} \).

Let \(F_{i^{\text{even}}} \) be a regular \(\Sigma X \)-grammar with empty frontier alphabet, start symbol \(S \) and productions

\[
S \rightarrow \#(ID_{i[X_1X_2X_3]}, ID_{i[Y_1Y_2Y_3]}, S)
\]

\[
S \rightarrow \#\#(ID_{i[X_1X_2X_3]}, ID_{i[Y_1Y_2Y_3]})
\]

for all \(X_k, Y_k \in \Delta, 1 \leq k \leq 3, \) such that \(ID_{i[X_1X_2X_3]} \vdash_M ID_{i[Y_1Y_2Y_3]} \).

Finally, suppose \(\text{initID} \) derives the unary tree

\[
[q_{0}a_1](a_2(\cdots a_n(B_{n+1}(\cdots B_{p(n)}(\text{nil}) \cdots)
\]
where B_k is a blank and q_0 is the start state of M, and finalID derives
\[[q_{\text{acc}}B](B_2\cdots B_{p(n)}(\text{nil})\cdots) \]

Then let F_{end} be a regular grammar with start symbol S and productions
\[
S \rightarrow \#(\text{initID}, ID_\Delta, F_{\text{acc}})
\]
\[
F_{\text{acc}} \rightarrow \#(ID_\Delta, ID_\Delta, F_{\text{acc}})
\]
\[
F_{\text{acc}} \rightarrow \#(ID_\Delta, \text{finalID})
\]

Then we have
\[
\bigcap_{i=1}^{p(n)-2} T(F_i^{\text{odd}})
\]
iff $u = \#(ID_0, ID_1, \#(\cdots \#(ID_{2m-2}, ID_{2m-1}, \#(ID_{2m}, ID_{2m+1})\cdots) and from ID_{2k-1} follows ID_{2k} according to the transition rules of M for $1 \leq k \leq m$. Likewise,
\[
\bigcap_{i=1}^{p(n)-2} T(F_i^{\text{even}})
\]
iff $u = \#(ID_0, ID_1, \#(\cdots \#(ID_{2m-2}, ID_{2m-1}, \#(ID_{2m}, ID_{2m+1})\cdots) and from ID_{2k} follows ID_{2k+1} according to the rules of M for $0 \leq k \leq m$. Then
\[
T(F_{\text{end}}) \cap \bigcap_{i=1}^{p(n)-2} T(F_i^{\text{odd}}) \cap T(F_i^{\text{even}})
\]
is nonempty iff M accepts x. \qed

As is the case for emptiness of intersection of a sequence of DFA's, the source for the hardness of RF-INT lies not in deciding emptiness but rather in computing the intersection of regular forests.

Corollary 2.3 Given regular ΣX-grammars G_1, \ldots, G_m, constructing a regular ΣX-grammar G such that $T(G) = \bigcap_{k=1}^m T(G_k)$ is PSPACE-hard.

Proof. The emptiness of $T(G)$ for a regular ΣX-grammar G is decidable in time $O(|G|^2)$ in the usual way. From the proof of Theorem 2.2 then every problem in PSPACE is P-time Turing reducible to the problem of constructing the intersection of a sequence of regular ΣX-grammars. \qed
A simple algorithm for constructing G is based on the usual construction of forming the cartesian product of reachable states as is suggested in the proof of Theorem 2.1 [AiM91]. It has worst-case time complexity exponential in m. Unfortunately this naive construction is likely the best we can do. It should be pointed out that for a fixed m, constructing G from G_1, \ldots, G_m can be done in polynomial time.

Deciding whether some number of DFA's accept a common string can be done in nondeterministic linear space, but this does not appear to be true for RF-INT, which can be decided in deterministic exponential time. This suggests that a tighter lower bound exists for RF-INT.

References

Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314
2

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943
2

Director of Research Administration
Code 08
Naval Postgraduate School
Monterey, CA 93943
1

Dr. Neil C. Rowe, Code CSRp
Naval Postgraduate School
Computer Science Department
Monterey, CA 93943-5118
1

Prof. Robert B. McGhee, Code CSMz
Naval Postgraduate School
Computer Science Department
Monterey, CA 93943-5118
1

Dr. Ralph Wachter
Software Program
Office of Naval Research
800 N. Quincy St.
Arlington VA 22217-5000
2

Dr. Dennis Volpano, Code CSVo
Naval Postgraduate School
Computer Science Dept.
Monterey, CA 93943-5118
20