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BRIEF OUTLINE OF RESEARCH FINDINGS

During the period of this research, we have investigated, for the first time, the
application of resonance imaging in very large potential gradients to measure the
position of moving atoms in beams with extremely high spatial resolution. Briefly,
the method employs Raman transitions between two long lived sublevels of the atomic
ground state of ¥2Sm. The initial atomic state is populated while the final atomic
state is initially emptied by optical pumping. A potential with a large gradient along
one axis, z, shifts the energy of the final state and therefore correlates the resonance
frequency of the Raman transition with the atomic position. If an atom makes a
transition to the final state, it must have been located near the point where the
transition frequency is tuned into resonance with the applied Raman fields. Atoms
which make a transition to the final state are subsequently detected by resonance
fluorescence. Hence, a plot of the resonance fluorescence intensity versus the Raman
transition frequency yields the spatial distribution along the z axis for atoms in the
initial state.

Experiments were performed first with a magnetic field gradient which spatially
tuned the Raman transition frequency at a rate of 10° Hz/cm. This experiment
vielded a spatial resolution (Half width at 1/e) of 1.7 microns. This resolution is
in excellent agreement with the ideal value predicted for the potential gradient and
atomic beam collimation employed in the experiments. Later experiments employed
a spatially varying light-shift of the Raman transition frequency. This was generated
with a 1 cm diameter laser beam focused with a cylindrical lens, so that a tight
focus was achieved perpendicular to the atomic beam. In this case, a spatial tuning
rate of 1.16 x 10'° Hz/cm was achieved and suboptical wavelength spatial resolution
of 200 nanometers, with a few percent linearity over several microns was obtained.
Centroids of narrow atomic spatial distributions, which were created and measured in
the experiments, were determined with 20 nanometer accuracy. Again, the ulimate
spatial resolution obtained is in excellent agreement with the ideal value predicted
for the conditions of the experiments.

Ultimately, it is expected that with single atom detection and still larger potential
gradients, uncertainty principle limited spatial resolution of a few nanometers can be
obtained using the resonance imaging method.

In addition to these experiments, new experiments have been started which in-
vestigate the use of resonance imaging in a magnetic field gradient to characterize
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the spatial patterns created in an atomic interferometer. Ultimately, it is expected
that the resonance imaging method will play an important role in charaterizing atom-
optical elements.

Technological Applications

Optical manipulation of atomic wavefronts currently is being explored as a means
of direct writing neutral atom lithography by a nuuiuer of groups in this country and
abroad. The suboptical wavelength atom imaging methods which have been devel-
oped as a primary part of this research will be important for a variety of applications
to novel microfabrication methods including:

i) characterization of neutral atom beams which are transversely cooled and focussed
by optical methods.

i) development of “adaptive” atom optics based on position dependent depletion of
atomic wavefronts— on a suboptical wavelength scale.

iii) development of suboptical wavelength scale “position dependent chemistry,” by
combining state selective chemical reactions with techniques of state selective atomic
localization.

In addition to these applications, it has been suggested to us recently that the
Raman induced resonance imaging method may be important for measuring spatial
correlations in flowing systems. In a supersonic atomic beam, for example, the last
collision which occurs for pairs of atoms just before exiting the nozzle region leaves
them highly correlated. Long range collisions apparently play an important role,
and these are usually neglected in treatments of the flow. The resonance imaging
methods which we are developing may permit measuring position distributions in
flowing systems with high spatial resolution and without disturbing the flow.
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