AFIT/GE/ENG/93D-25

Q
8 INVESTIGATION INTO MODEL-BASED FUZZY LOGIC CONTROL
<=
I~
< THESIS
o
< Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology
Air University
/ In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

-
3

-
-

el N
Lo Trimerent

Michael W. Logan, B.S.
L Captain, USAF

December, 1993

”

-
s

~

Approved for public release; distribution unlimited

| 93-30994
93 12 22 107 L

| - N

Vi

i <




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this coliection of information 11 estimated 10 average 1 hour per response, inkluding the Lime for reviewing Instructions, searching existing data sources,
gathering and maintaiming the data needed, and (Omplenng and review:ing the (ollecuon of information. Send comments regarding this burden estMate Or arry Other 25pacY Of they
collection of information, including 10ns for ceducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budge?. Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1993 Master’s Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
INVESTIGATION INTO MODEL-BASED FUZZY LOGIC CONTROL

6. AUTNWSS
Michael W. Logan, Captain, USAF

L ——————————————— - = A Yt S = =Py T ———
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

. t |
Air Force Institute of Technology, P 3 : / / / 125

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING |
AGENCY REPORT NUMBER
Capt. Stuart Sheldon

Air Force Wright Laboratories, Flight Dynamics Directorate
WL/FIGS
Wright-Paterson AFB, OH 45433

A —————— ——
11. SUPPLEMENTARY NOTES

I12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This thesis investigates the feasibility of a proposed hybrid linear/Fuzzy controller for nonlinear plants. The
proposed controller concept is based on the use of multiple linearizations of a nonlinear plant, which describe
the dynamics of perturbations about equilibrium points throughout the desired envelope of operation. A bank
of linear compensators is developed, each corresponding to a linearized plant about a different equilibrium. The
multiple control signals generated by the bank of compensators are then weighted and summed using Fuzzy
Logic to produce a composite control perturbation signal, which is used to drive the nonlinear plant.
Experiments were conducted to test and refine this control approach. Analysis shows that a linear/Fuzzy
compensator based only on a bank of linear compensators is not feasible, largely due to the small regions
for which the linearized models were valid and energy considerations within the plant/controller system. The
analysis itself, however, suggests an alternate form for a hybrid Linear/Fuzzy approach, based on a bank of]
Fuzzy compensators smoothed by a linear controller. This concept is developed into the Model-Based Fuzzy
Logic Controller (MBFLC). The concept of Fuzzy Logic Model Following Control is also addressed as a second
hybrid approach.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Fuzzy Logic control, Fuzzy Logic, model-based control, nonlinear control, robust 192
nonlinear control 16. PRICE CODE

17. SECURITY CLASSIFICATION [ 18. SECURITY CLASSIFICATION [ 19. SECURITY CLASSIFICATION { 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std 239-18
298102




Vita

Captain Michael W. Logan was born January 25, 1967 in St Louis, Missouri, to Bill and Pat
Logan. He graduated from high school in Olathe, Kansas in 1985. He went on to graduate with a BS
in Electrical Engineering from Northwestern University in June of 1989, where he graduated with
departmental honors. After receiving his commission through the Reserve Officer Training Corps,
he was assigned to the Plans and Advanced Programs Directorate of Electronic Systems Division
at Hanscom AFB in Massachusetts. He served as project engineer and later project manager of
the ESD Unmanned Air Vehicle Office, which supported the Joint DoD Unmanned Air vehicle
Program. He was assigned to the Air Force Institute of Technology in May 92. He has a wife, Jana.

Permanent address: 8723 Mardi Gras
Huber Heights, OH 45424

VITA-1




AFIT/GE/ENG/93D-25

INVESTIGATION INTO MODEL-BASED
FUZZY LOGIC CONTROL

THESIS
Michael W. Logan
Captain, USAF

AFIT/GE/ENG/93D-25

Approved for public release; distribution unlimited

|DTIC QUALITY INSPECTED 3

Accezion For

NTIS  TRAL! N

Bric Tan ~

Lo e
ol

BY o e e
Distibi o

e et o i e

e
‘.\'Jf.lz.;:.‘..:,l-’\‘“‘\j PRSPt
¢ Aved 20,0
Dist Specigl

i |




Acknowledgements

I would like to thank all those in the AFIT community who helped me complete this research.
First, my sincere thanks go to my fellow AFIT classmates for their help, advice and support. We
formed an great team from the first day, and I wish them all the best in their future endeavors. Its
been a pleasure working with Dr Meir Pachter, who has been a mentor and a source of boundless
enthusiasm for this effort. Without his expertise in many technical fields, I never could have
addressed such a unique research area. Above all, I would like to thank my wife, Jana, for her

unwavering support and patience.

Michael W. Logan




Table of Contents

Page

Acknowledgements . . . . . . .. ... ... e e e e e e i
Listof Figures . . . . .. ... . ...ttt ittt ittt enennnnnn vii
Listof Tables . . . . . .. ... ...ttt ittt eenenennnnnen. xiii
Abstract . . . . ... i e e e e et e e xiv
L Introduction . . . . .. . . ... . i e et e e 1-1
1.1 Background . . .. ... ... ... ... i, 1-3

1.1.1 Plant Uncertainty ... .........cc0uueuuue.n 1-4

1.1.2 Plant Nonlinearities .. ................c..... 1-8

1.2 Proposed Approach . . .. ... .. i i ittt ettt tnnenneas 1-12

1.3 Scopeand Assumptions . .. ...... ... .00ttt 1-17

14 SumMmMAry . . ... ot i v i ittt ettt ettt 1-17

II. Plant Development and Current Approaches . . . . .. ............... 2-1
21 Imtroduction . ...........¢0.0 ittt unnnnnnn, 2-1

22 Reduced-Order Plant . .. ... .........c¢coiiiueennn. 2-2

2.3 Linearization of Nonlinear Plant . .. .................. 2-2

2.4 Control Performance Characteristics . . . . ... ............ 2-7

2.5 Standard Control Approaches . . . . . ... .....00.ueuu... 2-9

25.1 Dynamiclnversion ... ..................... 2-9

2.5.2 Quantitative Feedback Theory .. ............... 2-17

253 Fuzzy LogicControl . ... ................... 2-31

26 SUMMATY . . . .. it i i ittt bt ettt e e 2-40

iii




III. Model-Based Fuzzy Logic Control Linear Design Considerations. . . . . .. ...

3.1

Introduction . .. ... ... ¢ . ittt it eenneeonnenon

3.2 Linear Compensation of Linearized Plant . .. .............

3.3

3.4
3.5
3.6
3.7

Use of Multiple Compensators in Linear Systems . . . .........

3.3.1 Positive Internal Compensator Energy/No Internal Plant En-

3.3.2 No Internal Compensator Energy/Positive Internal Plant En-

3.3.3 Positive Internal Compensator Energy/Positive Internal Plant

Energy . ..... .ottt
Effect of Compensator Dissimilarities on System Response . . . . . ..
Use of Multiple Compensators in Time-Varying Linear Systems . . . .
Controller Considerations Based on Linear Analysis . .........

IV. Model-Based Fuzzy Logic Control Nonlinear Design Considerations . . . . . . ..

4.1
4.2
4.3
4.4
4.5
4.6

Introduction . .. ... ......00 ittt irennnons
Effectiveness of Linearized Plants in Nonlinear Control . . . . . . . ..
Time-Varying Compensation of the Linear Time-Varying Plant . . . .
Nulling Compensation of the Nonlinear Plant . . . . ... ... ....

Banked Compensator Approximation of Time-Varying Compensation

V.  Development of Model-Based Fuzzy Logic Controller . . .. ... .........

5.1
5.2

Introduction . . ... ... ...ttt ittt innneonos
Structure of Banked Model-Based Fuzzy Logic Controller . . ... ..
5.2.1 Limited Effectiveness of Intermediate Linear Compensators .
5.2.2 Full Error Signal Input to Linearized Plants . . . . . ... ..

5.2.3 System is Not at Equilibrium when Output Reaches Final State

iv

31
31
3-2
3-10

3-10

3-13

3-16
318
3-22
3-27
3-28

41
41
41
4-6
49
419
427

51
51
5-2
53
58

514




5.3 Full-Envelope Banked MBFLC . ... ... ............... 5-20
5.4 Contribution of Linear Compensators to Banked MBFLC Design . . . 5-25
5.4.1 Effect of Linearized Plantson MBFLC . . . . ... ... ... 5-25

5.4.2 Effect of Robust Linear Compensators on MBFLC . ... .. 5-33

5.4.3 Effect of Mismodeling on Compensator Tuning . . ... ... 5-37

5.5 Model-Following Hybrid Compensators . . ............... 5-39
5.6 SUMMAIY . . . . . v it v vttt et et s o ee ot o tn e e enan 5-42
VI.  Conclusions and Recommendations . . . .. ... .................. 6-1
6.1 Imtroduction ... ... ..... ... ittt itunneen. 6-1
6.2 ControllerSummary . ... ... ... ...ttt innneenn. 6-2
6.2.1 Formationof Uya(t) .. ... ... ... .. ... 6-3

6.2.2 Formationof C(t) ............... ... ...... 6-3

6.3 ThesisConclusions . . . . . ... ... .o v i vt innennnn. 6-5

6.3.1 Force a nonlinear plant to to exhibit linear-like performance

and obey linear design specifications . . . .. ......... 6-5

6.3.2 Incorporate available models into controller structure . . . . 6-8
6.3.3 Enhance robustness of controller in the face of uncertainties . 6-8
6.3.4 Eliminate the need for gain scheduling . . . . ... ...... 6-9
6.3.5 Introduce some a priori synthesis and analysis capability . . . 6-9
6.4 Recommendations for Future Research . . . . .. ... ......... 6-9
6.4.1 Analysis of MBFLCerrorsources. . . . . . . .o ¢ 0... 6-10
6.4.2 Self-Tuningof Fuzzy Sets .. .................. 6-10
6.4.3 Development of equivalent G3(s) . . .. ............ 6-10
6.4.4 Compensation of plants at non-zero initial conditions . . . . 6-11
6.4.5 Polynomial approximations to look-up tabledata . . . . ... 6-11
6.4.6 Model-Following Fuzzy Logic Controllers .. ......... 6-11
6.4.7 Nonlinear Mathematical Analysis . . . . . ........... 6-12




6.4.8 Test controller in realistic environment . . . . ... ... ... 6-12
6.4.9 Implement Fuzzy Supervisor Between Uj,(t) and C(t) . . . . 6-12
6.4.10 Apply MBFLC Approach to Uncertain Linear Systems . . . . 6-13

6.5 Summary .. ... ... ..ttt e e e e 6-13
Bibliography . . .. ... ... ... e e e e BIB-1
1% VITA-1




Figure

1.1.

1.2

1.3.

14.
1.5.
1.6.

2.1.
2.2,
2.3.
24.
2.5.
2.6.
2.7.
2.8.

2.9.

2.10.

2.11.
2.12.

2.13.

List of Figures

Evaluation of the input variable Y(in) = 0.75 for membership in the Fuzzy Sets
YisNegatsive, YisZero,and YisPositive . . . . . . ... ... ............

Activation of Implicate Fuzzy Sets based on membership values of premise state-

Block diagram showing closed-loop compensation of plant from Equation 1.1 using
Fuzzy Logic to provide an "estimate® of 7. . . . ... ... ............

State space paradigm for nonlinearcontrol . ... .................
Weighting of a bank of linear compensators using Fuzzy Sets . . . . ... ....
Final structure of Model-Based Fuzzy Logic Controller . ... ..........

SIMULINK Model of Nonlinear Plant with Externally Defined ¢ Parameter. . .
SIMULINK model of linearized plant with externally defined r parameter . . . .
Response of Model Plant to Unit StepImput . . . .. . ..............
Root Locus for G(s)P(s), Dynamic Inversion Synthesis . .............
SIMULINK Model of G(s) Using DynamicInversion . . . . . .. .........
Interpreter Block WhichConverts VtoU . . .. ... ... ............
Simulation of closed-loop tracking controller developed using dynamic inversion

Response of dynamic inversion simulation to unit step input. Model response is
also plotted but is almost perfectly covered by system response. .........

State-space trajectory representation of dynamic inversion system response to a

unit stepinput,a=1.0 . . .. ... . . ... .. i e e e e

Response of dynamic inversion simulation when the nonlinear plant takes on dif-

ferent values of the parameter a. a = 1 in the compensator for all simulations. .
QFT compensationscheme . ... .................00ict...

The frequency responses of Try(s) and Try(s), comprising the QFT response
thumbprint . . . . ... . . . .. e e e e

Nichols Chart showing QFT boundaries and frequency response of worst-case plant

1-5

1-6

1-13
1-14
1-16

2-3
2-6
2-8
2-10
2-11
2-12
2-13

2-14

2-15

2-16
2-18

2-19
2-22




Figure
2.14,
2.15.

2.16.

2.17.
2.18.

2.19.

2.20.

2.21.
2.22.
2.23.
2.24,

2.25,
2.26.

3.1.
3.2,
3.3.

3.4.

3.5.

Nichols Chart of worst-case plant in series with G(s) . . . . .. ... .......

Frequency response plot showing the variation of the family of plants is inside the
maximum variation allowed by Try(s) and Tge(s) . . . . . . .. .. ... .. ..

Closed-loop time responses of all five linear plants to unit step at the reference
1Y 1 | S

Closed-loop time responses of all five linear plants to unit step at the plant input

Nichols chart showing the open-loop frequency response of G(s)P(s) based on a
modified familyof plants . . . . . .. ... ... . . . 0 0 oo

Closed-loop time responses of all five alternate linear plants to unit step at the

reference input . . . . ... L e e e e e e e e

Closed-loop time responses of all five alternate linear plants to unit step at the
plantinput . . . . . ... e e e e s e e e

Response of nonlinear plant to unit step reference input for a=0.5,1.0,and 1.5 .
Closed-loop control of nonlinear plant with Fuzzy Logic Control . ... ... ..
Fuzzy Logic Compensator for Nonlinear Plant . . .. ...............
Closed-loop response of FLC to step inputs of strength Ref = 1u—1(t) and

Time response of FLC/nonlinear plant to step input assuming modeling errors. .

Time response of FLC and DI controllers to time-varyinga . . . . ... .....

Locus of poles of the linearized plant as a functionof r . .............
Model of Compensator G(s) with 7 externally defined . . . . ...........

Model of Compensator G(s) with 7 exter: *lly defined which meets disturbance

rejection specifications . . . . . . ... ... L. L L L e e,

TOP: Closed-loop simulation given linear plant with time-varying plant parameter
7. BOTTOM: Closed-loop simulation given full nonlinear plant. Both simulations

are run with each compensator. . .. ... ... ...........00.0....

Closed-loop system responses for the time-varying linear plant under both robust

and non-robust compensation. . . ... ... ... ... i e e,

viid

2-23

2-24

2-25
2-26

2-27

2-29
2-30
2-35
2-36

2-37
2-38
2-39

3-3
3-4




Figure
3.6.

3.7.

3.8.

3.9.

3.10.

3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.

3.19.
3.20.

4.1,
4.2,
4.3.
4.4.

4.5.
4.6,

Closed-loop disturbance rejection for nonlinear plant under both robust and non-

robust compensation. . . . . . . . . ... i i e e e e e

Closed-loop system responses for nonlinear plant under both robust and non-robust

COMPENSALION. . . . . . v v v vt e e e e e e e e e e e e e

Simulation to determine the effect of charged states in compensator applied to

linearsystem . . . . . . . . . .. e e e e

Closed-loop response of linear plant given varying "charging” times for the linear

Plant . . . . e e e e e e e

SIMULINK simulation to test the effect of a quiescent compensator inheriting a

non-quiescent plant . . . . . ... .. e e
Closed-loop response of quiescent compensator/non-quiescent plant . .. .. ..
Simulation of banked compensation technique for a linear plaat ... ... ...
Response of Identical Compensators in a banked configuration . .. ... .. ..
Output of compensator bank, shown in terms of each compensator contribution
Simulation applying a bank of identical linear compensators to a linear plant . .
Simulation of banked compensation technique for unlike compensators . . . . . .
Simulation testing the validity of linear compensators on time-varying linear plant

Closed-loop response of time-varying plant, linear compensator, for step inputs of
.05,1.1,and 1.2. StartingfromY(¢,)=1. . ... ... ... ... ...,

Prototype MBFLC for Time-Varying Linear Plant . . . .. ............
Closed-Loop Response of Prototype MBFLC .. ... ... ............

Determination of region of attractionforY =40. .. ... ............
Control of Time-Varying Linear Plant Using Time-Varying Linear Compensator
Closed-loop response of LTV plant and Time-Varying Linear Compensator . . .

Closed-loop response of nonlinear plant and Time-Varying Linear Compensator

for variousstepinputs . . . . . . . .. ... e e e e e
Full-envelope nonlinear control scheme using trajectory following . . . . . . . ..

Determination of the desired z; based on compensator outputs . . . . ... ...

ix

3-9

3-11

3-12

3-14
3-15
3-17
3-18
3-19
3-20
3-21
3-23

3-24
3-25
3-26

4-5
4-7
4-8

4-10
4-13
4-14




Figure
4.7.
4.8.

4.9.

4.10.

4.11.

4.12.
4.13.
4.14.
4.15.

4.16.

4.17.

5.1.
5.2.
5.3.

5.4.

5.5.
5.6.
5.7.
5.8.

determinationof U basedon desiredz, . . ... ..................

Closed-Loop simulations of nonlinear controller using time-varying linear compen-

sation, startingfrom Y =0 . . . . ... ... ... .. i e

Closed-Loop simulations of nonlinear controller using time-varying linear compen-

sation, startingfromY =1 .. . ... ... ... .. ... . ..

SIMULINK simulation to test the disturbance rejection capabilities of nonlinear

control scheme . . . . . . . . . i i i it it it e e e e e e e e e

Disturbance rejection capabilities of nonlinear controller for unit step injected at

Plant input . . . . .. e e e e e e e e
Simple compensator bank for MBFLC . . . . .. ... ...............
Internal Structure of Fuzzy Supervisor . . . . . . .. .. ... .. ... ...
Activation of Fuzzy Membership functions for Fuzzy Supervisor .. ... .. ..

Time history of u outputs for time-varying compensator (TVC), Fuzzy Compen-
sated Bank, and single linear compensator. The TVC and single linear compen-

sator plots and nearly identical. ... ...... ... ... ... .. ... ...

Responses of closed-loop system to a step input from Y = 3 to Y = 4 for both
time-varying and Fuzzy Weight compensators. . ... ...............

State space trajeciory of Nonlinear Plant driven by hybrid nonlinear/Fuzzy Con-

Banked Model-Based Fuzzy Logic Control paradigm . . . . ............
Compensator bank for MBFLC with universe of discourse fromY = 0.6toY = 0.7

closed-loop response of nonlinear plant when driven by Fuzzy Weighted Compen-
sator Bank fromY =06toY =0.7 . . .. ... ... ... . i i,

Fuzzy Weighted Compensator Bank with associated Fuzzy Limiter. This configu-

ration is referred to henceforthasa Fuzzy Bank ... ...............
Structure of SIMULINK block Fuzzy Limiter . . . .. ... ............
Membership functions for Fuzzy Sets in Fuzzy Limiter . . . . . ... ... ....
Closed-loop response of nonlinear system compensated by Fuzzy Bank . . . . . .

Desired form for C(t) based on linear analysis of pre-weighted compensator bank

4-15

4-15

4-16

4-17

4-18
4-20
4-21
4-22

4-24

4-25

4-26

5-3
5-6

57

5-11
5-12
5-13
5-13
5-15




Figure
5.9.
5.10.
5.11.

5.12.
5.13.

5.14. Top-level SIMULINK simulation of nonlinear plant in Full-Envelope Banked MBFLC

5.15.
5.16.
5.17.
5.18.

5.19.

5.20.

5.21.
5.22.

5.23.
5.24.

5.25.

5.26.

5.27.

5.28.

C(t) function formed by ANDing of Fuzzy Sets Eis0 and EdotisPositive . . . . .
SIMULINK implementation of Banked MBFLC . ... ..............
LEFT: Membership function for E is Zero. RIGHT: Membership function for

EisPositive . . . . oo oot e
Response of nonlinear plant in closed-loop simulation with Banked MBFLC . . .
SIMULINK simulation of Full Envelope Banked MBFLC . ... .........

Closed-loop response of Full-Envelope MBFLC to step inputs of various magnitudes
Closed-loop response of Full-Envelope MBFLC for a= 0.5,1.0,and 1.5 ... ..
SIMULINK simulation of MBFLC using only a single linear controller . . . . . .

Closed-loop response of single-compensator MBFLC to step inputs of various mag-

1121 s - J P

Closed-loop response of single-compensator MBFLC to step inputs starting from

various initial equilibria . . . . .. .. ... .. . o Lo o oL,

Closed-loop response of single-compensator MBFLC to step inputs starting fr .m
equilibria both above and below the equilibrium of the linear compensator . . .

Single-compensator MBFLC with a simplified 2-set Fuzzy Limiter . ... .. ..
SIMULINK simulation of MBFLC with a two-set Fuzzy Limiter and a single linear

COMPENSALOT . . . o ¢ v v v e o o o o o v oo s s o o s oo as o s oo asosasoen
SIMULINK simulation of single compensator MBFLC using robust compensator
Closed-loop tracking response of robust Single Compensator MBFLC to step in-

puts of various magnitudes . . . . ... ... ... .. . i i e ..,

Disturbance rejection response of both robust and nonrobust MBFLC to a step dis-
turbance of magnitude 0.1 injected at the plant input. Also shown is the response

of the nonrobust compensator with the Fuzzy Limiter removed. ... ... ...

Hybrid linear/Fuzzy Controller using linear model-following and Linear/Fuzzy

controlinput generation . . . . . . .. ... .. . i i e e
Internal structure of SIMULINK block Model . . . . . ... ............
Internal structure of SIMULINK block FuzzyDriver . ... ............

5-16

5-18

5-19
5-19
5-21
5-22
5-24
5-24
5-26

5-27

5-28

5-29
5-31

5-32
5-34

5-35

5-36

5-40
5-41
5-42




Figure
5.29. Membership functions for Fuzzy Sets within the Fuzzy Driver. . . . . . ... ..

5.30. Closed-loop responses of Model-Following hybrid controller for step inputs of var-
ious magnitudes and initial conditions. . ............ ..., ... ...

5.31. Input signal to nonlinear plant generated by Fuzzy Driver and linear compensator

6.1. MBFLC Block DIagram . . . .« o v v vt te ettt e eeee e e

6.2. Closed-loop response of Nonlinear plant for step inputs of Y, = 0.6+0.035u_,(t),0.6+
0.05u_,(t),0.6 + 0.075u_y(2),and 0.6 +0.1u_y(t) . . . . . o v ov v ...

6.3. Closed-loop responses for QFT-based design and MBFLC design . . . . . . ...
6.4. Closed-loop responses for Dynamic Inversion-based design and MBFLC design .

xii

5-45

6-2

6-6

6-7




Table

2.1
2.2,
23.
24.

4.1.

4.2.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

5.8.

List of Tables

Universe of Discoursefor FLC . . .. ........................
Membership Functionsfor FLC. . . . . .. ... ..................
Values for U suggested by Dynamic Inversion simulation . ............
Values for U implicants based on tuning through simulation ...........

Regions of attraction for linear compensators for originating, terminating, and

traversemodesofoperation . . . . . . ... ..o e i i

Regions of attraction for linear compensators in Banked MBFLC . . . ... ...

Tuning Parameters for Fuzzy Supervisor Membership Function . . . . . .. ...
Tuning Parameters for Fuzzy Limiter Membership Functions .. .........
Tuning Parameters for Fuzzy Sets E is Zero and E is Positive . . ........
Look-up table data for full envelope MBFLC . . ... ... ... .........
Tuning parameters for Fuzzy Limiter driving robust linear compensator . . . . .
Look-up table data for MBFLC incorporating the robust linear compensator . .

Tuning parameters for Fuzzy Limiter driving the mismodeled nonlinear plant
[T 3

Look-up table data for MBFLC incorporating the robust linear compensator . .

Page

2-31
2-32
2-33
2-34

43
44

55

58
518
523
5-33
533

5-38
5-38




AFIT/GE/ENG/93D-25

Abstract

This thesis investigates the feasibility of a proposed hybrid linear/Fuzsy controller for non-
linear plants. The proposed controller concept iz based on the use of multiple linearizations of a
nonlinear plant, which describe the dynamics of perturbations about equilibrium points throughout
the desired envelope of operation. A bank of linear compensators is developed, each corresponding
to a linearized plant about a different equilibrium. The multiple control signals generated by the
bank of compensators are then weighted and summed using Fuzzy Logic to produce a composite
control perturbation signal, which is used to drive the nonlinear plant.

Experiments were conducted to test and refine this control approach. Analysis shows that a
linear/Fuzzy compensator based only on a bank of linear compensators is not feasible, largely due
to the small regions for which the linearized models were valid and energy considerations within
the plant/controller system. The analysis itself, however, suggests an alternate form for a hybrid
Linear/Fuzzy approach, based on linear waveforms tuned by Fuzzy Logic. This concept is developed
into the Model-Based Fuzzy Logic Controller (MBFLC).
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INVESTIGATION INTO MODEL-BASED FUZZY LOGIC CONTROL

1. Introduction

A wealth of information is available on the application of control theory to linear, time in-
variant (LTI) plants. Unfortunately, most processes of interest in nature are nonlinear. Though
optimal control techniques such as dynamic programming can be used to derive optimal state feed-
back controllers for nonlinear systems, these algorithms are numerically intensive and, in general,
don’t lead to closed form solutions [1]. Approximations such as "linearization” and the "small per-
turbations hypothesis” must therefore be invoked to enable application of conventional LTI control
methods to these problems. The control designs based on this linear hypothesis will then be valid

for the nonlinear process to the extent that the linearity assumptions are not significantly violated.

The approximations required to obtain a linear problem formulation lead to dissimilarities
between the plant dynamics and the dynamics of the model. The resulting modeling error is
often neglected in engineering practice because the mathematical methods required to address this
uncertainty are quite sophisticated [2]. In applications such as aircraft flight control, these neglected
dynamics can become significant, resulting in system behavior not predicted by the linear model,
as alluded to in [3:pages 17-26]. Consequently, a controller based on the linear model will become
less effective as the flight condition of the aircraft moves away from the equilibrium condition about
which the plant dynamics were linearized. Even when operating close to the linearization point,
the actual system will seldom exhibit the performance predicted by linear analysis, especially over
long periods of time relativ: to the natural frequency of the LTI model[4:18].

One possible means of addressing the inevitable disparity between the nonlinear physical
plant and the linearized(LTI) plant mouc: is through the use of Fuzzy Logic. Fuzzy Logic is a
partial membership set theory developed by Lotfi Zadeh in the mid-1960’s. Originally conceived
for machine learning applications, Fuzzy Logic is now being used in many fields of academic and
commercial endeavor, including control systems [5]. Fuzzy Logic is, in essence, a means of repre-

senting uncertainty about a given system or process without direcily applying statistical methods

[€].




Fuzzy Logic has been successfully applied to control system design, and represents one means
of developing controllers for nonlinear plants [7]. reported applications of Fuzzy Logic Control
(FLC) include automotive control (breaking, automatic parking, automatic transmissions, exhaust
missions control) 8, 9], industrial automation [10], subway train braking [11], and flight control (12,
14]. Current FLC work focuses primarily on the automatic control of plants traditionally operated
by humans. Though nonlinear, these plants exhibit simple, consistent dynamics with a sense of
"directionality” associated with control actions. Therefore, the effect of a given control action is
known, at least qualitatively, without the aid of a system model. Even in cases where models
are available, they are largely overlooked in current FLC development, inhibiting the application
of FLC to complex plants. It is reasonable to assume that a hybrid conventional-Fuzzy control
technique, dubbed model-based Fuzzy control (MBFLC) for this thesis, may provide better overall
control than either control approach alone. This thesis addresses the integration of FLC concepts
and techniques into traditional model-based controller design methods.

This research is motivated by the desire to develop a full-envelope aircraft flight controller.
Current flight controllers rely on gain scheduling to compensate for the nonlinear aircraft operating
in different regions of the (ua,a.,) flight envelope. MBFLC represents one alternative approach to
gain scheduling, especially in Right regimes such as high angle of attack flight where sensor inputs,
and thus full knowledge of u and a, are often noise-corrupted. Though this work is intended to lay
the groundwork for a full-envelope flight controller, the results are equally applicable to any system

for which the agreement between physical plant and linearized model is uncertain.

In this thesis report, hybrid nonlinear/Fuzzy and linear/Fuzzy controllers will be developed
based on linearizations of a highly nonlinear plant. The result'ng hybrid controllers will then be
applied to tracking and regulation of the nomnlinear plant, rather than linearizations assumed to
represent the nonlinear plant. Fuzzy Logic, in this context, will be used to bridge the gap between
linear systems theory and nonlinear control application. Said another way, the language of Fuzzy
Logic will be used to quantify the way in which linear controllers eventually fail when applied to the
control of nonlinear plants. This will then be incorporated into an otherwise deterministic controller
structure. Since even the simplest MBFLC controller will be more complex than a conventional
linear controller, a commensurate increase in performance, robustness, and /or envelope of operation

is to be expected.
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1.1

This thesis is divided into six chapters:

. Introduction - This chapter outlines the problem being addressed, the current state of Fuzzy

Logic Control, any necessary assumptions, and the proposed solution. The introduction
develops the justification and conceptual basis for Model-Based Fuzzy Logic Controllers.

. Problem Development and Current Approaches - In this section the criteria for a suitable

nonlinear test plant and its performance specifications is given. The final form of the non-
linear plant will be developed as well as the linearized plant model. To gain control insights,
compensators will be developed for the nonlinear plant using dynamic inversion, Quantita-
tive Feedback Theory(QFT), and FLC concepts. These designs will serve as benchmarks to
measure the true effectiveness of Model-Based Fuzzy Logic Control.

. Linear Design Considerations - In this chapter, a linear compensator is developed for the

linearized version of the nonlinear plant. A linear time-varying version of the nonlinear
plant is also developed and justified. The feasibility and desirability of using banks of linear
compensators to control linear and linear time-varying plants is explored. Error sources
inherent in banked compensator designs applied to linear and linear time-varying plants are
identified.

. Nonlinear Design Considerations - The effectiveness of linear compensators when applied to

the nonlinear plant is quantified. Time-varying linear compensation is developed to control
the time-varying linear plant. A nonlinear compensator incorporating time-varying linear
models is proposed and validated. The effect of the time-varying linear compensator is then
approximated using Fuzzy Logic, thereby creating a hybrid nonlinear/Fuzzy controller.

. Model-Based Fuzzy Logic Controller Development - The effect of the nonlinear elements of

the hybrid nonlinear/Fuzzy controller is analyzed in light of Fuzzy Logic approximation.
A linear/Fuzzy structure is developed to eliminate the need for nonlinear processing. The
hybrid linear/Fuzzy design is modified to encompass full-envelope operation. This is the final
configuration of the Model-Based Fuzzy Logic Controller. The performance of the MBFLC
will be compared with other design approaches.

. Conclusions and Recommendations - This chapter contains an overall assessment of the

promise MBFLC shows based on the research conducted for this thesis. Unresolved issues
and recommendations for future work are provided.

Background

FLC has the potential to overcome two obstacles inevitably confronted when designing control

systems for real-world plants: 1) Plant uncertainty, and 2) Plant nonlinearity. Each of these

difficulties is addressed in detail below.
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1.1.1 Plant Uncertainty. Consider a plant whose transfer function is:

Y(s) 1
U(s)  rs+1 (1)
with the value of 7 being dependent on the value of the output/state Y (r = f(Y)). This is
a common situation where, for example, the dynamic pressure on an aircraft is a function of
its altitude. Note that this plant is nonlinear, so expressing this plant model using a transfer
function is an abuse of notation. However, by assuming 7 is approximately constant, is time-
varying independent of Y(t), or is unknown, all allow for linear or linear stochastic descriptions
of this nonlinear problem. An additional approach to linear analysis could be to assume that r is
Fuzzy.
If we wished to develop a controller for this plant based on a Fuzzy assumption, we could

consider T to be a Fuzzy variable. The information available on 7 could be as rudimentary as:

o IF Y is Negative THEN 1 is Small
o IF Y is Zero THEN 7 is Medium
o IF Y is Positive THEN 7 is Large

This would approximate thé true knowledge that r varies with Y. These rules make up a Fuzzy

Inference system.

The terms in italics are to be considered linguistic labels for Fuzzy Sets. Hence, the Y input
to the controller will first be fuzzified. That is, the antecedent Y will be converted from a crisp
(single-valued) variable to a Fuzzy (multi-valued) variable. The fuzzification procedure involves
the input value Y being evaluated for membership in each of the sets defined over the universe of
discourse (total allowed variation) of Y — in this case Negative,Zero, and Positive. The degree to
which a given Y will be considered a member of any Fuzzy Set is given by a membership value, u,
which ranges from 0 (complete exclusion) to 1 (complete membership). The value which s takes
on is determined by an appropriate membership function for the set in question, y(Y), defined

over the entire universe of discourse. Sample membership functions for the sets Negative, Zero and
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Figure 1.1 Evaluation of the input variable Y(in) = 0.75 for membership in the Fuzzy Sets
YisNegative, YisZero, and YisPositive

Positive are shown in Figure 1.1. Note in the Figure that Y (in) = 0.75 is shown being evaluated for
membership in each of the three defined Fuzzy Sets. Y = 0.75 is a member of Negative to uy = 0.0,
of Zero to uz = 0.062, and of Positive to up = 0.745. These three partial set memberships represent
Y = 0.75 in the Fuzzy domain. Similarly, the output variable r is also described by three Fuszy
Sets that span its universe of discourse- r is Small, 7 is Medium, and 7 is Large, as shown in
Figure 1.2. In this case, membership functions relate the Fuzzy Sets for T to a range of poesible
crisp 7 values. The membership functions defining the Fuzzy Sets for 7 will not, in general, resemble
the membership functions for the fuzzification of Y. The Fuzzy Implicate T is related to the Fuzzy
Variable Y through the Fuzzy Inference system given above. Because the Fuzzy Inference rules
contain only a single premise (for this example, "IF Y is Negative”), the Fuzzy Set representing
the resultant will be activated to the same degree as its premise. This is illustrated in the Figure.
Therefore, py = 0.0 = ug = 0.0, uz = 0.062 — uyy = 0.062, pp = 0.745 — pu; = 0.745.




Figure 1.2 Activation of Implicate Fuzzy Sets based on membership values of premise statements

A "crisp”(single valued) estimate of 7 can be produced by any of a number of defuzzification
routines [13]. Generally, these algorithms involve taking some sort of centroid of the polygon formed
by all of the activated regions of the implicate sets, as shown in the Figure. In this manner, for
any crisp input Y, a crisp output r will be produced. A compensator of the form U = F(E, )
can then be developed for the plant in (1.1) based on estimates of 7 supplied by the Fuzzy Logic.
This represents the first MBFLC scheme for feedback control, and is shown in Figure 1.3. For an
overview of Fuzzy Sets and Fuzzy Membership Functions, refer to [7] or [15].

Of course, the true utility of this Fuzzy approach is realized only when the relation between
T and Y is poorly understood or variable. In the case where 7 = f(Y') is known or statistically
modeled, other approaches will probably yield better performance, though at higher computational
expense. The objective of this type of hyvbrid Fuzzy design would be, not to obtain optimum
performance at a single 7 trajectory, but to obtain "acceptable” performance over a broad range

of 7 trajectories.




Y(out,

Figure 1.3 Block diagram showing closed-loop compensation of plant from Equation 1.1 using
Fuzzy Logic to provide an "estimate” of 7

The Fuzzy Logic element in Figure 1.3 serves essentially as a nonlinear look-up table, with
the qualities of the table alterable in real-time. If the Fuzzy Logic estimate of r was perfectly
accurate, then a system response very similar to the established linear specifications is possible. It
should be noted, however, that even for a known 7 history, stability is not guaranteed by using a
linear compensator based on 7 [16]. As the estimates are degraded, closed-loop system performance

degrades as well. Simulation and on-line retuning would be required to maximize performance.

This MBFLC approach offers several benefits over conventional techniques (parameter esti-
mation or robust control). The controller is conceptually simpler and quicker to synthesize than
other control laws, as is the case with most Fuzzy Logic Controllers {18]. Lessons learned from
testing can be directly included in the control law. The flexible structure of the MBFLC could
make the system less susceptible to external disturbances, and some types of system noise will be

filtered from the feedback channel [19]. Finally, Model-Based Fuzzy Logic Control, as with other
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Fuzzy Logic control methodologies, is well suited to real-time adaptive control. The drawbacks to
MBFLC include lack of stability guarantees, lack of a priori performance analysis techniques, tuning

requirements, and the requirement for an on-line processor to perform the Fuzzy Logic operations.

It is reasonable to ask when it would be beneficial to consider MBFLC over statistically
based techniques. The answer is that the benefit of using a MBFLC is directly related to the
amount of non-statistical or unmodeled uncertainty present in the system. As will be shown in
the next section, the non-statistical uncertainty present in the unknown parameter 7 is directly
related to the nonlinear model from which the linearized system was derived. The idea that both
parameter uncertainty due to unmodeled nonlinearities and uncertainty due to linearization of
nonlinear plants can be expfessed as time-varying parameters in otherwise linear systems will serve

as the justification for MBFLC.

1.1.2 Plant Nonlinearities. Consider the general control problem, as it applies to a
nonlinear plant. Assume a model of the plant dynamics-however complicated-is available. It can

be expressed in the form:

X = f(X,U) (1.2)

where X € R" is a vector of system states, U € R™ is a vector of system inputs (controls), and
f is a smooth nonlinear function of X and U. It is desired to drive the system from some initial
state, X, U,, to some final state,X,, U,, within a given maximum settling time ¢, and with no
state X,(t) overshooting it final desired value X;;(t) by more than a ratio M,.

This problem, as formulated, cannot be directly addressed using LTI control theory. How-
ever, a linearized model of the plant dynamics at certain points in state space can be derived by

expressing the state and control vectors in terms of perturbations from a given nominal condition,

X,U [20:pages 83-97]. The state and control vectors become:

X = Xi+z (1.3)
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U = Qy_"‘! (1.4)

where X, and U, are determined by setting:

f(X;,0;) = 0. (1.5)

That is, the "ith nominal point X;, U; is an equilibrium or trim point. The subscript i, i =
1,2,..., N, indicates that there could be many such nominal points. The plot of these equilibria
points in an nzm-dimensional space defined by the ranges of X and U is referred to in this thesis

as a nominal locus.

Inserting the expressions (1.3) and (1.4) into (2.36) and expanding the nonlinear f function
by a Taylor series about (X;, U;) yields:

X+i=f(X,0)+ ”—%g‘)—; + fi%j-ﬁg+ HO.T. (1.6)

The partial derivatives are Jacobian matrices and " H.O.T.” represents higher-order terms in the
Taylor series. Two assumptions must be made at this point in order to obtain a linear model of

plant dynamics about the ith equilibrium point:

1. Only small perturbations about the equilibrium condition will occur ("H.O.T” term.s are then
negligible).
2. The equilibrium point is static (X =0).

By applying these two assumptions and noting that f evaluated at the equilibrium point is zero

(by definition), (1.6) becomes a linear equation in the perturbation variables:
& = Az+ B (r.7)

This is the familiar derivation of an LTI plant by linearization. Note the explicit dependence of

the (A, B) plant model on the ith equilibrium point. This linearization is only valid at or near
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this equilibrium point. This model says that, though the behavior of the system is nonlinear, the
movement of the states relative to an equilibrium point can be modeled as linear, provided the
actual states and controls are "close enough” to equilibrium. At what distance from the nominal

the linear model no longer holds depends on the extent of the original nonlinearities.

When designing a control system for a nonlinear plant such as an aircraft, it is customary
to consider the performance of the plant at many equilibrium points. In fact, gain scheduling
in flight control systems is required because aircraft exhibit such varied dynamics about different
equilibria within their flight envelope (21]. However, by observing that the dynamics change in
a smooth, continuous manner throughout the flight envelope, it becomes clear that the aircraft
transfer function may be considered linear but containing parameters varying as a function of the
current siate, as in the case of parameter uncertainty discussed in Section 1.1.1. The linearization

process introduces significant non-statistical uncertainty into the unknown parameters [22).

Other sources also contribute to the non-statistical uncertainty associated with the analysis
of a nonlinear plant such as an aircraft. First, all higher order dynamics are assumed negligible.
These terms are only negligible in actuality when the system is exactly at the nominal condition.
Second, though the model is now expressed in terms of perturbations from the nominal, all incoming
measurements will be of the full state X and the full control U. The nominal conditions will have to
be subtracted from each measurement, and any error in the nominal condition will directly manifest
itself as a disturbance driving the linearized system model [14]. These errors will be compounded
by any actual parameter variation exhibited by the physical plant itself, as well as by noise present
in the signal paths [2].

As developed in the previous two sections and elsewhere [4:688-690}, most error sources can be
accounted for by assuming parameter and signal uncertainty in a linear system model. The current
practice is to ignore these uncertainties or to include them by assuming a linear system driven by
statistically modeled process and measurement noises [4, 2]. In both cases the controller is then
derived in a linear fashion. However, by defining a "Fuzzy linear system,” where parameters are

assumed to have a certain non-statistical uncertainty, the effects of linearization can be explicitly
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included in the model. Though the idea of a time-varying linear system represented by a Laplace
Transform is an abuse of notation, it nonetheless provides valuable insight into the operation of the

proposed Model-Based Fuzzy Logic Compensator.
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1.2 Proposed Approach

Control systems based on Fuzzy Logic have been developed and implemented for many plants
in science and industry (5]. Current Fuzzy controllers are based on a mapping of the input/output
relations for a given plant. These relations are formulated as a series of IF... THEN-type rules which
comprise the Fuzzy Inference system within the Fuzzy Controller. Fuzzy Controller development
is therefore contingent on the availability of a system control knowledge base, obtained either from
interviews with human operators or from tests on the actual hardware. The concept of a Fuzzy
Controller based on a model of the system behavior rather than expert ”rules of thumb” has not
been addressed in the literature.

To better understand the potential benefits of model-based Fuzzy compensation, consider the
control design problem in graphical form, shown in Figure 1.4. This figure shows the parameter
space for a scalar version of the nonlinear system discussed in Section 1.1.2. In this diagram,
the z and u axes of the graph represent the allowable range of variation of the state and the
input respectively. The objective, as stated above, is to drive the plant from an initial equilibrium
state, assumed X = 0, U = 0 in the Figure, to a final value which is shown at the end of the
X(t),U(t)-Optimal trajectory curve. If a system were to traverse the optimal trajectory, it would
be assured of reaching the final state within desired specifications. Unfortunately, this trajectory
is a mathematical abstraction and is not known prior to simulation. Only the nonlinear equations
describing the plant are available, as well as N linearized plants describing the dynamics about N
"evenly” spaced operating points on the locus of equilibrium points. The objective of the controller
is to remain approximately on the optimal trajectory by using the dynamics information available

in the form of the linearized plants.

Given that the system is at the point labeled ”Current Position” in the Figure, the question is:
which linearized model yields the best approximation of the dynamics at the current point? Plant
3 yields a better model of the U dynamics while Plant 2 yields a better model of the X dynamics at
the point in question. Therefore, without resorting to a nonlinear compensator, the best controller

is based on a weighted combination of these two plant models. An implementation of this approach
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Figure 1.4 State space paradigm for nonlinear control

is shown in Figure 1.5. Here, a linear controller is developed for each of the N linearized plants.
Each compensator provides adequate closed-loop performance for state trajectories originating and
terminating "sufficiently close” to the equilibrium about which the compensator is based. The
value corresponding to ”sufficiently close” depends on the extent of the nonlinearities exhibited by
the plant and will be referred to in this report as the region of attraction of that compensator. The
N compensators are all implemented in the forward path of the closed-loop system, and all receive
the error signal E. Which compensator(s) will actually drive the plant, however, is determined by
the Fuzzy Supervisor. The Fuzzy Supervisor will appropriately weight each compensator based on
a Fuzzy assessment of system’s position in the state space of Figure 1.4. The Fuzzy Supervisor will

base its decision on a measurement of the current system state Y, as shown in the Figure.

Each linearized plant is represented by a Fuzzy Set within the Fuzzy Supervisor. When a
measurement of the current state is input, the Supervisor will assign a membership value u; for that

input to each Fuzzy Set. The values of x are based on membership functions 4;(Y') which represent
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Figure 1.5 Weighting of a bank of linear compensators using Fuzzy Sets

the "rules of thumb” for properly weighting the compensators. In this research, the membership
functions are Gaussian-like and are based on the regions of attraction of the compensators.

This simple control approach leaves many questions unanswered, particularly for multi-state
problems. First, there are the linear questions associated with the use of multiple compensators in
the forward path of the cimu!stion. For example, the fact that each compensator is valid within
its region of attraction does not necessarily imply proper dynamic control of a plant traversing
multiple regions of attraction. Even the location of the weighting blocks (whether before or after
the compensator) will determine the distribution of energy throughout the system. This will have

a bearing on the transition from one compensator to another.
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Second, there are also nonlinear considerations to be addressed. The most pressing of these
is that some appropriate control action must be taken even when none of the compensators are
considered valid. This will be a common occurrence, especially for multi-state plants, so how this
situation is handled will greatly impact the complexity and performance of the final solution. The
designer would like the controller to respond with caution. When the the Fuzzy Supervisor finds no
close correspondence between the estimated system state and the Fuzzy sets corresponding to the
universe of discourse, the compensator should decrease the input to the plant (Caution and other

characteristics exhibited by optimal controllers are discussed in Maybeck [1:229}).

The above considerations and others will be used to determine the feasibility of a hybrid
linear/Fuzzy Logic controller based only on linear compensators and Fuzzy Sets. Analysis in the
chapters to follow show that this configuration is not adequate to control a nonlinear plant. The
analysis itself, however, suggests an alternate controller configuration based on linear-like waveforms
generated using Fuzzy Logic. This alternative design for the Model-Based Fuzzy Logic Controller

is shown in Figure 1.6.

Note that this design has only a single linear compensator, which corresponds to the highest
gain required for any linearization under consideration. It was found that the linear compensators
intermediate to the initial state and final state of the system contributed nothing to the successful
control of the nonlinear plant. Therefore, only starting and terminating compensators are necessary.
Between the two regions of compensator validity, a Fuzzy "squashing function” is required to avoid

overdriving the nonlinear plant.

Of the two "compensators,” only one is implemented as a linear transfer function (shown at
the top in the Figure). The second is a Fuzzy Logic emulation of the u(t) output which would
have been produced by a second linear compensator corresponding to the final desired state of the
system. This "compensator” is implemented as shown in the lower portion of Figure 1.6. This
Fuzzy Logic approximation is necessary because the required form of the second compensator does
not correspond to the linear compensator based on the final equilibrium state of the system. The

required controller output, then, must be determined through simulation.
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Figure 1.6 Final structure of Model-Based Fuzzy Logic Controller

This alternate Model-Based Fuzzy Logic Controller induces linear-like closed-loop perfor-
mance from a nonlinear plant over a specified envelope of operation, but at the expense of most
linear compents in the originally proposed controller. The internal operation of this concept con-
troller is developed further in the chapters to follow.
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1.3 Scope and Assumptions

As this study involves both non-linear plants and non-linear compensators, the issues of
stability, performance, and steady-state error will only be addressed through experimentation via
simulation. Rigorous exploration of these topics is beyond the scope of this study and, in some

cases, beyond the state of current nonlinear mathematics (21, 27).

This study is exploratory in nature so it cannot be exhaustive in its inclusion of all possible
nonlinear plants. The objective is to address plants pertinent to aerospace science. The stipulation
that f be smooth is necessary to the description of nonlinear systems as linear perturbation models
with varying parameters. f need not be smooth in general, though the applicability of MBFLC to

pla.nts.v}ith discontinuities within the range of operation is beyond the scope of this study.

| The design approach developed here is germane to both uncertainty due to nonlinearity
and uncertainty due to parameter variation or mismodeling. The controller developed herein is
based only on the former, though the performance is also measured against an uncertain modeling
parameter. Encompassing both non-statistical error sources simultaneously is left for later research.

Broadly stated, the objective of this research is to develop a full-envelope controller for a
_nonlinear plant using only linear control techniques and Fuzzy Logic. The expected benefits of the
Model-Based Fuzzy Logic Control approach are:

1.. Force a nonlinear plant to to exhibit linear-like performance and conform to linear design
specifications.

2. Incorporate available models into controller structure.

3. Enhance robustness of controller in the face of unmodeled uncertainties (system damage,
noise).

4. Obtain full envelope operation without the need for gain scheduling.

5. Introduce some a priori synthesis and analysis capability into Fuzzy Controller Design.

1.4 Summary

Engineering models of real-world systems are inevitably abstractions of reality. By modeling

the extent of this abstraction, a more accurate representation of the physical system can be obtained.
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Fuzzy Logic is one means by which this non-statistical uncertainty can be taken into account in a

mathematically tractable way.

Flight controllers based on Fuzzy Logic have been developed and presented in the open
literature [19, 12]. These designs, however, are based on the assumption that no adequate plant
models exist for aircraft. This is not the case, though the models are nonlinear and exhibit complex
dynamics. The objective of this thesis is to explore the application of Fuzzy Set theory in an
environment where the systems of interest are described as essentially linear with non-statistical

parameter variation.

The result of this research is a hybrid linear/Fuzzy controller which forces a nonlinear plant
to exhibit linear-like closed-loop behavior.
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II. Plant Development and Current Approaches
2.1 Introduction

The goal of this research area is to explore intelligent flight control, where controllers utilize
concepts from both the control and artificial intelligence fields. It is hoped that these hybrid
controllers will demonstrate some advantages over current controllers, if not in performance then
in areas of robustness, noise rejection, and ease of design. The objective of this thesis effort is to
demonstrate the value of applying both Fuzzy Set theory and linear systems theory to the control of
nonlinear plants. It is conjectured that the resulting controller will be more successful than either
Fuzzy Logic Control or Linear Control alone.

Because the final envisioned application is automatic flight control, it would be reasonable to
develop controllers based on the nonlinear aircraft equations of motion. However, this thesis effort
was conducted using a reduced-order plant which is subject to parameter variation. The reasons

for this are three-fold:

1. Availability of Nonlinear Models - The use of linearized aircraft models about a given equi-
librium condition is so pervasive that few simulations are available to adequately solve the
nonlinear equations of motion in real-time. Developing the hardware and software interfaces
required for this type of simulation is prohibitive.

2. Complezity of Linear Controllers - The linearized models resulting from the nonlinear aircraft
equations of motion would have, as a worst case, eighth-order characteristic equations. The
linear controller required to adequately compensate this plant would be very complex, and
simulations would be ponderous.

3. Difficulty in Fuzzy Tuning - The number of Fuzzy parameters present in the Fuzzy coatroller
for a full-envelope flight control system would be large. Without some predetermined rules
for tuning, and perhaps even pre-tuned components, the challenge of holistic tuning could be
insurmountable.

Because of these three considerations, this research was conducted using a two-state nonlinear
plant. The chosen plant is developed in this chapter. Conventional "benchmark” approaches to
the control of this nonlinear plant will also be discussed. All designs are validated using the
SIMULINK(@©simulation environment for MATLABQ®.




2.2 Reduced-Order Plant

The following criteria were used in deciding upon the form of the nonlinear model used in
this effort:

o The plant should exhibit significant nonlinearities over the expected ranges of the state and
input vectors.

e The plant should exhibit parameter uncertainty.
o The plant should have an infinite number of equilibrium conditions.
o The locus of points associated with equilibria should be smooth and monotonic.

¢ The system nonlinearities should be odd-symmetric to ensure tracking of system inputs for
both positive and negative input values and preserve some features of a linear plant.

e The form of the linearized plant model should resemble the plants used in other studies of
linear systems theory, to the extent possible.

o The plant should be as simple as possible to clearly demonstrate the the developed controller.

The nonlinear plant chosen to fit these requirements is:

X, = -X;+aX, (2.1)

X, = -X}+03 (2.2)

Y = X, (2.3)
05<a<l5. (2.4)

When addressing only uncertainty due to linearization, a is set to 1. The SIMULINK model of
this plant is shown in Figure 2.1. In subsequent simulations, the nonlinear plant is represented as
a single block called Nonlin_Plant, with a externally defined.

2.8 Linearization of Nonlinear Plant

In order to apply linear system theory to this plant, a linearized model of this plant must be
considered, as discussed in Section 1.1.2. First, the states and inputs are described in terms of an

equilibrium value, plus a perturbation:

X] = X1.+21 (2.5)




Produc2

Figure 2.1 SIMULINK Model of Nonlinear Plant with Externally Defined a Parameter.
X: = Xg. + 29 (2.6)

U = U,+u. (2.7)

The relationship between the equilibrium values X,,,X3,, and U, can be found by setting the
right-hand sides of (2.1) and (2.2) equal to 0:

0 = -X;+X, (2.8)
0 = -X)+U3 (2.9)
or,
Xl = X: (2-10)
X = U (2.11)




This implies that X,, = X;, = U,. Note that this plant has perfect tracking even without the
benefit of feedback compensation.

To determine the linearized model, substitute (2.5),(2.6), and (2.7) into (2.1) and (2.2). This
yields:

%(Xu +2) = -Xie—-n1+X5 + 2, (2.12)

d _
F(Xetz) = (Xt £,)* + (U, + u)*. (2.13)
Expanding the cubic terms and rearranging;:

X;u‘i-ffx = —Xio+Xso—-21+ 23 (2.14)

Xoot2s = -Xi'-3X1 2, -3X122 22+ 0.0 +30,u + 30,62 + 4. (2.15)
Applying the small perturbation assumption yields:

X481 = X+ Xn-ni+2 (2.16)

izo + 3.2 = "an.o3 - 3‘x_lo’zl + ﬁos + 3(70"‘- (2-17)

Finally, by assuming the plant is operating about a static equilibrium point, then X, to = fz. =0
and noting that the terms which involve only equilibrium quantities cancel out, the linearized model
for (2.1) and (2.2) is:

2.] = -I + T3 (2.18)
£, = —3X1, 2430, u (2.19)
y = z. (2.20)

24




Because X;, = X3, = U,, a new quantity 7 can be defined as r = 3X,, = 3U,. Therefore, the
linearized model becomes:

|
| £ = -z 42, (2.21)
| Z; = -T2, +7Tu (2.22)
‘ .

Yy = 5. (2‘23)

As mentioned in Chapter 1, the linear model is based on two assumptions: 1) Small pertur-
bations from the equilibrium condition, and 2) Static equilibrium condition. As long as a single
equilibrium point is chosen, as was the case in developing the Banked Compensators, 7 is a con-
stant and the Laplace domain transfer function for this state space description can be derived via

G(s)=C(sI - A)"'B + D as:
r

Pe) =G

(2:24)
Two points should be mentioned about this plant selection which will bear on the design of a
successful controller:

1. 7 changes rapidly relative to the eigenvalues of the linearized model. The eigenvalues of the
linearized model are given by:

'\1,2 =

~1+v1=-12Y2
1+ ; 12Y ) (2.25)

Comparison with the expression for 7 shows that the A matrix will vary rapidly with time
for large step inputs. Much of the linear controller analysis will assume that the plant can be
considered piecewise LTI, but research has shown that this is precisely the type of plant which
frequently violates these assumptions [16]). Linear analysis must be viewed with caution, as
stability and performance are not guaranteed. This is, indeed, a difficult nonlinear control
problem.

2. Plant is unstable for Y < 0. As Y — 04 the system will become less and less stable. This
will adversely impact control around the origin.

The SIMULINK model of this plant is shown in Figure 2.2. Note that it is represented in the
state space form of (2.21) and (2.22). In subsequent simulations, this model will be represented as
a single block called Lin_Plant with the parameter 7 externally defined.




0 yw)

w(in)

Figure 2.2 SIMULINK model of linearized plant with externally defined  parameter




2.4 Control Performance Characteristics

It is desired to develop a control system for the nonlinear plant of interest. The following

performance characteristics were arbitrarily chosen as a basis for controller desigu:

o Peak Overshoot (M,): 1.12 ({ = 0.5594)
o Maximum Settling Time (¢,): 1.62 seconds
¢ Disturbance Rejection: |Y()sisturtancd < 0.1

The desired response is produccd by the following model:

19.5 ~ 19.5
&+ 4.94085 4+ 19.5 ~ (s +2.47 4 73.66)(s + 2.47 - 3.66)°

M(s) = (2.26)

This response is shown in Figure 2.3.
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Figure 2.3 Response of Model Plant to Unit Step Input
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2.5 Standard Control Approaches

Before considering the synthesis of two control approaches, it is imporiant to assess the
potential of each technique alone. This analysiz will not only provide valuable benchmarks for

performance, but will also provide insight into how a MBFLC compensator should operate.

Three techniques were considered in this research: Dynamic Inversion, Quantitative Feedback
‘Theory, and Fuzzy Logic Coutrol. The performance of these techniques was measured using the
SIMULINK@®simulation environment for MATLAB®.

2.5.1 Dynamic Inversion.  Dynamic Inversion(Dl) is a straightforward technique which
lcads to nonlinear controllers for many types of nonlinear plants. Though the objective of this thesis
is not to address nonlinear control techniqunes explicitly, Fuzzy Logic Controllers are themselves
nonlinear and the operation of the DI-based controller will serve as the starting point for Fuzzy
tuning.

"The objective of DI is to reformulate the problem into a linear system through the use of
intermediate quantitjes. Linear systems theory can then be uscd to synthesize a controller for the
"linear” plant. In implemcntation, the intermediate quantities required to obtain a linear system
model can be solved for in an ad hoc fashion and fed into the nonlinear plant. For more on Dynamic

Inversion, see Reference [27).

The noolinear plant of (2.1) and (2.2) can be viewed as linear by defining an intermediate

control variable V = —XJ + U3. This leads to:

XI = —Xl + aX; (2.27)

X, =V (2.28)

Y - Xl, (2-29)
2-9
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Figure 2.4 Root Locus for G(s)P(s), Dynamic Inversion Synthesis

which is a linear system. The transfer function is:

P(s) = a(_s%-T) (2.30)

It is clear from root locns analyuis that the desired poles of s = ~2.47 + j3.66, —2.47 - j3.66
ca..nnot be obtained by gain adjustment alone. It is necessary to cancel out the plant pole and s = -1
and add a compensator polc further to the left in the x-plane. The proposed linear compensator is

therefore:

oo =) (221)

The root locus associated with this G(S5)P(s) is shown in Figure 2.4. The desired { = .5504 is
showa on the plot and can be used to determine the valuc for k. From this analysis, k = 124,
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Figure 2.5 SIMULINK Model of G(s) Using Dynamic Inversion

This transfer function can be represented in state space form unsing the technique in [4] as

shown in Figurc 2.5. This model is referred to with a single block called DIComp in subsequent
simulations.

The controller described by (2.31) will accept the error signal E as input and will output
V, the intermediate control quantity. In order to determine thc correct input into the plaat, the

control I/ must he solved for via:

U= IV+73, (2.32)

This equation will be solved in a simulation block called an interpreter, thus yielding a nonlirear
control law. Thaugh the interpreter should only consist of a single fanction block, MATLAB is
unable to perform the cubed root opcration when the argument is negative. Therefore, the more

complex structurc shown in Figure 2.6 was required.

The simulation of this control system is shown in Figure 2.7. The response of the system to

a unit step input are shown in Figure 2.8. Also plotted in the Figure is the response of the model

2-11
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Figure 2.6 Intcrpreter Block Which Converts V to U

plant. The model response and closed-loop response based on DI are almost identical. The state-
space representation (similar to Figure 1.4) of the plant transfer from X; = 0,X; =0,U =0t
X, =1,X,=1,U = | is shown in Figure 2.9. The nominal locus is also plotted on this figure as a
dashed line. Note that the locus takes a step up along the U axis immediately upon onset of the step
input. This moves the system state away from the nominal locus, where linearized approximations
are valid. In three dimensions, the state trajectory never again approaches the equilibrium locus,
where all compensator regions of attraction are centered. This iy a source of problems in the banked
compensator approach, which hinges on proximity to the cquilibrinm points for the compensators
to be valid.

The response of the system when the nonlinear plant takes on various values of a is shown
in Figure 2.10. The compensator is designed in all cases for ¢ = 1. This Figure shows that this
simulation is affected significantly though not catastrophically by errors in modeling the nonlinear
plant.

Though dynamic inversion is a simple technique in nonlinear control, it will not work in
many situations (27. A more sophisticated tcchnique called progressive linearization provides a
more general solution to the nounlinear control problem. Both of these synthesis techniques produce

2-12
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Figure 2.7 Simulation of closed-loop tracking controller developed usiag dynamic inversioa

aonlinear controllers and neither explicitly address disturbance rejection or parameter robustness.
Disturbance rejection can be accounted for to some degree, however, in the the linear compensator
design. A dynamic inversion-like approach will serve as the model for initial MBFLC designs.
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Figure 2.8 Response of dynamic inversion simulation to unit step input.
plotted but is almost perfectly covercd by system response.
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Figure 2.9 State-space trajectory represeatation of dynamic inversion system response to a vnit
step input, a=1.0
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Fignre 2.10 Response of dynamic inversion simulation when the nonlinear plant takes on differeat
values of the parameter a. a = 1 in the compensator for all simulations.
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2.5.2 Quantitative Feeddack Theory.  The previous two section addressed nonlinear com-
pensation for nonlinear plants. Since the objcctive of this thesis is to apply linear and Fuzzy control
theory to noplinear plaats, it is important to consider a purely linear technique as well. Though
linear system theory is generally applicable only as long as the lincarization assumptions hold,
some techniques lead to /inear controllers with some applicability to nonlinear plants over a givea

operating range. One such techniyue is Quantitative Feedback Theory (QFT).

QFT was developed by Dr Jraac M. Horowitz in the 1970s to address parametcr uncertainty
in linear plants [29). As discussed previously, the variation could be due to mismodeling, parameter
uncertainty, or underlying nonlinear dynamics. QFT synthesis yields a linear compensator and
prefiltesr which ensures adequate performance for auy one of a family of linear plants. A top-level
view of QFT-derived compensation is illustrated in Figure 2,11. ‘Though the resulting closed-loop
performance is only guaranteed for lincar time-invariant plants, the QFT corapensator is often

capable of controlling even a nonlinear plant over a limited operating rauge.

The QFT design process is initiated by first defining both a family of plaats to be controlled
and au "acceptable” region of performancc. Each of the plants should represent an extreme of
the anticipated parametcr variation. In the case of the nonlinear plant under consideration, the
parameter variation of the linearized models depends directly on the desired operating range and
the parameter . An initial QFT design was devcloped for the region between Y =0 and Y = 0.5.
Five plants were used to define this operating raage: ¥ = 0.1,0.2,0.3,0.4, and 0.5, with g assumed

fixed. All of these plants are of the form P(s) = 53557

The regiva of acceptable performaace is defined by upper and lower transfer function spec-
ifications, Tay(s) and Tre(s). The magnitude verses frequency plots of these transfer functions
exhibit the range of acceptable closed-loop responses. For this case, Try(s) is an underdamped
response with M, = 1.12, and ¢, = 1.62secs. Tre(8) is an overdamped function with ¢, = 1.62secs.

They are given as:
_ 8116(s + 14.814)
Tro(®) = G196 £ 52.80)

(2.33)
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Figure 2.11 QFT compensation scheme

and,
39.99
Tra(s) = (s +3.48)(s +2.7 % j2.074)

(2.34)

The resulting "thumbprint™ of acceptable rcsponses is determined by the frequency responses
of (2.33) and (2.34). This is shown graphically in Figure 2.12. As a general rule, the larger the
thumbprint of acceptable responses, the simpler the design will be. The thumbprint can also be
made so small, or the range of plant variation so large, that successful design is impossible. The
additional poles and zeros in (2.33) and (2.34) are to ensure that the upper and lower thumbprint
boundaries are always diverging for lower frequencies, as shown in Figure 2.12. For aay given
frequency, the maximum allowable change in the frequency response due to parameter variation

js the difference between the magnitude of the npper and lower bounds, This -alue is designated

Sp(Jwi)-
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Figure 2.12 The frequency respunses of Try(s) and Tac(s), comprising the QFT response
thumbprint

The development of the compensator G(s) is accomplished on a Nichols Chart similar to that
shown in Figure 2.13 for the currcnt design example. The open-loop magnitude and phase data
for the least stable (closest to the —180°/0 dB point) plant is plotted on the Nichols Chart. In
this case, the response for the Y = 0.1 plant is plotted. The other lines on the chart represent
boundaries for certain frequencies of intercst. These boundarics correspond to the points on the
Nichols Chart, for any value of phase shift, at which the maximum uncertainty in M,, (caused by
parameter variation) is equal to the maximun variation allowed by §g(juw;). If the plot of the least
stable plaut falls below or to the left of these performance bounds for the frequency of Interest,

then the thuwmbprint of responses cannot be obtained.

Boundary Jines can be determined for both tracking respouse (input at the reference point)
and for disturbance rejection (input directly into the plant). The boundary which imposes the

most severe restriction (highest in magnitude on the Nichols chart) for a particular frequency of
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interest is plotted on the Nichols Chart. It can be shown that QFT control of a nonlinear plant will
always involve rejection of an unwanted input at the plant [21]. ‘Theretore, 3 good signal rejection
capability should be designed into the compensator G(s). The boundaries plotted in Figure 2.13 are
almost all due to signal rejection requirements. The cylindrical boundary around the -180°/0 dB
point represents the desired stability margins of the systcm. The Nichols plot of the compensated

system should pass to thc right of or below this encircling boundary.

Clearly, the frequency response in Figure 2.13 does not meet the established boundaries.
The plot of the least stable plant falls considerably below the composite bounds and violates the
stability rargin boundary. Tharefore, a cascade compensator is required. With the addition of a
compensator G(s) the respouse shown in Figure 2.14 is obtained. Figure 2.14 shows that all of the

tracking and disturbance rcjection bounds are being mct. The compensator used to obtain this

response is given by:
477900(s + 0.1)(s + 0.3)(s + 7.92)

s(s + 1.44)(s + 51.13 + 74.551) (2.35)

G(s) =

Successful compensator design ensurcs that the variation in frequency response due to parameter

uncertainly is less than or equal to §g(jw;). The next step is to ensure that this variation occurs
within the absolute limits set by Tru(s) and Ty.(s) in Figure 2.12, Figure 2.15 shows the the
frequency response of a successful design. The outer lines are the boundaries established by the
upper and lower tracking bounds. The inner lines represent the frequency response variation of
G(8)P(s) in closed-loop. The F(s) required to oblain this response is given by:

13.063(s + .41)
(s + 425)(s + 3.51)(s + 3.56)

F(s) = (236)

Notice that the steady-state gain of F(s) is 1.

‘The performance of the final closed-loop system is shown in Figures 2.16 and 2.17. For
each individual plant, the resulting tracking and disturbance rejection responses are within design

specifications. This illustrates the power of the QFT synthcsis technique.
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Unfortunately, this G(s)(2.35) and F(s)(2.36) devcloped through QFT synthesis do not pro-
duce a stable response for the nonlinear plant from which the linearizations were derived. The
respouse quickly shoots to ¥ = +00. This illustrates the challenge associated with using linear
design techniques to control a time-varying linear plant with parameters changing faster than the

plant dynamics (eigenvalues). A redesign of the QFT controller is required.

This redesign is accomplished simply by allowing the o parameter to vary between 0.5 and
1.5 over the intended region of operation from 0 to 0.5. The effect of this parameter variation
is to add linear plant cases that are farthcr away from the origin (farther from the singularity at
Y = 0.0). Fur this alternate design, the plants chosen correspoad to Y = 0.2,0.5,0.7,1.0, and 2.5.

The compensator based on this new extended family of plants is:

gy 1228(s +0.1)(s + 0.3)(s +7.92)

Gls) = s(s + 1.44)(s + 210) (2:37)

This G(s) yields the frequency response shown in Figure 2.18. The prefilter given by (2.36)
is sufficient for this desigu as well, so no F(s) synthesis is necessary. Figures 2.19 and 2.20 show
the responscs of each Jinearized plant to reference and disturbance unit step inputs. Note that the
linear performance for both QFT designs is very similar. Indeed, they both even share the same
precompensator.

The new design is also effective whea applied to control of the nonlinear plant. Figure 2.21
shows the response of the nonlinear plant with QFT-based compcnsation to a 0.5 step input at
the reference, for various values of a. Notice that the a variation has almost no perceptible effect
on the response of the system. The plots fall almost exactly on top of one another, showing the

insensitivity of the QFT design to parameter uncertainty.

All plots used in this section were obtained using the QFT CAD package developed by Oded
Yaniv at the University of Tel Aviv, 1srael. For additivnal information on QFT the reader is referred

to references (4] and [29).
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Figure 2.13 Nichols Chart showing QFT boundaries and frequency response of worst-case plant
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Figure 2.14 Nichols Chart of worst-case plant in series with G(s)

2-23

400

-120.0

-2400




%E’; S =
2% 123 I8 5ls
s c g 6l 68 BIR IBl¥
Y
§‘ =
=3
[ ]
s @
_°.
. .
»
D
J::
gl [ ]
©
3
>
t 'O_' M L N é L U
el | = E 2 g g 2
i o T P 'p ‘P

Figure 2.15 Frequency response plot showing the variation of the family of plants is inside the
maximum variation allowed by Try(s) and Tre(s)




TIME

23

Min value
9839

Mix vaiue

1.017

3 -
=
2 8
2 g
T e — P
& i
H -
o 38
15§ § § & @

Figure 2.16 Closed-loop time responses of all five linear plants to unit step at the reference input
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Figure 2.17 Closed-loop time responses of all five linear plants to unit step at the plant input
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Figure 2.19 Closed-loop time responses of all five alternate linear plants to unit step at the refer-
ence input
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Figure 2.20 Closed-loop time responses of all five alternate linear plants to unit step at the plant
input




Figure 2.21 Response of nonlinear plant to unit step reference input for a=9.5,1.0, and 1.5




ﬂ Variable l Min | Max ﬂ

E ~12 1
E -2.77| .28

Table 2.1 Universe of Discourse for FLC

2.5.3 Fuzzy Logic Control. A Fuzzy Logic Controller can be developed using the perfor-
mance of the Dynamic Inversion controller as a basis for Fuzzy tuning. The first step in constructing
this controller is to determine the inputs required to provide adequate information on the state of
the plant. In this case, the linearized plant is second order, 8o it is reasonable to assume that E

and E will be adequate to control the nonlinear plant. This assumption proves correct.

E and E will be input into the Fuzzy controller and then fuzzified as discussed in Chapter 1.
All Fuzzy membership functions in this controller are of the form:

wz) = (2.38)
where Z represents the mean of the function and o? is a variance-like term expressing the spread
of the function. The equation (2.38) produces membership functions similar to those shown in
Figure 1.1. The Gaussian form for the membership functions simplifies implementation of the FLC
on SIMULINK and allows for simple tuning of the Fuzzy sets by altering Z and o2. Note that the

membership function is completely specified by these two quantities.

The universe of discourse for E and E suggested by the DI simulation is shown in Table 2.1.
This data, however, assumes that the plants remain on a ideal trajectory between 0 and 1. Because
this may not always be the case, the universe of discourse for the FLC will be expanded slightly.
Note also that by choosing this range for E and E, the controller will only be effective for R, () <
1. The FLC will not necessarily break down for R,,;(t) > 1, but the results will be unpredictable.

Next, the granularity of each input must be determined. Granularity is simply the number
of Fuzzy Sets which will be used to quantify the universes of discourse of the input variables.
The objective is to use the fewest sets possible to adequately represent the data contained in the
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E E

X _|o x|lo
Positive [ 0.5 | 0.0417 | 2 | 0.4343
Zero 0 00878 | 0 | 0.4343
Negative -0.2 | 0.00558 | -2 | 0.4343

Table 2.2 Membership Functions for FLC

input. In this case, that number is 3 for each variable: "positive”,”zero”, and "negative.” So once
fuzzified, each input will be considered to be some combination of positive, zero, and negative. As
mentioned above, each membership function for the linguistic variables will be completely defined by

an appropriate # and o?. These values, chosen using "engineering insight,” are shown in Table 2.2.

By modifying the DI simulation, a time history of E,E, and U. can be generated for "suc-
cessful” plant control. This data can be used to generate a first-cut at the Fuzzy inference system
which links the compensator inputs E and E to the output U. The following rules can be generated
by inspection of the DIC simulation data:

. IF E is P AND E is N THEN U is PS.

IF E is P AND E is Z THEN U is PL.

IF E is P AND E is P THEN U is PL.

IF E is Z AND E is N THEN U is NS.

.IF EisZ AND E is Z THEN U is O.

. IF Eis Z AND E is P THEN U is PS.

. IF E is N AND E is N THEN U is NL.
. IF E is N AND E is Z THEN U is NS.

. IF E is N AND E is Z THEN U is PS.

© 0 NS N A W N e

In the above rules, P is "Positive,” Z is "Zero,” N is ”Negative,” PS is "Positive Small,” PL
is "Positive Large,” PS is "Positive Small,” NS is "Negative Small,” NL is "Negative Large,” and
O is One. This Fuzzy inference system addresses all possible combinations of the two compensator

inputs E and E.
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Table 2.3 Values for U suggested by Dynamic Inversion simulation

In many FLC applications, the next step would be to define the universe of discourse and
membership functions for the output U. In this case, however, a value of U from the DI simulation
can be associated with each combination of input arguments. The values of U can still be viewed
as Fuzzy Sets, but in the limiting case where each premise maps to a delta function corresponding

to a single point in the output universe of discourse. The values for U are shown in Table 2.3.

The Fuzzy Inference system above is the heart of the FLC, linking the fuzzified controller
inputs to the appropriate outputs. What remains to be resolved is the exact numerical procedure
that will be used to implement these rules and how multiple control conclusions will be resolved to
produce a single "crisp” output. This is accomplished in several steps. First, the AND statement
in the argument of each rule must be resolved. The standard solution to the Fuzzy AND statement,
proposed by Zadeh and others is [28]:

C(z) = A(z)AN DB(z) — pc(z) = Mir(pa(z), ns(2)). (2.39)

Therefore, whichever term in the premise is activated the least will determine the level of activation
of the implicated control action. In this way, every possible control action will receive a membership
value which indicates the degree of confidence the controller has that each course of action is the

"correct” one.

Before being output to the nonlinear plant, U must be defuzzified. To accomplish this, the

defuzzification routine of [13] will be used:

U(t) = —%‘,’z"% (2.40)
=1 ]
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Table 2.4 Values for U implicants based on tuning through simulation

The numerator of this expression is simply the sum of all possible courses of action times the degree
of confidence the controller has that the given course of action is correct. The denominator is a
normalization term to ensure that the sum of all the membership functions in 1. Note also tha.t
because the membership functions are Gaussian, every resultant control action will be activated
to some degree at all times. Then the state of the actual plant is far away from the mean of the

membership function, however, the activation will be very small.

This FLC was implemented and tuned using SIMULINK. Not surprisingly, the values for
U suggested by the DI simulation did not produce an acceptable response. The compensator is
unable to produce the required dynamic range of U outputs. Many possible changes could have
been undertaken to correct the system response. However, rather than change the structure of the
Fuzzy Sets or resort to a finer granularity, it was simpler to change the values of the implicate U

values. The new values are given in Table 2.4.

The simulation set-up is shown in Figure 2.22, with the FLC shown as a single block, Fuzzy
Controller. The FLC as implemented in SIMULINK is shown in Figure 2.23. Fuzzification of inputs,
ANDing of the premises and defuzzification of resultants is all carried out in this simulation. The
closed-loop responses of the system to step inputs of Ref = 1u—1(t) and 1.5u—1(t) are shown in

Figure 2.24.

The purpose of showing the response of the FLC simulation to the 1.5 unit step is to show the
effect of reference inputs beyond the range of the universe of discourse for which the compensator
was designed. In this case the response does not exhibit a 0 steady-state error. As is to be expected,

the performance degrades further for larger and larger step inputs.




E &

Figure 2.22 Closed-loop control of nonlinear plant with Fuzzy Logic Control

Consider, however, variations in the plant parameter A, indicating mismodeling or non-
statistical uncertainty. Figure 2.25 shows the system response to a unit step given three different
values for A. The response corresponding to mismodeling A (A = 0.5 and A = 1.5) are much closer
to the correct response than are the responses for the DI compensator. This demonstrates that

FLC offers advantages in robustness over other approaches.

As a final example, Figure 2.26 shows the response of both compensators to a step input
in the face of a time-varying A parameter. In this case a = 0.5 + .2t. The FLC is more able to

maintain the shape of the desired response in the face of this type of plant variation.
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Figure 2.23 Fuzzy Logic Compensator for Nonlinear Plant

2-36




THIS
PAGE
IS
MISSING
IN
ORIGINAL
DOCUMENT

A-37




Figure 2.25 Time response of FLC/nonlinear plant to step input assuming modeling errors.
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Figure 2.26 Time response of FLC and DI controllers to time-varying a
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2.6 Summary

In this chapter, a nonlinear plant was developed to explore hybrid linear/Fuzzy control con-
cepts. Desired performance characteristics were established, and a closed-loop model was preseated.
The desired characteristics are such that compensation is required to properly contral the plaat.

In order to establish a control baseline and to develop insights into the nonlinear control
problem, three conventional designs were presented. A purely nonlinear technique was demon-
strated using dynamic inversion. This will serve as the paradigm for a nonlinear/Fuzzy controller
in Chapter 4. Second, a conventional Fuzzy Logic Controller was developed to show the structure
and demonstrate the insensitivity to modeling errors. Finally, a linear design was developed based
on Quantitative Feedback Theory. This serves as a benchmark for performance of other linear
designs.
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III. Model-Based Fuzzy Logic Control Linear Design Considerations
3.1 Introduction

The previous chapter demonstrated the potential of FLC controllers to adequately control a
nonlinear plant for a single prespecified unit step input. The resulting FLC actually had advantages
in robustness over more conventional designs. The FLC was not based on a plant model, and
the relationship between inputs and the desired outputs was determined in an ad hoc manner
through simulation. The remainder of this report addresses the use of linear compensators to
control nonlinear plants with Fuzzy Logic serving as an "interpreter.” Because there are quantifiable
relationships between the linear compensators and the nonlinear plant, the extent of the noa-
statistical uncertainty is reduced to some extent compared to the Fuzzy Logic Controller, and

enhanced performance is to be expected.

One possible means of applying linear systems theory to nonlinear control is through the use
of a bank of linear compensators. As discussed in Chapter 1, a nonlinear plant can be linearized
about a given trim condition with system dynamics described in terms of perturbations from the
equilibrium point. Nonlinear plants such as aircraft have many such equilibria, corresponding to
straight and level flight at a given airspeed and altitude. As the nonlinear plant changes equilibria,
the linear perturbation model can be expressed as a time-varying linear function. This function
can serve as the basis for multiple linear compensators which can then be used to compensate the

original nonlinear plant.

In the Banked Compensation MBFLC approach, the compensators themselves would all be
present in the forward control path and their outputs would be weighted according to an estimation
of which compensator most accurately reflects the current state of the system. When none of the
models are considered valid, combinations of outputs or Fuzzy Logic-induced caution would drive
the system to a region where the controllers are again effective. Figure 1.5 gives a conceptual view

of a Banked Model-Based Fuzzy Logic Controller.

This chapter addresses the linear considerations associated with the proposed MBFLC ar-

chitecture. Because it is not clear if the compensator bank will, in fact, achieve the desired goal,
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several areas will be explored in this chapter to resolve this question. The following issues will be
explored:

1. Linear Compensation of Linearized Plant

2. Use of Multiple Compensators in Linear Systems

3. Effect of Compensator Dissimilarities on Closed-Loop Linear System Response

4. Use of Multiple Compensators in Time-Varying Linear Systems

Based on these design considerations, a prototype Model-Based Fuzzy Logic Controller will

be proposed in the next chapter.

3.2 Linear Compensation of Linearized Plant

At any given equilibrium condition, the dynamics of the plant about that equilibrium can
be described through a linear perturbation model. A linear compensator based upon this model
can be used to control the plant, provided the plant remains sufficiently close to the equilibrium.
A succession of linear compensators based on this concept will be used to produce the Banked
Controller.

As stated in the previous chapter, the form of the linearized plant from the last chapter, given

a fixed equilibrium point is:
T

Pe)= G

(3.0)

This is the transfer function form of the state-space linear model of (2.21) and (2.22) shown in
Figure 2.2. The plant consists of two poles, both real for small values of 7, and as a complex pair
for large values of 7. Figure 3.1 shows the locus of poles as r increases from 0. The break-away
point on the real axis occurs at z = —0.5. The compensation approach taken is to cancel the poles
of the linearized plant with zeros in the compensator. The demoninator of the compensator will
contain one pole at the origin and one pole at z = —5. As the compensator gain is increased, the
poles at 0 and -5 will come together at x=-2.5 and break away at 90°. To obtain poles similar to
the model (2.26), a gain of K = 128 is required. Note that this approach breaks down as 7 — 0, s0
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Figure 3.1 Locus of poles of the linearized plant as a function of

a perturbation in K will be required as Y — 0. This will yield the desired pair of dominant poles,
as given in the model(2.26).

For a given value of 7, the form of the compensator is:

L5(s? 4 54 7)

G(s) = 82 4 5s

. (3.2)

This compensator is shown as implemented in SIMULINK in Figure 3.2. This model is
represented in subsequent simulations as a single block, TVComp. The compensator was converted
to state space form to accommodate an externally defined 7. As expected, for any constant value

of T this compensator will yield the correct closed-loop response.

This compensator, however, does not meet the specifications for disturbance rejection (|Ca,urtance(t)] <
0.1), so a second design must be considered. In order to add robustness in the face of noise injected
at the input to the linearized plant, three poles and three zeros will be added to the compensator.
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Figure 3.2 Model of Compensator G(s) with r externally defined

The form of the compensator with disturbance rejection is:

| B08(43 4 54 7)(s +45)°
G(e) = a(s + 4.5)(s + 200)°

(33)

Notice that in order to achieve disturbance rejection yet maintain acceptable tracking performance
the other poles in the denominator also had to be moved. While the performance of the compensator
given by (3.2) produces a response precisely as given in the model, the response of (3.3) will be
slightly faster. The implementation is also considerably more complex. The SIMULINK model of
(3.3) is shown in Figure 3.3.

Because the benefit of linear robustness to the control of nonlinear plants is not clear, two
simulations were run specifically to explore this issue. Both simulations are shown in Figure 3.4.
The first tests the ability of each compensator (given by (3.2) and (3.3)) to control the linearized
plant when 7 was allowed to vary with the output (7 = 3Y?). Because 7 is a function of Y, this




Figure 3.3 Model of Compensator G(s) with 7 externally defined which meets disturbance rejec-
tion specifications

plant will be nonlinear and exhibit many of the same characteristics as the full nonlinear plant [21].

The second simulation tests the ability of each compensator to control the nonlinear plant itself for

small steps away from equilibrium.

As mentioned above, 7 is undefined at Y, = 0 so a small constant is added to the "Tau” block
in the Figure. Though this small perturbation should not effect the system response, all simulations

in Figure 3.4 start from a nominal condition Y, = 1 to be sure.

Figure 3.5 shows that there is very little difference in tracking performance between the robust
controller and the non-robust controller for the time-varying linear plant. This Figure shows the
responses of the simulation for a step input of Ref = 0.5u_,(t). Both compensators have similar
responses, 80 the test is inconclusive. Figure 3.6 shows that the robust controller exhibits superior

signal rejection capabilities, so it is tempting to conclude that the robust controller is preferable.
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Figure 3.4 TOP: Closed-loop simulation given linear plant with time-varying plant parameter .
BOTTOM: Closed-loop simulation given full ponlinear plant. Both simulations are

run with each compensator.

Consider, however, the response of the full nonlinear plant, shown in Figure 3.7. This Figure
shows the response of the closed-loop system to a step input of Ref = 0.1u_,(t), and it is clear
that the non-robust controller yields significantly better results than the robust controller. The
difference in performance is rooted in the fact that the robust compensator has a significantly
higher gain than the nonrobust controller and thus a smaller region of attraction. As the step
input becomes smaller, the closed-loop responses of the compensators converge. This is clearly a

nonlinear phenomenon.
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Figure 3.5 Closed-loop system responses for the time-varying linear plant under both robust and

non-robust compensation.
Based on this analysis, most simulations to follow will be conducted using the nonrobust com-

pensator design. Which compensator is actually superior depends on the the desired application.

The robust controller is superior for disturbance rejection. The nonrobust controller contributes

much less overshoot for tracking. Use of the robust compensator is revisited in Chapter 5.
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Figure 3.6 Closed-loop disturbance rejection for nonlinear plant under both robust and non-robust
compensation.
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Figure 3.7 Closed-loop system responses for nonlinear plant under both robust and non-robust
compensation.
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3.3 Use of Multiple Compensators in Linear Systems

The next question to be addressed is how exactly to apply multiple linear compensators to a
single linear plant. Of special interest is the compensation of a plant which is not at a quiescent
condition at the starting time t,. This situation would arise repeatedly as each new compensator in
the bank were activated due to a change in the equilibrium point of the plant. If the act of changing

compensators disturbs the nonlinear plant, then the banked configuration may not be desirable.

A proper treatment of linear control systems operating from non-zero initial conditions was
not found in the literature search for this thesis. Therefore, several simulations were necessary to
determine the appropriate structure for the MBFLC. Because both the compensator bank and the
plant have the ability to store energy, both of these cases must be considered separately, and in

terms of their interaction.

3.8.1 Positive Internal Compensator Energy/No Internal Plant Energy.  Figure 3.8 shows
a simple simulation used to determine the effect of "charging” the compensator before applying
it to the quiescent plant. In this Figure the compensator will be receiving the error signal E at
all times. A switch just beyond the compensator prevents the output of the compensator from
reaching the linear plant for a prespecified length of time ¢;,. From time 0 to time 4 the states of
the compensator will be receiving energy from the error signal, while the plant is forced to remain

at 0. At t = t;+ the plant will begin receiving inputs.

Figure 3.9 shows the effect on the system response as t; increases. Clearly, as t4 gets larger,
the response of the plant system gets less and less desirable. This shows that the effect of energy in
the compensator is to underdamp the system in dire:t proportion to the energy in the compensator
at t4+. This demonstrates that compensator charging is undesirable, at least when applied to a

quiescent plant.
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Figure 3.8 Simulation to determine the effect of charged states in compensator applied to linear
system
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Figure 3.9 Closed-loop response of linear plant given varying ”charging” times for the linear plant
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3.3.2 No Internal Compensator Energy/Positive Internal Plant Enerygy. The previous
result assumed the plant was at 0 initial conditions at the time of compensator activation. A
similar simulation can be run but with the plant itself starting from a nonzero initial condition,
and the compensator starting from 0 internal energy. There are two possible situations which
could arise: 1) A plant starting from a nonzero quiescent position and 2) A plant starting with

non-quiescent initial conditions.

In both cases, linear systems theory can be used to predict the outcome [31]. For the first
situation, the desired output form will only be obtained if an additional constant input is added to
the input from the compensator. The value of this input is equal to the steady-state input which
would have induced the existing quiescent condition. The linearized plant plant in this research
effort, for example, is in equilibrium at z, = z; = U. Therefore, if the plant states here have
initial conditions z, = z, = 0.2, the required control input to the plant would be 0.2 plus the
control determined by the linear compensator. The effect is simply to move the starting point of

the simulation, and this has no consequences for LTI systems.

The second case is much more difficult to predict in general. The complete response of a
linear system is always equal to the response of the system due to initial conditions (homogeneous
solution) plus the response of the system to driving terms (particular solution) [17). When the
system is not at equilibrium there will be a homogeneous solution intermingled with the particular
solution. All that can be said with certainty is that the response will deviate from the desired

trajectory to some degree proportional to the strength of the homogeneous response.

This is illustrated using the simulation shown in Figure 3.10. Here, two identical compen-
sators, G;(s) and Gy(s), are included in the forward path, with the input to the plant being
determined by a switch. The position of the switch is determined by the current output of the
system. The switch will toggle from the top compensator to the bottom compensator at Y = 0.5,
halfway to the reference input of Y = 1.0. A second switch prevents G(s) from receiving the

error signal until Y = 0.5. The effect is that G,(s) will "inherit” the plant when the plant isin a
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Figure 3.10 SIMULINK simulation to test the effect of a quiescent compensator inheriting a non-
quiescent plant

non-equilibrium state. The state of the plant, however, is not arbitrary: it is precisely the state

that G;(s) would have driven the plant through had it been utilized from 2,.

The result of this simulation is shown in Figure 3.11. The optimal closed-loop trajectory is
also shown in the Figure (optimal being the closed-loop response using a single compensator for all
time). The compensator with zero initial conditions is unable to correctly drive the system when
the plant has internal energy at the time the switch is thrown. An identical compensator, then
cannot simply "pick up where the first compensator left off.” A mechanism in the control strategy

must be devised to account for the existing plant energy.
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Figure 3.11 Cloeed-loop response of quiescent compensatar/non-quiescent plant
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3.3.3 Positive Internal Compensator Energy/Positive Internal Plant Energy. To account
for the energy internal to the plant, consider the simulation shown in Figure 3.12. In this Figure,
the plant is linear and corresponds to the equilibrium condition r = 3 or Y = 1. A bank of two
compensators- T set to 3 for both- feed into the plant, and they are weighted at their error signal
inputs. In this case, the only two inputs into either compensator are possible: 1) R = 0 or 2) the
actual error signal, R = E. The difference between this simulation and the simulation in Figure 3.10
is that now G,(s) has the ability to effect the plant for all time.

The closed-loop response of this system for various switching times is shown in Figure 3.13.
Regardless of the time when the compensators are switched, the closed-loop response will be unaf-
fected and equivalent to the response of a single compensator in series with the plant. By driving
the error signal into the G;(s) to 0 at the time of compensator switch, but allowing the output of

G1(8) to continue to drive the plant, the energy currently in the plant is accounted for.

In this situation, the bank can be thought of as a single compensator. When G,(s) inherits
the system, it has no "knowledge” of the internal plant energy. It simply receives an error signal and
produces an output "assuming” the plant is starting at a quiescent condition. This is far from being
the case, and G;(s) supplies a much larger control input than is actually required. This overzealous
output from G,(s) is apparent from the response of Figure 3.11. In this latest simulation, however,
G\(8) actually corrects for this error by introducing a negative control at the summing junction to
the plant. This ensures that the X; and X, already present in the system at the time of control

transfer are accounted for from the switch time forward.

It is important to see just what G,(s) is doing to make this simulation successful. The input to
G, (s) is forced to 0 at ¢t = 0.25 secs, but the integrators in the compensator will continue to produce
an output, which will eventually reach steady-state. In this case, G,(1,) = 0.5622. Figure 3.14
shows the input signal to the plant (sum of control signals for both compensators) and breaks it
down in terms of the contribution by each compensator alone. Either forcing the output of G,(s) to
zero or replacing the compensator with a constant signal equal to G,(2,) have destabilizing effects

on the system output. Therefore, the dynamics of G,(t) are important.
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Figure 3.12 Simulation of banked compensation technique for a linear plant

A bank of linear compensators can be implemented in an alternate, but more straightforward
way by simply postweighting the compensators, as shown in Figure 3.15. In this case, both com-
pensators receive the error signal, though only one influences the plant at any time. One drives
the plant from ¢, to t4, while the second from t;+ on. In this case, the switching process once
again has no effect on the response, regardless of the switching time. This result is not surprising.
The compensators are identical, receiving identical error signal histories, and so they produce the
same input signal u to the plant. Regardless of which is actually driving the plant, the response
will be the same. This also serves to illustrate that only when plant and compensator states are

adequately charged will the response be unaffected by the switching operation.

An important conclusion can be drawn from this analysis. There must be internal energy in
the compensator to account for internal energy in the plant. Whether the internal compensator
energy is provided by the previous compensator (pre-weighted case) or built up in the compensator

about to inherit the system (post-weighted case) is a question of implementation. When a linear
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Figure 3.13 Response of Identical Compensators in a banked configuration

compensator inherits a system that is not at equilibrium, undesired oscillations will occur unless
an added signal is included account for the non-equilibrium condition. Further, the form of this
compensation signal is approximated by the linear response of G,(s) in Figure 3.14 for ¢ > 0.5 secs.
This general conclusion will be the basis for Model-Based Fuzzy Logic Controller désign in Chapter
5.

3.4 Effect of Compensator Dissimilarities on System Response

In the above simulations, the two compensators in the bank were identical. By using dissimilar
compensators, the question of compensator autonomy can be addressed. The ideal scenario would
be to have each hand-over point be equivalent to a quiescent condition. In this case, each new
compensator could start "fresh,” without regard to the past history of the system. Unfortunately,

the effects of unanticipated internal energy are once again introduced into the system.
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Figure 3.14 Output of compensator bank, shown in terms of each compensator contribution

To test compensator autonomy, one of the compensators in Figure 3.12 was changed. A
second compensator was developed, based on the same linear plant, but with a settling time ¢, = 2.5

seconds rather than 1.62 seconds. The transfer function for this new compensator is:

2.44(s* + 5+ 3)

Gavr(s) = s(s+3)

(3.4)

G, (3s) was replaced by this new compensator. The results of this simulation for various switching
times are shown in Figure 3.16. The responses at the far right and far left correspond to t; = oo
secs (only G,.r(s) drives the plant) and ¢; = 0 (only G;(s)) respectively. In the intermediate
simulations the effect of the two different settling times is apparent, but the correct waveform is
preserved. Notice, however, that none of the responses influenced by both compensators have the

correct overshoot, even though both are designed to the same ( specifications. This is the effect of
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Figure 3.15 Simulation applying a bank of identical linear compensators to a linear plant

the second compensator inheriting a plant which is in an unanticipated state: the states are not

along the trajectory which the compensator would have induced had it been in control since t = 0.

This effect is inverted when G4, r(s) is substituted for G,(s). In this case the response starts
out much faster due to G;(s), then slows down due to G 4.r(s). This leads to an overshoot smaller

than is desired when both compensators are involved in controlling the plant.

If the control transfer point behaved like an equilibrium point, then the overshoot could be
calculated by M = Yjerransger + 1.12 # (1 — Yasrransger). Because the actual overshoot does not
follow this relation, the conclusion is that .ie switch point must not imply an equilibrium point.
Therefore, error in overshoot must be due to a mismatch between the internal energy in the plant
and the internal energy of the compensator. Since G,(s) is the only compensator element with
internal energy at the switching time, it must be unable to account for the energy it induced in

the plant when G;(s) attempts to drive the plant along a different state trajectory. The output of
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Figure 3.16 Simulation of banked compensation technique for uclike compensators

G, (s) for all time after the error signal is driven to zero must, therefore, be adequate only when the
compensator continues along the same trajectory G(s) would have induced had it been in control

for all time.

A similar analysis was carried out using the post-weighting approach of Figure 3.15. Inserting
mismatched compensators into this configuration, led to large, lightly-damped oscillations in the
closed-loop response. This suggests that the final Model-Based Fuzzy Logic Controller should

incorporate pre-weighted compensators to minimize the effect of modeling errors.
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3.5 Use of Multiple Compensators in Time-Varying Linear Systems

As was mentioned in the introduction, the nonlinear plant can be approximated by a time-
varying linear model by relaxing the fixed equilibrium assumption of the linearization process. The
resulting transfer function is time-varying and, in fact, nonlinear as the value of r. However, by
conveniently neglecting the fact that r is a function of Y, the plant can (and will) be considered
linear, time-varying. The plant will be referred to in this report as the linear time-varying linear
plant (LTV). Simulation shows that a compensator which adequately controls the LTV plant will

also control the nonlinear plant to the extent that the small perturbation assumption is not violated.

Figure 3.17 shows a simulation to test the effectiveness of a single linearized compensator
against the LTV plant. The plant is operating from a nominal value of C(¢t) = 1. Figure 3.18
shows the response of the system for step inputs of various magnitudes. Notice that the response
steadily decays as the system moves away from the nominal value. The largest step input for
which the compensator will produce an acceptable closed-loop output, will be referred to as the
region of attraction for that compensator. That is, as the long the plant is operating within a
compensator’s region of attraction, that compensator will b