Tetraalkyldiarsines as Potential Precursors for Electronic Materials: Synthesis and Characterization of Various Iso-Propyl Arsenic Compounds

School of Chemistry and Biochemistry and School of Materials Science and Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0400

Department of the Navy
Office of the Chief of Naval Research
Arlington, Virginia 22217-500

Accepted for Publication in: Materials Research Society Proceedings.

This document has been approved for public release and sale; its distribution is unlimited.

Tetraalkyldiarsine was synthesized by the reaction of (i-Pr)AsLi with (i-Pr)₃AsI. The lithium salt of the secondary arsine was produced following deprotonation of (i-Pr)₂AsH, obtained by reduction of (i-Pr)₂AsI, which was prepared by the thermolysis of (i-Pr)₂AsH. The X-ray crystal structure of [(i-Pr)₃AsI] has been determined on the product of the reaction of (i-Pr)₃As and I₂. Compounds of the general form \(E=\text{As}(i-\text{Pr}) \) \((E = O, S, Se)\) have been prepared.
Tetraalkyldiarsines as Potential Precursors for Electronic Materials: Synthesis and Characterization of Various Iso-Propyl Arsenic Compounds

by

Accepted for Publication in

Materials Research Society Proceedings

School of Chemistry and Biochemistry and
School of Materials Science and Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0400

8 March 1994
Tetraalkyldiarsines as Precursors in the Synthesis of Electronic Materials: Synthesis and Characterization of Various iso-Propyl Arsenic Compounds

Department of Chemistry and Materials Research and Technology Center
The Florida State University
Tallahassee, Florida 32306-3006
VOICE: 904-644-4768
FAX: 904-644-8281

Fall Meeting of the Materials Research Society
Boston, MA

Symposium W

Manuscript Number: W 2.8
TETRAALKYLDIARSINES AS POTENTIAL PRECURSORS FOR ELECTRONIC MATERIALS: SYNTHESIS AND CHARACTERIZATION OF VARIOUS ISO-PROPYL ARSENIC COMPOUNDS

LAWRENCE F. BROUGH, LIU GANG, MATTHEW A. LIPKOVICH, THOMAS J. COLACOT, VIRGIL L. GOEDKEN,‡ AND WILLIAM S. REES, JR.
Department of Chemistry and Materials Research and Technology Center, The Florida State University, Tallahassee, Florida 32306-3006

ABSTRACT

Tetrakis(iso-propyl)diarsine was synthesized by the reaction of \((i-\text{Pr})_2\text{AsLi}\) with \((i-\text{Pr})_2\text{AsI}\). The lithium salt of the secondary arsine was produced following deprotonation of \((i-\text{Pr})_2\text{AsH}\), obtained by reduction of \((i-\text{Pr})_2\text{AsI}\), which was prepared by the thermolysis of \((i-\text{Pr})_3\text{AsI}_2\). The X-ray crystal structure of [(\(i-\text{Pr})_3\text{As}]\text{I}\) has been determined on the product of the reaction of \((i-\text{Pr})_3\text{As}\) and \(\text{I}_2\). Compounds of the general form \(\text{E}=\text{As}(i-\text{Pr})_3\) (E = O, S, Se) have been prepared.

INTRODUCTION

Several recent publications have discussed the potential of utilizing tetrakis(alkyl)diarsines as \textit{in situ} sources of arsenic for employment in the preparation of arsenic-containing electronic materials.¹ Such routes to, for example, GaAs presently rely on toxic and highly volatile precursors (e.g., \(\text{AsH}_3\)). The motivation for this new approach is depicted in equation 1. Although the molecularity of the arsenic-containing product is uncertain, such routes have seen some moderate success. The precise stoichiometry of the reaction product may be \(\frac{1}{2}(\text{As}_4)\) or \(2\ \text{As}\); however, the confirmation of this synthetic procedure for \textit{in situ} generation of elemental arsenic-containing species relies less on the accretion coefficient, and more on the lack of any carbon-containing species in the product. Such contamination by the disadvantageous decomposition of pendant organic groups highly is detrimental to the final electronic properties of such materials.

†Deceased 22 December 1992

*Address all correspondence to this author at: School of Chemistry and Biochemistry and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332.
As one component of a program directed at an examination of the generality of this approach, several iso-propyl arsenic compounds have been prepared. The synthesis and characterization of some of these organometallic compounds is reported in this contribution.

$$3 \text{R}_2\text{As} - \text{AsR}_2 \leftrightarrow 4 \text{AsR}_3 + \text{As}_2$$ \hspace{1cm} (1)

RESULTS AND DISCUSSION

Credit is given to Cadet for the initial report of a compound containing a metal-carbon bond. His 1760 paper describes the simplest tetraalkyldiarsine, \((\text{H}_3\text{C})_2\text{As} - \text{As(CH}_3\text{)}_2\), given the trivial name of cacodyl. A variety of methods have been developed over the years for the preparation of diarsines. In order to address the above-described motivation for exploration of tetraalkyldiarsines as potential precursors in the OMVPE growth of high-quality semiconducting materials, \textit{tetras(iso-propyl)diarsine} was prepared (Scheme I).
Crystal structures of [(i-Pr)₃AsI][I] and [(i-Pr)₃AsI][I₃]

The general format for the oxidative addition of a dihalogen molecule to a tertiary organoarsine (equation 2) can proceed according to two alternate pathways.

\[
\text{Route A} \quad \text{R}_3\text{As} + X_2 \rightarrow \text{R}_3\text{AsX}_2
\]

\[
\text{Route B} \quad \text{[R}_3\text{AsX}][\text{X}]
\]

(2)

In Route A, the \(\sim T_4\) \(\text{R}_3\text{As}\) is transformed into the molecular \(\text{R}_3\text{AsX}_2\) with a trigonal bipyramidal geometry. In Route B, the resultant product is an \(\text{[arsonium][halide]}\) ionic moiety. Factors influencing the path of choice include the electronic and spatial considerations of the alkyl groups represented in the tertiary arsine, as well as the \(\Delta\chi\) present between the halogen and arsenic. For example, both \([\text{Me}_3\text{PX}][\text{X}]\) and \(\text{Me}_3\text{SbX}_2\) have been characterized.\(^4\) In all likelihood, the difluorides are covalently bound. Previous infrared spectroscopic work has indicated that \(\text{R}_3\text{AsI}_2\) compounds (\(\text{R} = \text{Me}, \text{Et}\)) are ionic in the solid state.\(^5\) In the present investigation, \([(i\text{-Pr})_3\text{AsI}][\text{I}]\) was determined, by X-ray diffraction, to be the conformation adopted by the reaction product of \((i\text{-Pr})_3\text{As}\) and \(\text{I}_2\). If the stoichiometry was not carefully controlled (equation 3), a different product was obtained. There have been reports of comparable reactions observed for \(\text{Ph}_3\text{As}\).\(^6\)

\[
[(i\text{-Pr})_3\text{AsI}][\text{I}] + \text{I}_2 \rightarrow [(i\text{-Pr})_3\text{AsI}][\text{I}_3]
\]

(3)

A single crystal structure determination also was conducted on \([(i\text{-Pr})_3\text{AsI}][\text{I}_3]\). It was, however, suspended prior to complete refinement. Once the identical atomic linkages were ascertained to be present in the organometallic cation, the structural refinement was not pursued further. There was little new structural information revealed in the anion replacement species.

Pertinent crystal and refinement data along with selected interatomic distances and angles will be published elsewhere. An ORTEP representation of the structure is presented (Figure 1), including both covalent and ionic interactions between As and I atoms.
Preparation of $E=\text{As}(i-$Pr)\textsubscript{3} (E = O, S, Se)

The preparation of O=As(i-Pr)\textsubscript{3} was effected under mild conditions (equation 4).

$$\text{As}(i\text{-Pr})_3 + \frac{1}{2} \text{H}_2\text{O}_2 \rightarrow \text{O=As}(i\text{-Pr})_3$$ (4)

Either a solvent-mediated or a direct reaction can be utilized in the synthesis of S=As(i-Pr)\textsubscript{3} (equation 5 - 6).

$$\frac{1}{8} S_8 + \text{As}(i\text{-Pr})_3 \xrightarrow{\text{THF, r.t.}} \text{S=As}(i\text{-Pr})_3$$ (5)

$$\frac{1}{8} S_8 + \text{As}(i\text{-Pr})_3 \xrightarrow{\text{neat, } 100^\circ C} \text{S=As}(i\text{-Pr})_3$$ (6)
The most efficient route for the preparation of Se=As(i-Pr)₃ was determined to be the reaction of As(i-Pr)₃ with elemental selenium (equation 7).

\[
\text{As(i-Pr)}_3 + \frac{1}{1} \text{Se} \xrightarrow{150^\circ C, 10 \text{ min}} \text{Se=As(i-Pr)}_3
\]

ACKNOWLEDGEMENTS

We acknowledge support of this project by the Office of Naval Research Chemistry Division. L.F.B. was the recipient of a Florida State University Summer Faculty Professional Enhancement Program stipend during the summer of 1990.

REFERENCES

TECHNICAL REPORT DISTRIBUTION LIST - GENERAL

Office of Naval Research (2)
Chemistry Division, Code 1113
800 North Quincy Street
Arlington, Virginia 22217-5000

Dr. Richard W. Drisko (1)
Naval Civil Engineering Laboratory
Code L52
Port Hueneme, CA 93043

Dr. James S. Murday (1)
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Harold H. Singerman (1)
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Robert Green, Director (1)
Chemistry Division, Code 385
Naval Air Weapons Center
Weapons Division
China Lake, CA 93555-6001

Dr. Eugene C. Fischer (1)
Code 2840
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Elek Lindner (1)
Naval Command, Control and Ocean Surveillance Center
RDT&E Division
San Diego, CA 92152-5000

Defense Technical Information Center (2)
Building 5, Cameron Station
Alexandria, VA 22314

Dr. Bernard E. Douda (1)
Crane Division
Naval Surface Warfare Center
Crane, Indiana 47522-5000

* Number of copies to forward