PERFORMANCE ORIENTED PACKAGING TESTING
OF
M548 SHIPPING AND STORAGE CONTAINER
FOR PACKING GROUP I SOLID HAZARDOUS MATERIALS

Author:
Kerry J. Libbert
Mechanical Engineer

Performing Activity:
Naval Surface Warfare Center
Code 4045
Crane, Indiana 47522-5001

Date
July 1993

FINAL

DISTRIBUTION UNLIMITED

Sponsoring Organization:
Naval Surface Warfare Center
Code 4071
Crane, Indiana 47522-5001
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

July 1993

3. REPORT TYPE AND DATES COVERED

POP Test

4. TITLE AND SUBTITLE

Performance Oriented Packaging Testing of M548 Shipping and Storage Container for Packing Group I Solid Hazardous Materials

5. FUNDING NUMBERS

6. AUTHOR(S)

Kerry J. Libbert

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Surface Warfare Center
Plastics and Packaging Applications Branch (Code 4045)
300 Highway 361
Crane IN 47522-5001

8. PERFORMING ORGANIZATION REPORT NUMBER

DODPOPHM/USA/DOD/NADTR93114

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Naval Surface Warfare Center
Countermeasure Devices Branch (Code 4071)
300 Highway 361
Crane IN 47522-5001

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

Same as above

11. SUPPLEMENTARY NOTES

N/A

12a. DISTRIBUTION/AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Qualification tests were performed to determine whether the in-service M548 Shipping and Storage Container could be utilized to contain properly dunnaged solid type hazardous materials weighing up to a gross weight of 45 kg (99 pounds). The tests were conducted in accordance with Performance Oriented Packaging (POP) requirements specified by the United Nations Recommendations on the Transportation of Dangerous Goods, ST/SG/A-C.10/1 and the Code of Federal Regulations, Title 49 CFR, Parts 107 through 178. The M548 has conformed to the POP performance requirements; i.e., the box successfully retained its contents throughout the specified tests.

14. SUBJECT TERMS

POP Test of M548 Shipping and Storage Container

15. NUMBER OF PAGES

6

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE

UL

19. SECURITY CLASSIFICATION OF ABSTRACT

UL

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500
INTRODUCTION

This Performance Oriented Packaging (POP) test was performed to ascertain whether the M548 Shipping and Storage Container meets the Packing Group I requirements specified by the Code of Federal Regulations, Title 49 CFR, Parts 107 through 178, dated 31 December 1991. The objectives were to evaluate the adequacy of the container in protecting hazardous materials.

The M548 is a steel container with a gasket seal and a latch at each end. The M548 is shown in figure 1.

TESTS PERFORMED

1. Drop Test

 This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.603. One container was used for each drop orientation. The drop height was 1.8 meters and the drop sequence was as follows:

 a. Flat on Bottom
 b. Flat on Top
 c. Flat on Long Side
 d. Flat on Short Side
 e. One Corner

 The test was performed at ambient temperature (70° ± 20°F). The corner drop was performed on a corner of the lid near one latch. The contents of the container should be retained within its packaging and exhibit no damage liable to affect safety during transport.

2. Stacking Test

 This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.606. Three different containers were used, each with a stack weight of 1440 pounds. This represents the weight imposed on the bottom container of a sixteen-foot stack of like containers weighing 120 pounds. The test was performed for 24 hours. After the allowed time, the weight was removed and the container examined. Any leakage, deterioration, or distortion which could adversely affect transport or reduce its strength or cause instability in stacks of packages is cause for rejection.

3. Base Level Vibration Test

 This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.608. Three sample containers were loaded with inert signals and closed as for shipment. Each container was placed on a vibrating platform that had a vertical double-amplitude (peak-to-peak displacement) of one inch. The packages were constrained horizontally to prevent them from falling off the platform, but were free to move vertically.
bump and rotate. The test was performed for one hour at a frequency that caused each point of the container bottom to be raised from the platform 1.6 mm. A 1.6 mm thick metal strip was passed between the bottom of the container and the platform.

PASS/FAIL

1. Drop Test

The criteria for passing the drop test is outlined in Title 49 CFR, Part 178, Subpart M, Sec. 178.603(f): A package is considered to successfully pass the drop test if for each sample tested, no rupture occurs which would permit spillage of loose explosive substances or articles from the outer packaging.

2. Stacking Test

The criteria for passing the stacking test is outlined in Title 49 CFR, Part 178, Subpart M, Sec. 178.606: No test sample may show any deterioration which could adversely affect transportation safety or any distortion likely to reduce its strength, cause instability in stacks of packages, or cause damage to inner packagings likely to reduce safety in transportation.

3. Base Level Vibration Test

The criteria for passing the Base Level Vibration Test is outlined in Title 49 CFR, Part 178, Subpart M, Sec. 178.608: Immediately following the period of vibration, each package must be removed from the platform, turned on its side and observed for any evidence of leakage. A packaging passes the vibration test if there is no rupture or leakage from any of the packages. No test sample should show any deterioration which could adversely affect transportation safety or any distortion liable to reduce packaging strength.

TEST RESULTS

1. Drop Test

Satisfactory.

2. Stacking Test

Satisfactory.

3. Base Level Vibration Test

Satisfactory.
DISCUSSION

1. Drop Test

 After each drop the container was inspected for any damage which would be cause for rejection. The container was only slightly dented and scratched during the tests, and there was no spillage of contents.

2. Stacking Test

 Three containers were individually tested. Each container was visibly inspected after the 24-hour period was over. There was no leakage, distortion, or deterioration to the container as a result of this test.

3. Base Level Vibration Test

 Immediately following the vibration test, each container was removed from the platform, turned on its side and observed for any evidence of leakage. All containers remained securely closed and there was no evidence of leakage of contents.

REFERENCE MATERIAL

DISTRIBUTION LIST

Commander
Crane Division
Naval Surface Warfare Center
Code 4045 and Code 4071
Crane, IN 47522-5000

Commanding Officer
Naval Weapons Station Earle
Code 50 and Code 50232
Colts Neck, NJ 07722-5000

Defense Technical Information Center (2 copies)
ATTN: DTIC/FDAC (Virginia Guidi)
Bldg. 5, Cameron Station
Alexandria, VA 22304-6145

Commander
U.S. Army Armament, Research, Development and Engineering Center
SMCAR-ESK
Rock Island, IL 61299-7300

Defense General Supply Center
DDRV-TMPA (Dave Gay)
Richmond, VA 23297-5000
DATA SHEET

CONTAINER:

<table>
<thead>
<tr>
<th>M548 Shipping and Storage Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: 4A1</td>
</tr>
<tr>
<td>Specification Number: Drawing 19200-7258943</td>
</tr>
<tr>
<td>Gross Weight: 45 kg (99.0 pounds)</td>
</tr>
<tr>
<td>Dimensions: .47m L x .21m W x .37m H (18.59" L x 8.29" W x 14.59" H)</td>
</tr>
<tr>
<td>Closure (Method/type): Two latches</td>
</tr>
<tr>
<td>Tare Weight: 8.4 kg (19.1 pounds)</td>
</tr>
<tr>
<td>Material: Steel</td>
</tr>
</tbody>
</table>

POP MARKING:

<table>
<thead>
<tr>
<th>4A1/X45/S/**</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA/DOD/NAD</td>
</tr>
</tbody>
</table>

PACKAGED COMMODITY:

Decoy Device, MJU-27/B 2W11, 1370-01-337-5346

<table>
<thead>
<tr>
<th>Proper Shipping Name: Pyrophoric Metals, N.O.S. (Iron)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Nations Number: 1383</td>
</tr>
<tr>
<td>United Nations Packing Group: I</td>
</tr>
<tr>
<td>Physical State: Solid</td>
</tr>
<tr>
<td>Amount Per Container: 60</td>
</tr>
<tr>
<td>Net Weight: 25.3 kg (55.8 pounds)</td>
</tr>
</tbody>
</table>

PACKAGED COMMODITY USED FOR TEST:

<table>
<thead>
<tr>
<th>Name: Brass weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical State: Solid</td>
</tr>
<tr>
<td>Size: .25m L x .20m W x .04m W (9.75" L x 7.75" W x 1.50" H)</td>
</tr>
<tr>
<td>Quantity: 3</td>
</tr>
<tr>
<td>Net Weight: 36.3 kg (80.0 pounds)</td>
</tr>
</tbody>
</table>

Dunnage: Polyethylene foam