PERFORMANCE ORIENTED PACKAGING TESTING
OF
CONTAINER, SHIPPING AND STORAGE,
MK 37 MOD 0, MK 287 MODS 0, 1, AND MK 764 MOD 0
FOR PACKING GROUP II SOLID HAZARDOUS MATERIALS

Author:
Peter W. Guppenberger
Mechanical Engineer

Performing Activity:
Packaging, Handling, Storage and Transportability Center
Naval Weapons Station Earle
Colts Neck, New Jersey 07722-5023

March 1994

FINAL

DISTRIBUTION UNLIMITED

Sponsoring Organization:
Commander, Naval Air Systems Command (AIR-4101L5)
Department of the Navy
Washington, DC 20361-8050
This Performance Oriented Packaging (POP) test was conducted to ascertain whether the Mk 37 Mod 0 Shipping and Storage Container (LD 269069) meets the Packing Group II requirements specified by the Code of Federal Regulations, Title 49 CFR, Parts 107 through 178, dated 31 December 1991. The packaged commodity used for the test was a simulated SIDEWINDER Rocket Motor weighing 46 kg (100 pounds). This represents the current maximum commodity weight. To compensate for future growth variations in commodity and/or packaging, 2 kg (4 pounds) were added. Gross weight of the loaded container was 63 kg (137 pounds). The test results indicate that the container has conformed to the POP requirements.

In addition, due to their similarities in design, size and weight, this test is considered representative of qualification testing for the Mk 287 Mods 0, 1 (Drawing #1516486) and Mk 764 Mod 0 (Drawing #5972149) Shipping and Storage Containers as per the variation in Title 49 CFR 107, Sec. 178.601g(4), Variation 4.
INTRODUCTION

This Performance Oriented Packaging (POP) test was performed to ascertain whether the Mk 37 Mod 0 Shipping and Storage Container (LD 269069) meets the Packing Group II requirements specified by the Code of Federal Regulations, Title 49 CFR, Parts 107 through 178, dated 31 December 1991. The packaged commodity used for the test was a simulated SIDEWINDER Rocket Motor weighing 46 kg (100 pounds). This represents the current maximum commodity weight. To compensate for future growth variations in commodity and/or packaging, 2 kg (4 pounds) were added. Gross weight of the loaded container was 63 kg (137 pounds).

Due to unavailability only one container was used for testing. This is less than the number required by the regulations. Approval for this deviation has been granted by the Under Secretary of Defense, Memorandum for the Joint Logistics Commanders dated 22 February 1990.

In addition, due to their similarities in design, size and weight, this test is considered representative of qualification testing for the Mk 287 Mods 0, 1 (Drawing #1516486) and Mk 764 Mod 0 (Drawing #5972149) Shipping and Storage Containers as per the variation in Title 49 CFR 107, Sec. 178.601g(4), Variation 4.

TESTS PERFORMED

1. Base Level Vibration Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.608. The container was placed on a repetitive shock platform which has a vertical linear motion of 1-inch double amplitude. Movement of the container was restricted during vibration in all but the vertical direction. The frequency of the platform was increased until the container left the platform 1/16 of an inch at some instant during each cycle. Test time was 1 hour.

2. Stacking Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.606. The container was subjected to a force applied to its top surface equivalent to the total weight of identical packages stacked to a minimum height of 3 meters (including the test container). A weight of 1,057 kg (2,329 pounds) was stacked on the test container. The test was performed for 24 hours. The weight was then removed and the container examined.
3. Drop Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.603. Five drops were performed from a height of 1.2 meters (4 feet), impacting the following surfaces:

a. Flat bottom.
b. Flat top.
c. Flat on long side.
d. Flat on short side.
e. One corner.

PASS/FAIL

1. Base Level Vibration Test

The criteria for passing the base level vibration test is outlined in Title 49 CFR, Sec. 178.608(c): No test sample should show any deterioration which could adversely affect transportation safety or any distortion liable to reduce packaging strength.

2. Stacking Test

The criteria for passing the stacking test is outlined in Title 49 CFR, Sec. 178.606(d): No test sample may show any deterioration which could adversely affect transportation safety or any distortion likely to reduce its strength, cause instability in stacks of packages, or cause damage to inner packagings likely to reduce safety in transportation.

3. Drop Test

The criteria for passing the drop test is outlined in Title 49 CFR, Sec. 178.603(f): A package is considered to successfully pass the drop tests if for each sample tested, no rupture occurs which would permit spillage of loose explosive substances or articles from the outer packaging.
TEST RESULTS

1. Base Level Vibration Test
 Satisfactory.

2. Stacking Test
 Satisfactory.

3. Drop Test
 Satisfactory.

DISCUSSION

1. Base Level Vibration Test

 The input vibration frequency was 4 Hz. Immediately after the vibration test was completed, the container was removed from the platform, turned on its side and inspected. No unfavorable distortion or deterioration was observed.

2. Stacking Test

 The container was inspected after the 24-hour period was over. No unfavorable distortion or deterioration was observed.

3. Drop Test

 After each drop, the container was inspected. The contents were completely retained by the container.

REFERENCE MATERIAL

B. Bureau of Explosives Tariff No. BOE 6000K Hazardous Materials Regulations of the Department of Transportation by Air, Rail, Highway, Water including Specifications for Shipping Containers.
DISTRIBUTION LIST

Defense Technical Information Center (2 copies)
ATTN: DTIC/FDA
Bldg. 5, Cameron Station
Alexandria, VA 22304-6145

DLA Depot Operations Support Office
Bldg. 32F, DGSE
ATTN: Tom McElwee
Richmond, VA 23297-5000

Commander
Naval Surface Warfare Center
ATTN: Crane Division (Code 4053)
Crane, IN 47522-5000
TEST DATA SHEET

POP MARKING:

UN 4A1/Y63/S/**/USA/DOD/NAD

YEAR LAST PACKED OR MANUFACTURED

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>NSN: 8140-00-563-0205</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: 4A1</td>
<td></td>
</tr>
<tr>
<td>Drawing Number or P/N:</td>
<td>LD 269069</td>
</tr>
<tr>
<td>Dimensions:</td>
<td>77" L x 8.2" W x 6.75" H</td>
</tr>
<tr>
<td>Closure (Method/Type):</td>
<td>5/8" strapping, removable cover</td>
</tr>
</tbody>
</table>

Outer Packaging Material: Steel

Tested Gross Weight: 63 kg (137 pounds)

Tested Tare Weight: 15 kg (33 pounds)

PACKAGED COMMODITY:

<table>
<thead>
<tr>
<th>Name:</th>
<th>See table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSN(s):</td>
<td>See table 1</td>
</tr>
<tr>
<td>United Nations Number:</td>
<td>See table 1</td>
</tr>
<tr>
<td>United Nations Packing Group:</td>
<td>II</td>
</tr>
<tr>
<td>Physical State (Solid, Liquid, or Gas):</td>
<td>Solid</td>
</tr>
<tr>
<td>Vapor Pressure (Liquids Only):</td>
<td>N/A At 50 °C: N/A At 55 °C: N/A</td>
</tr>
<tr>
<td>Consistency/Viscosity:</td>
<td>N/A</td>
</tr>
<tr>
<td>Amount per Package:</td>
<td>See table 1</td>
</tr>
<tr>
<td>Net Weight:</td>
<td>See table 1</td>
</tr>
</tbody>
</table>

PACKAGED COMMODITY USED FOR TEST:

Name: Simulated SIDEWINDER Rocket Motor	Physical State: Solid
Consistency:	N/A
Density/Specific Gravity:	N/A
Test Pressure (Liquids Only):	N/A
Tested Net Weight:	48 kg (104 pounds)

Additional Description:

The net weight includes the current maximum commodity weight plus an additional 2 kg (4 pounds).

N/A = Not Applicable
TABLE 1
Commodities Approved for Shipping in the
Mk 37 Mod 0 Shipping and Storage Container

<table>
<thead>
<tr>
<th>NALC/DODIC</th>
<th>NSN</th>
<th>Commodity Nomenclature</th>
<th>Packing Document Number</th>
<th>Haz Class/DIV</th>
<th>UN Number</th>
<th>Units/Pkg</th>
<th>Total Net Weight (lb)</th>
<th>Total Gross Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>Mk 36 Mod 8</td>
<td>1331110</td>
<td>1.3C</td>
<td>0186</td>
<td>1</td>
<td>46 (100)</td>
<td>61 (133)</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>Mk 36 Mod 9</td>
<td>1331110</td>
<td>1.3C</td>
<td>0186</td>
<td>1</td>
<td>45 (99)</td>
<td>60 (132)</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>Mk 36 Mod 10</td>
<td>1331110</td>
<td>1.3C</td>
<td>0186</td>
<td>1</td>
<td>45 (99)</td>
<td>60 (132)</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>Mk 36 Mod 11</td>
<td>1331110</td>
<td>1.3C</td>
<td>0186</td>
<td>1</td>
<td>45 (99)</td>
<td>60 (132)</td>
</tr>
</tbody>
</table>

Mk 287 Mods 0, 1 Shipping and Storage Container

<table>
<thead>
<tr>
<th>NALC/DODIC</th>
<th>NSN</th>
<th>Commodity Nomenclature</th>
<th>Packing Document Number</th>
<th>Haz Class/DIV</th>
<th>UN Number</th>
<th>Units/Pkg</th>
<th>Total Net Weight (lb)</th>
<th>Total Gross Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V380</td>
<td>1337-01-090-9294</td>
<td>Mk 36 Mod 8</td>
<td>1331110</td>
<td>1.3C</td>
<td>0186</td>
<td>1</td>
<td>46 (100)</td>
<td>61 (133)</td>
</tr>
<tr>
<td>V884</td>
<td>1337-01-131-7860</td>
<td>Mk 36 Mod 9</td>
<td>1331110</td>
<td>1.3C</td>
<td>0186</td>
<td>1</td>
<td>45 (99)</td>
<td>60 (132)</td>
</tr>
<tr>
<td>V887</td>
<td>1337-01-145-9380</td>
<td>Mk 36 Mod 10</td>
<td>1331110</td>
<td>1.3C</td>
<td>0186</td>
<td>1</td>
<td>45 (99)</td>
<td>60 (132)</td>
</tr>
<tr>
<td>V888</td>
<td>1337-01-145-1963</td>
<td>Mk 36 Mod 11</td>
<td>1331110</td>
<td>1.3C</td>
<td>0186</td>
<td>1</td>
<td>45 (99)</td>
<td>60 (132)</td>
</tr>
</tbody>
</table>

Mk 764 Mod 0 Shipping and Storage Container

<table>
<thead>
<tr>
<th>NALC/DODIC</th>
<th>NSN</th>
<th>Commodity Nomenclature</th>
<th>Packing Document Number</th>
<th>Haz Class/DIV</th>
<th>UN Number</th>
<th>Units/Pkg</th>
<th>Total Net Weight (lb)</th>
<th>Total Gross Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHC09</td>
<td>1377-01-326-1359</td>
<td>Mk 112 Mod 1 RAM Rocket Motor</td>
<td>5972149</td>
<td>1.3C</td>
<td>0186</td>
<td>1</td>
<td>39 (88)</td>
<td>53 (118)</td>
</tr>
</tbody>
</table>

N/A = Not Assigned