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Abstract

Group theory is applied to unify wideband radar theory with narrowband radar

theory through contractions. Following Kalnins and Miller in their work with

contractions, we correct their calculations, completing their theory. We also unify

different forms of the wideband ambiguity function in the engineering literature

through group theory and begin some work on some discrete transforms, the finite

counterpart of wideband and narrowband theory.
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Chapter 1

Introduction

Narrowband and wideband ambiguity functions are fundamental in the

study of parameter estimation by active radar and sonar systems. Interest in

ambiguity function theory has been renewed due to the current intense research

activity in affine wavelet transforms and other group theoretic transforms. We

have attempted to continue the program of unifying scattered results in radar and

sonar ambiguity theory via group represent tion theory. The underlying idea is

that both the narrowband and wideband ambiguity functions are coefficients of the

unitary representations of their respective groups. Wideband ambiguity functions

are coefficients of the affine group and narrowband ambiguity functions are coeffi-

cients of the Heisenberg group. This fact provides insight into important concepts

of admissible signals, ambiguity conservation, and ambiguity function invariance

properties that are important for signal design.

The history of the applications of group theory to radar and sonar is not

long since the subject has been less than fifty years old. The stage opened in 1953

with P. M. Woodward's seminal book, Probability and Information Theory, with

Applications to Radar [44, pages 115-125], in which he detailed the radar ambiguity

function and its uses. Volume conservation was noted, and the chapter closed with
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the problem of signal design, based on the desired radar ambiguity function shape:

the radar synthesis problem. Wilcox [43] attacked the problem via the techniques of

mathematical analysis with some success in 1960, but it was not until around 1983

that Walter Schempp started publishing a series of papers culminating in his article

[39i and book [38]. These papers detailed the connection of the radar ambiguity

func.ion with the Heisenberg group and attacked the problem from the viewpoint

that the radar autoambiguity function is a positive definite function on its group.

A lot was known about positive definite functions already, especially through the

work of Naimark and Gelfand, summarized in the former author's work [31]. In

1985, L. Auslander and R. Tolimieri [4] took Wilcox's aforementioned paper and

studied it from the group theoretical viewpoint (41 (as suggested by Schempp, since

they have cited one of his preprints?). Since the Heisenberg group had a discrete

subgroup, they could apply nilmanifold theory, a theory they had written about

extensively earlier [3].

About 1985, Sibul and Titlebaum started investigating the wideband ambi-

guity function [37], following the pioneering work by R. Altes. In 1987, Sibul with

the help of R. Urwin wrote a proposal for funding in investigating the role of group

theory with signal processing. After finding that the affine group was the fun-

damental concept for the wideband ambiguity function, we found that Auslander

and Gertner detailed the same idea and more in [2]. Furthermore, Auslander and

Gertner described the approximation of the wideband to the narrowband in such a
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clear way that we began to wonder if there was any connection between the affine

and the Heisenberg groups. By this time, A. Banyaga joined us as mathematical

advisor. In 1989, we decided that one had to be a contraction of another. But

within minutes after our meeting, Banyaga found a preprint of Kalnins and Miller

[26] in the lounge showing that our suspicion was indeed right. However, we did

find some major conceptual errors, although the basic idea is correct. Their article

has been published, still with those errors. So part of this thesis is to correct them.

As this thesis was being written, there were ongoing questions in the signal

processing community. One of those questions was concerning the existence of at

least two forms of wideband ambiguity functions and when and how to use them

properly. We found that these ambiguity functions arose from different forms of

the affine group, and so have included the result.

Finally we include some results of a another investigation in the applications

of Group theory. We wanted to follow the methodology of Auslander and Tolimieri

[3] in their treatment of the FFT to create a transform based on the finite affine

group.

A brief overview of the thesis now follows: Chapter 2 will sketch some ideas

concerning the narrowband and wideband ambiguity function. Chapter 3 then

reviews some mathematics necessary for the rest of the thesis and then shows how

the ambiguity functions are related to group theory. We conclude the chapter with

the unification of the various forms of the wideband ambiguity in the engineering
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literature. Chapter 4 shows how the wideband ambiguity function may approximate

the narrowband under suitable conditions, and then shows how contractions may

explain the phenomenon. Chapter 5 then applies a celebrated theorem to ambiguity

volume and then shows how ambiguity volume depends on contractions. Finally,

our results on the finite affine group are stated in the appendix.

Our original contributions consist of corrections of Kalnins and Miller's re-

sults concerning contractions. The second is the unifying different forms of the

wideband ambiguity function in the engineering literature. The third is the in-

vestigation of ambiguity volume with contractions. And the final is an explicit

construction of the group theoretic transform based on the finite affine group.



Chapter 2

The Ambiguity Functions

2.1 Introduction

This chapter provides a sketch of ambiguity function theory. It is not

intended to be exhaustive, but to be a motivation for the rest of the thesis. A good

reference for further information is [12, 30, 45].

2.2 Narrowband and Wideband Echoes

Radar and active sonar use the same principle. The systems consist of a

transmitter/receiver with a processing unit. A waveform, called a signal is trans-

mitted towards an object of interest, such as an airplane preparing to land on the

runway. After a time delay, the transmitter/receiver receives a reflected form of

the signal, called the echo, from which the processing system may extract impor-

tant information such as the position and radial velocity of the object. Radar uses

electromagnetic waves in the atmosphere, while active sonar uses acoustic waves in

water.

It is assumed that the environment of the system is free of clutter. The

waveform travels from the system to the object and back without any interference.

Furthermore, we assume the object to be a point. The reflected waveform will be
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identical to the transmitted waveform, delayed of course, if the object were not

moving. Finally we assume the object to be travelling at a constant radial velocity.

v. The ramifications of this assumption will be seen in section 4.2.

Finally, a signal s(t) may be seen essentially as an element of L2 (R). It has

time as its domain and voltage as its range. The signal's Fourier transform may be

interpreted as the set of its frequencies, or spectrum.

The three assumptions above provide a basis for radar/sonar theory in

general. Suppose that the signal was narrowband as well. Narrowband signals are

those whose Fourier transforms have very small support, called the bandwidth(BW),

so that they essentially appear to be impulse functions in the frequency domain.

This also means that their Fourier transforms are concentrated about a central

frequency. We also assume that the signal has a very short time duration T. The

narrowband assumption is coupled with the time duration assumption as follows

[41, page 241]:

21v,_ 1 (2.1)
c T. BW'

where c denotes the speed of the signal in the signal in the medium. Under this

additional assumption, the echo takes the form

en(t) = s(t + r)ewS. (2.2)

Here, r denotes the time elapsed between the transmission of the signal and re-
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ception of the echo, called the time delay, from which the position relative to the

transmitter/receiver may be calculated. Let c denote the speed of the signal in the

medium. Then the position R of the object is calculated as:

R = c'r- (2.3)
2'

since we assumed that the object is travelling at speeds much less than c. We divide

by 2, taking account that the signal had to travel to the object and back.

The symbol w denotes the doppler shift and basically is related to the radial

velocity of the object. For example, the pitch of a car moving towards an observer

will be perceived higher that when it is moving away. The radial velocity of the

object given the doppler shift may be calculated using the formula:

WO" 2v = U, (2.4)

where wo is the essential frequency of the transmitted signal.

Thus we may process the return signal to find the object's radial velocity

and range.

Without the additional narrowband assumption, the return signal takes the

form:

e,(t) = V/is(at + b) (2.5)
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where b is related io the delay of the first transmitted photon and

1+0 (2.6)
1-0

where J - £. Note that now the time scale of the return signal is dilated or con-
C

tracted depending on whether the object is moving away or towards our transmit-

ter/receiver. In fact, nature is wideband, meaning that the narrowband formulation

is an approximation. We will explore this further in section 4.2.

2.2.1 The Ambiguity Functions

A final assumption is that a correlation receiver produces forms a sufficient

statistic for detection in real white Gaussian noise 140, page 269). The location

and velocity of the object may be determined by "comparing" the echo with shifts

of the transmitted signal. The maximum value corresponds to the location and

velocity of the object.

The correlation between two signals f(t) and g(t) is:

I' f(t)g(t)dt, (2.7)

recognizable as the inner product of L2 (TZ).

Basically, to determine the location and velocity of the object, one simply

correlates the echo with shifts of the transmitted signal:
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C.,.(a, r) = e(t)s(at + T)dt. (2.8)
00

The parameters (a, r) that maximize the value of C,, are those which best models

the received signal. The location and speed of the target can be readily calculated.

Each correlation process is similar for each type of echo.

Abstracting our correlation process, we obtain the narrowband and the

wideband ambiguity functions Ns,9 and WI,q:

Nf,,(xy) = j f(t)q(t + z)e-2 "' t dt (2.9)

Wf,.(a,b) = f(t)g(at+b)dt (2.10)

These two functions are the key to many synthesis and design problems in

radar.



Chapter 3

Group Theory and Radar and Sonar

3.1 Introduction

After introducing the signal ambiguity functions in the previous chapter,

we are now in a position to see how group theory provides a unified view. We review

some mathematical background, with special emphasis on relevant techniques, and

then show how signal ambiguity functions arise as connected to special groups.

Finally, we unify the different forms of the wideband ambiguity functions.

.3.2 Some Mathematical Background

Basic knowledge of group theory and differentiable manifolds, along with

the theory of Lie groups and Lie algebras will be assumed. We also use knowledge

of elementary Hilbert space freely. However, for clarity, we will review the concepts

of group representation theory and also the little known topic of parametrization.

The set of operators on a Hilbert space that preserve its inner product

forms the unitary group under the operation of composition. Specifically, the space

L 2(R) will be our Hilbert space under consideration.

It is possible to define measures on topological groups and hence Lie groups,

such as the Heisenberg group and the affine group. These measures are compatible
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with the group structure in the sense that if a set is translated by multiplication of

a group element, its measure remains unchangeu. There can be lkft invariant and

right invariant measures, depending on whether the set is multiplied by the group

element on the left or on the right. Explicitly, if f is a measurable function on a

group G, the measure p is left-invariant, if

f f(go*g)dp(g) = Jf(g)dpL(g), (3.1)

for all go E G. The right invariant measure is defined similarly. If an invariant

measure, left of right, exists for a group, it is well known that it must necessarily

be unique up to multiplication by a constant. Finally, if the left and right invariant

measure coincide, the group in question is said to be unimodular.

A unitary representation U of a group G on a Hilbert space H is a mapping

assigning to each group element a unitary operator U(x) on H, such that for any

z,y E G,

U(X*y) = [1(z) 0 U(y) (3.2)

(Recall that U is a unitary operator on H if, for all v,w E H, < Uv, Uw >=<

VW> ).

A subspace S of H is invariant under U if for any v E S, U(X) v E S for all

z E G. A representation U is said to be irreducible if the only invariant subspaces

of H are the zero subspace and H itself.
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G' x G' G'

G x G -"G

Figure ,.. 1: Calculation of new group operation under new coordinates.

The coefficient of a continuous unitary group representation U of G on a

Hilbert space H with respect to the ordered pair (f,g), both f and g in H, is a

mapping Cu,j,2 : G -- :

x '--< f, I(z)g >. (3.3)

The coefficient is a generalization of the usual Fourier coefficients.

Finally, we cover the area of coordinates. Given a group, with an operation,

a one-to-one transformation vp from the group onto itself will change its operation.

Refering to figure refcomdiagram, the group G and G' are the group with the

original operation * and the new group with the new operation e respectively.

Beginning with *, we may calculate 9 by simply noting that:

0 -" V, o * o (ý' × 0)-1 (3.4)

This technique is essential for the correct contractions on the group level,

as will be shown later. Corwin and Greenleaf [13, pages 14-16] is one of the few

references detailing this technique.
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3.3 The Affine and Heisenberg Groups

The subgroup of Gl(2, R) consisting of matrices of the form (a with
0 1)

a > 0 and b any real number, is called the real (two dimensional) affine group.

It will be denoted by A1 . Its identity element is the usual identity element of

Gl(2, R), and the inverse of an element is . Sometimes
(0 1) 0 1

we may denote an element by just (a, b). We may thus see the affine
(0 1)

group as the set R÷ x R with the operation:

(a, b) * (a', b') = (aa', all + b). (3.5)

We also will need to work with the affine group cross the real line, GA, the

group of matrices of the form:

0 1 0, (3.6)

where again a > 0, b and z are any real number.

Another matrix group of particular interest is the so-called Heisenberg

group, W, consisting of matrices of the form:

(51 4 (3.7)

00 1/
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Clearly, the identity and the inverse of this set belongs to XK. Here. ?i is a three

dimensional manifold. Alternately, we may see NK, as RI with the operation

(x, y, z) * (X', y' z') = (x + z', y + y', z + z' + xy'). (3.8)

However, RK has another form, if one lets the t, of the equation 3.4 be

2

we obtain a new multiplication rule:

1 ,
(z,Y,z) * (x',y',z') = (x + X',y + y',z + z' + -(zy - x'y)), (3.10)

which is called the symplectic parametrization of 71. Needless to say, there are

many other forms of the Heisenberg group.

Both groups play a fundamental role in signal processing via their unitary

representations on L2 (1Z).

Proposition 3.3.1 The affine and Heisenberg groups have unitary representations

on L2(*7) as follows:

a. UA, : A, -- U(L'(R))



15

1 ft-b
U.A,(a,b)f(t) = (3.11)

b. IIGA GA -- + U(L'(1?))

UGA.(a,b,x)f(t) = e21ix ( a b) (3.12)
7a= a

c. UH W --+ U(£I(•))

Ut(X, y, z)f(t) - e2 wiCe2 iyt Rf(t + X) (3.13)

Proof

The proof consists in verifying the definition of group representations:

Proof of a.:

_[1 ~ -.,b' 1
UA,(a,b)UA,(a',b')f(t) = U.A,(a,b) |-. t I) (3.14)

LV' a'

f 1b' (3.15)
VGWk a'

I (t-alt-b' (3.16)

= UA4 (aa',ab'+b)f(t). (3.17)
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Proof of b.:

UGA(a,b,x)UG,(a',b',x')f(t) - UG, (a, b, x) 1 e2_-'f( bL- ) (3.18)

- Ie e I t a b') (3.19)

I1ri(-+zY)(t-ab'-b) 
(3.20)77 g aa'

= LTG,(aa',ab' + b,x + x')f(t). (3.21)

Proof of c.:

Uf(aY'z)U,1X'Y','f(t) = UN(.fx,y,z)e 2w'e 2rf'tf(t + x') (3.22)

= e2rize2rwiyte 2"i'e21iy'(t+r)f(t + x + x') (3.23)

= e2ri(z+z'++y') Ce2ri(y+y')t f(t + x + x') (3.24)

= Uf(z + x',y + y',z + z' + xy')f(t). (3.25)

We may now see that the wideband and narrowband ambiguity functions

are simply the coefficients of the affine and Heisenberg groups respectively.

But W 1 , does not strictly look like an ambiguity function. The next section

will help clarify this.

Hence we may use group theory as an approach in analyzing tae behavior

of ambiguity functions. In fact, Schempp and others studied the autoambiguity
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functions through this view point, since such functions are positive definite func-

tions on the groups, and many results concerning these were available through the

efforts of Gelfand and Naimark [31].

3.4 Various Forms of the Wideband Ambiguity Function Unified

The form of the wideband ambiguity function above appears in the guise

of wavelets as well in works by Daubechies and Miller: we shall call it WI:

W1(ab) = -I f(t)g( )dt. (3.26)

Speiser and others deal with a second form of the wideband ambiguity function:

W2(a, b) = V/a/ f(t)g(at + b)dt. (3.27)

This is the "usual" wideband ambiguity function. The third form:

W 3(,y) = e- L f(t)g(e-zt - y)di (3.28)

appears in Heil and Walnut, and subsequently in the thesis by Fowler. And the

fourth form, which is close to the heart of engineers in signal processing, initially

appeared in Kelly-Wishner and Altes:

t00
W" (a, b) = \/a f 0 f(t)gja(t + b)]dt. (3.29)
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We would like to show that all these forms are coefficients of the affine

group, albeit with different parametrizations. To this purpose, we propose the

definitions of four groups:

Definition 3.4.1 Let the four groups be defined as follows:

a. The matrix group A, consisting of the set of matrices of the form

(s r) with real entries and s > 0.
(0 1I

b. The matrix group A 2 consisting of the set of matrices of the form

(2 0) with real entries and s >0.
r 1I)

c. The set R 2 with the operation:

(x, y) * (x', y') = (x + X', e-X y + y') (3.30)

is the group A 3.

d. The set R+ x R with the operation

(a,b)* (a',b') = (aa',b+ ) (3.31)
a

is the group A4.

Proposition 3.4.1 A1- 4 are all isomorphic.

Proof. 1. The group A, is isomorphic to .4A2, by the isomorphism which

sends a matrix to its inverse transpose. Indeed, consider 40I,2 : A. -- .42, where
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(: :-.e., D*(3.32)
Then

�1.2(( -) (a[ (3.33)
1 0110 1

Gaa
=b' I (3.34)

taa~~kol 
o)( a t'b

b- ( (3.35)
a - b a1 -a,b1

The homomorphism 01,2 is clearly one-to-one and onto.

2. The group .A2 is isomorphic to A3 by the isomorphism 02.3A -: Asa; 0/
where ( (-lna, b), and changing variables Ina " a. Indeed,

a0 a' 0\( aa' 0l

j'\b 1P~b )j 1)1(3.37)

- (-ln(aa'), a'b + b') (3.38)

S(-lna - Ina',e'n'b + b') (3.39)

= (-lna, b)(-Ina', b') (3.40)

02,3{1(b 1)} 0.3{(Z 1) (3.41)
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The map 12.3 is certainly one-to-one and onto. Now, we just change vari-

ables: let x = -Ina and x' = -Ina'. Hence:

(-Ina, b)(-lna', b') = (-Ina - In a', a'b + Y') (3.42)

becomes:

(x, b)(x', b') = (x + x', e ±+ b'), (3.43)

the rule of A 3 .

3. The group A 2 is isomorphic to .44 by the isomorphism: (a, b) - (a, ab).

Indeed,

0 2,4(a, b)02,4(a', ') = (a, ab)(a', a'b') (3.44)

- (aa', a'ab + a'b') (3.45)

- (aa',a'(ab+ W') (3.46)

=- 2,4(aa',a'(ab+ b')) (3.47)

Proposition 3.4.2 The following maps are representations of A1 through A.4 on

L 2(R) respectively:
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Ua=b)ft) = 1 hft -b (3.48)
7/a= a

U2 (a,b)f(t) = Vlf(at + b) (3.49)

U3(x, y)f(t) = e-lf (e-t - y) (3.50)

[14(x,y)f(t) = Vaf(a[t +b]) (3.51)

Proof The proof consists of simple verification, as follows:

a. The verification for U1 : done in proposition 3.3

b. The verification that U2 is a representation of A 2 is as follows:

U2(a,b)U2(a',b')f(t) = vlU 2(a,b)f(a't + b') (3.52)

- vf/'if(a'(at + b) + b') (3.53)

=- v/af(aa't + a'b + b') (3.54)

= U2(aa',a'b+ b')f(t) (3.55)

c. The verification that U3 is a representation of A3 is as follows:
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U3(a,b)U3 (a',b')f(t) = U3(a,b)e-2f(e-'t - b) (3.56)

= e-2 f(C-a'(C-*t - b) - b) (3.57)

= e-2 fe-a+a't - e-a'b- b') (3.58)

= U3(a + a'.e -'b+ b')f(t) (3.59)

d. The verification that LU4 is a representation of A 4 is as follows:

U4(a, b)U 4(a', b')f(t) = U4(a, b)va'Tf [a'(t + b')] (3.60)

= V y[a' {a(t+b)+b'}] (3.61)

= 'aa'f[a'at + a'ab + a'b'l (3.62)

= a7f [a',(t+ aa'b + a'b'i (3.63)

= U4(aa',b+ -)f(t) (3.64)
a

Hence, forming coefficients as usual,we have all the wideband forms in the engi-

neering literature (that we know of).
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3.5 Invariance Properties of the Ambiguity Functions

We now apply the concepts of the previous sections to unify other results.

In [1], we find various invariance properties of the wideband ambiguity function as

detailed by Altes. He used the formula:

W'V,,(a, b) = L7 f(t)g[a(t + b)]dt, (3.65)

and so we will reprove some of his statements using the group theoretic viewpoint.

The key idea is that a unitary representation of a group G preserves inner

products:

< U(X)f,U(x)g >=< f,g >. (3.66)

The trick is to be careful to keep track of which form one is using as to which group

one is working with.

Proposition 3.5.1

W7(a, b) W. 1 (1/a, -ab). (3.67)

Proof

W",(a,b) = < f, U4(a,b)g > (3.68)

= < U4(a,b)-1 f,U 4 (a,b)-'U4(a,b)g> (3.69)
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= < U 4(1/a,-b/a)f,g > (3.70)

= < g, U4(1/a, -ab)f > (3.71)

= W�j,(1l/a,-ab). (3.72)

What we have done is see complicated integrals as coefficients of representations

of affine groups. We emphasize that the above theorem is true for only U4 as the

inverse of an element of another group can take a different form. For example,

Wf,g(a, b) = IV,.( 1 /a, -b/a). (3.73)

Some other identities are special cases of the following proposition:

Proposition 3.5.2

< U(z)f, U(y)g >=< f, U` (x)U(y)g >. (3.74)

Proof This proposition is a consequence of the unitary property of the represen-

tation.

For example, in the case of the group A,, we obtain the results:

a b'
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which may be verified by the technique above. Thus group theory provides a short-

hand notation to bypass many integration substitutions.

Studying equation 3.75 further, we find that some of Altes' identities arise.

For example,

Proposition 3.5.3 If f(t) = alu(at) and g(t) = a2v(at), then:

W},g(a,b) = Wu,.(a,b). (3.76)

Proof

We note that the hypothesis implies that f = Ul(,O)u and that g =

UV (1, 0)v. Hence:

WJ,,(a,b) = <f,U 1 (a,b)g> (3.77)

= < UI(I,o)u,U, i(a, b)U(1, O)v > (3.78)

= < U,(¼,0)u, U(ab)v > (3.79)

= <UU r'( ,O)U,(•,b)v > (3.80)

= < u, Ui(a, kb)v > (3.81)

= W.,,,(a, kb) (3.82)

The equation 3.80 is the result of applying proposition 3.5.2. Again, we must

emphasize that the form of the equation will vary depending on the group.



Chapter 4

Contractions

4.1 Introduction

Contractions form the topic of this chapter. After motivating the idea of

contraction, we apply it to the affine group.

Contractions were presented for the first time by Wigner and Inonu [42] in

1953, to try to connect special relativity with Galilean relativity and to connect

classical mechanics with quantum. Not long after, Saletan [351 provided a solid

foundation for Inonu and Wigner. Various papers were then published on contrac-

tions of specific groups, and soon all the contractions of dimension three or less were

known [111. In fact, the contraction we are going to be dealing with was listed in

that article [11]. We follow in particular the contraction definitions of Dooley [15],

since they are quite clear and sufficiently rigorous for our purposes. This chapter

contains corrections to Kalnins and Miller's paper (26]. Their errors lay primarily

in the improper parametrization in the Lie group level and exponentiating the Lie

algebra under the assumption that it was a commutative Lie algebra, which it is

not. After corrections, the contraction computations flow beautifully.
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4.2 Physical Motivation

Sibul and Titlebaum [37], among others, found that under suitable condi-

tions, the wideband ambiguity function may approximate the narrowband. The

essential facts are as follows:

Let us consider the wideband amb-guity function:

Wj, 9 (s, r) = V/'S f(t)g(st + r)dt. (4.1)

Now let us also assume that g(t) is a finite energy signal with envelope u(t) and

carrier frequency wo:

g(t) = u(t)e" t  (4.2)

Hence the received signal would have the form of time delay and dilation:

g(st + r) = u(st + T)ei"*(S+Tl (4.3)

Now recall that s - l.% where / = . Expanding in Taylor series:
- C

=1 +2/+2# 2 +..- (4.4)

Now suppose v < c so that 8 <C 1 and wo,62 < 1, then the received signal becomes

approximately:
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g(st + r) .z u(t + r)eW•t+T•e-$''t (4.5)

- g(t + r)e-"V0 t (4.6)

The associated ambiguity function becomes:

W,,(s, r) = f(t)e"°"g(t + r)eiwotdt, (4.7)

which is the narrowband ambiguity function up to a phase factor. It is interesting

tha. this approximation by physical considerations has a mathematical counterpart.

Essentially, the physical argument has shown that the coefficient of the affine group

may approximate that of the Heisenberg group. But the key idea is that the affine

group may approximate the Heisenberg group in a certain sense. This is essentially

the concept of contractions.

4.3 Contractions

4.3.1 Definitions

Definition 4.3.1 Let G,C1 be two Lie algebras with the same underlying vector

space U. Then g, is a contraction of g, if there exists a continuous mapping

*: (0,11 -- , CC(U) such that



29

lim4 )'[0,\X, 0.\y]c = Ix, y]g. (4.8)

for all X,YEU.

Proposition 4.3.1 Suppose 9 = (U, 1,]) is a Lie algebra, with 0,\ as above with A >

0. Then Q, = (U,[J,), where [x,y]\ = '[0\x, 0.\y], is a Lie algebra isomorphic

to g.

Proof Since O4 is invertible,

[XV Y]x O--- •l[Ox, 0.\Y] (4.9)

is equivalent to

4[X,y4 = [Oxw, Oxy], (4.10)

and this certainly shows that Q is a homomorphic Lie algebra to 9,\. Finally, 0

being a member of QC(U) shows that it is one-to-one and onto.

Proposition 4.3.2 The map A P-p [,]\ from (0, 11 to the space of alternating

bilinear forms on U, to which the Lie brackets belong in particular, is a continuous

map.

Proof This is clear from seeing this map as a composition of the map 0,\ and the

Lie bracket, both of which are continuous.



30

Proposition 4.3.3 Suppose 9 is a Lie algebra with underlying vector space U and

(0,\)\E+ C 9C(U) is such that

[x,y]i = lim 01 [•tx, 06y] (4.11)

exists. Then [,], is a Lie bracket on U ant? the resulting Lie algebra Q1 is a con-

traction of g.

Proof We need to show that [,1 is a Lie bracket.

1. Linearity.

taX + bY, Z), = lrmn[aX + bY, Z],\ (4.12)

= lim a[X, Z],\ + lrmb[Y, ZI (4.13)
A-0 A-O

= a[X,Z], +b[YZ]i. (4.14)

2. Antisymmetry

[X,Y]1  = Iirm[X,Y]\ (4.15)

= lim - [Y,X) (4.16)

A- ]

=-[YI X1. (4.17)
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3. Jacobi Identity

[[.', Y'],,Z, + [[Y, Z],,x], + [[Z,x],Y], = (4.18)

lim{f[[X, Y], Z, + [[X, Y]A, Z],x + X, Y],, Z]J,} (4.19)

0 (4.20)

Proposition 4.3.4 (Inonu-Wigner contraction) Let g be a Lie algebra with under-

lying vector space U, and let t be a Lie subalgebra. Let V denote a subspace of U

complementary to t. Thus xEU can be uniquely written

x = xt + xv. (4.21)

For AERZ+, define a map 4. E QC(U) by

OA(x) = Xt + Axv. (4.22)

Let z,y be in U. then flim,..o"-b'fxa, O4 Ay] exists and is equal to

[z, y 1 = [xt, !td + [xt, YV]V + [xv,YtIv. (4.23)
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Proof

I[z4y/ = lim0 10 [0.X, y] (4.24)A-0

= limoýA[0A(Xt + xv), OX(Yt + yv)] (4.25)

= lim [zt + A ,v,yt + Ayv] (4.26)
A-O

=- limoAI ([xt, yt] + A[xv,yt] + A[xt, yv] + A2[yv,,yv]) (4.27)

But t is a Lie subalgebra, so [xt, Yt] E t and so:

[y, I= limV [[Xt, yt] + A([Xv,Yt]t + [xv,Yt]v) (4.28)

+A ([xt, Yvlt + Ixt, yvb') + A2 ([XV, yv]t + [y', ,yv]v)] (4.29)

= [xt,Ytl + [xV,Ytlv + [xt,!Yv]v (4.30)

Note that for the limit to exist, t has to be a Lie subalgebra. Otherwise,

0n([ztyt] = ([Xt,yt]t + [Xt,ytlv) (4.31)

1
= [-t, Yt]t + ý[XtYt], (4.32)

showing that when A tends to 0, the limit does not exist.

Thus [, J1 is a Lie bracket on U, and the resulting Lie algebra is a contraction

of C. A contraction arising this way is called an Inonu- Wigner contraction with

rspecto t.
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Definition 4.3.2 Let G be a Lie group and K a Lie subgroup, reductive in G. Then

Smay be written as t E) V, where the decomposition is AdK-invariant ( AdKV C_ V

). Let V M K denote the semidirect product of V by K relative to this action. Define

7rx : V x K --+ G by 7r,\(vk) = expG(Av)k for each A E 1Z+.

Proposition 4.3.5 The Lie algebra of V W K is precisely 9 of proposition 4.3.3.

And the differential of Tr% at the identity is precisely the map OA of definition 4.3.1.

Proof The first statement follows from the fact that the decomposition is AdK-

invariant. The second follows from applying the definition of differential of a smooth

map.

Thus we can define the contractions of on a group level as:

Definition 4.3.3 The semidirect product V M K is called a contraction of G with

respect to K, and the family (irA)AEr+ of maps V M K --* G is called the family of

contraction maps.

In practice, once we obtain a contraction on the Lie algebra level, we derive

a contraction of the Lie group level simply by exponentiating the basis involved.

We do not know of any general method of contracting their coefficients.

4.4 Contractions of the Affine Group to the Heisenberg Group

4.4.1 Contractions on the Lie algebra Level

We now focus on GA = A' x R, the group of 3 x 3 matrices of the form:
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U1 0 (4.33)

00 ex)

where a, b, x E 7R. The group G 4 is essentially the affine group, however, crossed

with the real line, which acts as its center.

Since GA is a matrix group, its Lie algebra !9 can be realized as a matrix

algebra. A set of basis elements for 9A consists of:(10 0) ( 1 0) (00 0)
A,= 0 0 0 A2= ( 0 0 A3.= 0 0 0 (4.34)

0O 0 0O0 / 0 01

with commutation relations:

[A,,A 21 = A2,[A,,A 31 = [A2, A31 = E, (4.35)

where e is the zero matrix.

We first contract GA to Wt in a coordinate free context. Let t be the

subalgebra spanned by {C2 = 2(A 2 - A3)). A complementary subspace V is that

space spanned by {C3 = A2 + A3 ,C1 = A,), so that 0.% is the map:

a3C1 + a2C2 + a3C3 ---.AaICI + a2C2 + Aa3C3. (4.36)
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Calculating,

Jim 0-'['ACl, 0,%C2] = Jim 0hj[O.AA,2(A 2 - A3 )] (4.37)
A-C0 -A-0A

= lim 0-1 [AAI,2A 2] (4.38)
A--,O

= lim 0n'(2A)A 2  (4.39)
A-0O

= lim 0 1 2A{(A 2 - A3 ) + (A2 + A3)) (4.40)
A-O

= lim 0A(C 2 +C 3 ) (4.41)
A-O

1
= Jim 2A(C 2 + -C3 ) (4.42)

A-O

= 2C3 . (4.43)

Hence: [C1,C2J1 = C3. All the other structure constants can be verified in the

same manner to be 0. Therefore the three dimensional Lie algebra contracts to the

Heisenberg Lie algebra.

We now follow Kalnins and Miller and repeat the above contraction in

coordinates. We choose a new path of basis elements parametized by e:

(C 0 0)

CI(e)=cAl -" 0 0 0 (4.44)

0o 0 U
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(0 1 0/

C2() =A2 - A 3 = 0 0 0 (4.45)

0O 0 1)

G()=A (= 0 0 0)

C3(e) = eA3 = 0 0 (4.46)

It may be verified that:

[C,(c),C2(E)1 = CC2(f)+C3(E);

[C2(cE),Czs(f)] = C()2()

= e. (4.47)

Letting e- 0, we obtain a new Lie Algebra. whose basis has commutation

relations:

[C1(o),C 2(0)] = C3(0);

[C2(o),C 3(0)j = (C1(O),C 2(o)]

-eO. (4.48)

Again, we observe that the affine Lie algebra contracts to the Heisenberg
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R 3 x R 3  - 3

Figure 4.1: Calculation of new operation of the general affine group.

Lie algebra. The coordinate approach will enable us to work with the affine Lie

group as the next section will show.

4.4.2 Contractions on the Lie Group Level

We will now exponentiate Q1 to obtain the sequence of the corresponding

Lie groups GA. Let X be a member of g. Since X can be expressed as X =

-. C1 + aC2 + X3, we obtain:

-#ea 0 e (c"'f 1] 0

exp( 0 1 0 ) 1 0 (4.49)

\0 0 •fe-a j 00 ecc-°

This exponentiation of the Lie algebra yields a continuum of groups parametrized

by e. The result is a new coordinatization of GA associated to the E-Lie algebra.

We would like to know what the multiplication rule becomes in these coordinates,

so that we can find the contracted rule when c---0. The figure 4.1 related to 3.1

illustrates the process:

The map 4: R3 -- exp(C.) is the map:

p.,



38

0

k00 e ec-a

By considering the Jacobian, since 0 can also be seen as a map from R3 to R3 ,

and applying L'Hopital's rule, we can see that 0 is a one-to-one differentiable

transformation. Hence its inverse exists:

0' :exp(g) - R3

0 10 y~ ), fI n(x), I[In(z) + ynx_--)l (4.51)

0o 0 z)

The operation, 9, of the group exp(g.) is simply the usual matrix multiplication.

By seeing 4. as a change in coordinates, we find the corresponding group operation

on R 3 as follows:

(a, fc) * (a', $' c') -

e_•,at. __;•B. _ (• + G')e(,0 a/1 R C-O'1 + lleoc- 11)( -+ ,6)e

a(1--

[C PC C- J 0 +t") -1
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- + _[l -e- ]) (4.52)

Now let e --+ 0. By expanding the exponential functions as power series, we

obtain the contracted multiplication rule:

(a,0, c).* (a', 0', c) = (a + a',o + 0' , c + e' + ao• I a')3
2 1) (4.53)

This group operation is identical to the Heisenberg group under symplectic coordi-

nates. Therefore we have contracted the affine group to the Heisenberg group.

It is instructive to consider the groups parametrized by c. We found that

the group exp(Q%) is isomorphic to each exp(g) by an isomorphism !':

(a,0, c) to (- /,c). (4.54)

This fact is easily verified by a routine calculation. We will use this isomorphism

in the next chapter.

4.4.3 Contractions on the Level of Group Representations

The group GA has a unitary representation on L2 (1Z) parametrized by A as

follows 3.3.1:

UA(a, b, c)g(i) a- e 2"i:c 9( + ). (4.55)

.. .. ; .. .. ....
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In the previous sections, we always assumed implicitly that A = 1, however, as we

will see, the role of A becomes more important when contracting group representa-

tions.

To contract, we need a representation KA equivalent to UI above, obtained

by intertwining U" by eC2ti~t:

KA = e- 21riA\*U'(€(a, b, c)e 2#ri\t, (4.56)

noting that any f E L2 (R) may be expressed as g(t) = e2 rilth(t) for some h(t) E

L2 (R). Thus:

KA (a, b, c)g(t) = a- e- tice2fA"l t +e_ b (4.57)
a

Now we combine the parametrization 4' of GA in equation 4.50 with the represen-

tation K" with A - .. Thus KAI o4' has the form:

, ( 0 , a.[~ a 1],cc - a)g(t) (4.58)

e~ce-fice C[( C • t-O+f(- j±)]g(et - C (4.59)

The process of letting e --+ 0 is so similar to the other cases that we will sim-

ply state the result: after contraction, we obtain a new representation KO[a, P, c):
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K°[a, 0,c]g(t) = ei(2c-aO)e2riOtg(t + a). (4.60)

Thus we have obtained a representation of the Heisenberg group, which is what we

wanted.

4.4.4 Contractions and Ambiguity Functions

We now contract the ambiguity functions themselves. This involves an

additional "trick" as will be seen in this section.

As shown earlier 3.3.1, the wideband ambiguity function is a scaled coeffi-

cient of the group representation UW(a, b, c):

W~,(a,b) - < f(t),- 2NicUA(a,b,c)g(t) > (4.61)

- a _ f(t)g(L-a)dt (4.62)

However, to create our sequence of wideband ambiguity functions to coverge

to the narrowband ambiguity function, we use the functions f' and g', where

P = _¢af and similarly with g. We also use the 4 coordinates for the argument

of U and choose A = 1, and premultiply the ambiguity function by an appropriate

factor:
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- ('-T-- } p,,[e--, [ ' - 1], cc - a) (4.63)

<eiL'f, U,(e-&",a!-[--- 1], cc-a)e ,g> = (4.64)

< , U,(e-",,-([" - 1], cc - a)e d'£g > (4.65)

But the right hand side of the last bracket is just Kl as in equation 4.56. So we

continue:

e_2,iIss, Wpe,(e0, ,e-OC 1],cc -a) (4.66)

< ' f,•ea a -,

<f, •( - l],c - a)g > (4.67)

Letting e -0 0, we obtain by the previous section:

< f, K°(a, 1f, c)g > = (4.68)

< f(t), e-C2 iCe2"i't e"Cig(t + a) > = (4.69)

e e f(t)g(t + a)e-2 dt = (4.70)

e 2wi eWaON,(a, -6), (4.71)

which is essentially the narrowband ambiguity function, up to phase. We have thus
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contracted the coefficients of the two groups, approximating the narrowband am-

biguity function by the narrowband via a formal mathematical apparatus, without

any reference to physical factors.



Chapter 5

Volume and Contractions

5.1 Introduction

We would like to apply the idea of contractions to gain some insight into

the important concept of ambiguity volume. After introducing ambiguity volume,

we will explore the relationship between volume and invariant measures via the

Schur-Godement- Frobenius theorem. We then will study how volume changes with

contractions. Our aim is to make rigorous the statement of Sibul and Titlebaum

[37, page 861: that the volume of the wideband ambiguity function is asymptotically

conserved as the narrowband case is approached.

5.2 Ambiguity Volume

The ambiguity functions of interest in this chapter are the auto-ambiguity

functions, for example:

Nj(z,y) = f(t)f(t + X)e-2"idt, (5.1)

a special case of the cross-ambiguity function. These auto-ambiguity functions may

be seen as functions of two variables on their groups. The surface over the x - y



45

plane for the narrowband functions (x, y, Nf(x, y)) called the narrowband ambiguity

surface.

Ambiguity volume, VN is simply the volume under the ambiguity surface

squared:

VN(f) = L INi(x, y)jIdxdy. (5.2)

Similarly, wideband ambiguity volume, Vv(f) is defined to be:

00~f=j CO (s,Tr)I2F dTd. (5.3)

The interesting fact is that narrowband ambiguity volume is always con-

served:

Proposition 5.2.1

VN(f) -- f I N,(X,Y)12drdy = I1fI11, (5.4)

that is, if IIfII = 1, then:

VN(f) -- f f0 IN (XY)12dxdy - 1. (5.5)

Proof We reference the proof in [22, page 640]. It also will be a natural consequence

of the Godement-Frobenius-Schur theorem to be stated later.
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The proposition above has been called the "radar uncertainty principle", or

the "law of conservation of ambiguity". It can be seen as saying that the ambiguity

surface is like a water bed: to squeeze a desired small peak at a particular range

and speed implies that other peaks will rise somewhere. One of the main problems

of radar was to see what kind of surfaces were ambiguity surfaces. One of the

approaches to the solution of this problem was in seeing what kind of invariance

properties they exhibited, which motivated Cook and Bernfield [12, page 68]. The

radar conservation property was found to be the "most important ambiguity func-

tion constraint since it implies that all signals are equally good (or bad) as long as

they are not compared against a specific radar environment" [12, page 70]. How-

ever, the distribution of ambiguity does change from signal to signal. For example,

a signal with short time duration would produce a peak that could resolve two

objects flying close together, but conservation would force the objects velocities to

be unresolvable. When coupled with the easily proven fact that the maximum of

an autoambiguity function occurs at the origin, the choice of surfaces becomes even

more limited.

Wideband ambiguity does not hold always, for:

Proposition 5.2.2 Let f E L2(7). Then:

Wo = 11f12fI 1 (5.6)

Proof We again reference [22, page 643] for details.
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There are certainly f E L2 (7Z) such that f0[ (,•)[ : is not defined. The loss of

conservation in the wideband realm causes difficulty for selection of surfaces. Only

one constraint in wideband signal design remains. An approach to classifying all

wideband ambiguity surfaces is detailed in [1].

5.3 Volume and Group Theory

To apply group theory for insight into the volume problem, we need a few

definitions.

Definition 5.3.1 Let U be a unitary representation of a Lie group G on a Hilbert

space H. Then U is said to be a square integrable representation if there is a vector

g E H such that:

I< U(x)g,g> I'dp ()< oo. (5.7)

Such a vector g is called admissible.

We now quote without proof the Froebenius-Schur-Godement theorem:

Proposition 5.3.1 If U is a square integrable representation of a group G on a

Hilbert space H, there exists a unique self-adjoint operator Q such that:

i) The set of admissible vectors coincide with the domain of Q.

ii) Let 91 and 92 be two admissible vectors and let f, and f2 be any vectors

in H. Then:
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I< flU(X)91 > < f 2 , U(z)g 2 >dp(x) =< Qg 2,Q9 1 >< fl, f2 >. (5.8)

iii) Finally, if G is unimodular, then Q is a multiple of the identity operator;

hence the domain of Q will be all of H, that is, all of H constitutes the set of

admissible vectors for the representation.

The proposition is proved in detail in (38, page 62].

Now we will apply these new facts to our ambiguity functions. The equa-

tion 5.7 may be recast as stating that U is square-integrable if there is a signal g

such that its ambiguity volume is finite. This general statement applies to both

narrow and wideband when considering the appropriate representation as indicated

previously. The equations 5.5 and 5.6 show that under this formulation, Uj and

UUA are square integrable representations of their respective groups.

Since the Heisenberg group is unimodular [22, page 640], all of L2(fl) is

admissible by the Frobenius-Schur-Godement theorem. This is not true for the

affine group: there are functions for which the equation 5.6 will not be finite on the

right hand side. And the Frobenius-Schur-Godement theorem does not guarantee

that all of L 2(1R) would be admissible for UA,. By the converse of the third part

of the theorem, we see that the affine group cannot be unimodular. And sure

enough, it is not [22, page 643]. We can see that there is some connection between

unimodularity of groups and ambiguity volume.
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We wanted to see how invariant measures behaved in the c-groups involved

in the contraction of the affine group to the Heisenberg group.

Proposition 5.3.2 The left invariant measure of an c-group is

daeadc (5.9)
of

and the right:

C 'dad/ dc. (5.10)

Proof We may prove the proposition by straightforward verification. For example,

the right invariant measure may be verified by showing that:

J f[(a, ,c). (a',b',c')]dadildc = (5.11)

I f(uvw) 8 (a c)dUdvdw = (5.12)
i9(u,VW)

J f(u, V, w)dudvdw, (5.13)

where u, v, and w denote the components of the right hand side of equation 4.52

in their respective orders, and 80) denotes the Jacobian of the transformation,

computed by taking the reciprocal of NalAmO)"
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An interesting aside is that the isomorphism k from the previous chapter,

carries the left invariant measure of the group when c = 1 to the left invariant

measure of any specified f-group.

As long as e > 0, we can see that the groups will never be unimodular,

but as c -- 0, the groups become more and more unimodular. It seems that the

Frobenius-Schur-Godement theorem might help us to see that ambiguity volume

becomes conserved.

Thus the statement that the "wideband ambiguity volume is asymptotically

conserved" now has a mathematical foundation.



Chapter 6

Conclusions and Questions for Further Research

We have shown how group theory can provide insight into some of some

problems in RADAR and SONAR signal processing. We began by noting that

the RADAR and SONAR ambiguity functions are coefficients of the unitary rep-

resentations of the Heisenberg and affine groups respectively. This basic fact not

only unifies the various forms of the wideband ambiguity function, but helps us in

simplifying various computations. We also showed how contractions helped model

the approximations of the wideband to the narrowband ambiguity function under

suitable conditions. And we showed that the wideband ambiguity volume is not

conserved, even when the affine group in question is very close to the Heisenberg

group. Finally, we showed that harmonic analysis on finite groups may provide

insight into creating another transform.

Our work is just the beginning of a "wideband" version of Schempp's work

[38]. For example, the characterization of narrowband ambiguity surfaces was

shown to be a natural consequence of harmonic analysis on the Heisenberg group

by Schempp. He also solved the invariant problem, finding the group under whose

motions the narrowband ambiguity surfaces remained invariant. A wideband coun-

terpart to these results seems daunting, since the affine group is not nilpotent as
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the Heisenberg, but only solvable. To complicate Schempp's approach further, the

afline group is not unimodular. The theory of positive definite functions on the

affine group, or the autoambiguity functions in this thesis, is not very well known

for that reason.

We also would have liked to characterize the range of the wideband autoam-

biguity function as Auslander and Tolimieri did with the narrowband autoambigu-

ity function [4]. However, the affine group seems immune to their approach, since

it lacks a discrete subgroup to quotient it to a compact manifold, to enable us to

apply some theory of "solv-theta" functions to it as they did.

Many questions remain to be answered. For example, what is the geometric

picture of this contraction? Dooley shows some elegant geometric pictures for

some of semisimple group contractions [15]. Can Kirillov coadjoint orbital theory

be used to show what is happening with our two groups? Here, the difficulty

is that the groups concerned lack "semisimplicity", and are solvable. We have

calculated the coadjoint action of the c-groups, and the action seems to "blow

up" at the limit. What this means we are not sure. Is the relationship between

wideband and narrowband analogous to the relationship between quantum and

classical mechanics? Is there a method of "quantization" from a signal processing

point of view?

The discrete afline group harmonic analysis also provides many interesting

questions. Is there a finite cross ambiguity function? How should the signals be
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sampled? Is there a solvable analog to Shannon's sampling theorem? What is the

significance of the afline Fourier transform? The affine group here seems to lack the

beautiful "Stone-von Newman" property of the Heisenberg: that the Heisenberg

has essentially one unitary representation.

Finally, we hope to see more areas of signal processing "invaded" by modern

mathematics. While the insights gained would be invaluable, perhaps new devices

to serve the needs of humanity will be created as a result.



Appendix

The Discrete Affine Fourier Transform

A.1 INTRODUCTION

Discrete Fourier Transforms (DFT) have been standard tools in digital

signal processing for approximately three decades. If we view the theory of the

Discrete Fourier Transform as harmonic analysis on a group of integers modulo a

prime number, we can gain new insights that will allow us to develop new discrete

Fourier transforms as harmonic analysis on other discrete groups.

Group theory enables us to see various transforms in a unifying manner.

For example, the Fourier transform is intimately related to the group of the real

numbers; the Z-transform is connected with the integers; and the Discrete Fourier

Transform is related to the group of integers mod n. We introduce a new transform

by considering the finite affine group, and find that all the theory of the Discrete

Fourier Transforms generalizes in a pleasant way. The formula for the Discrete

Affine Transform remains essentially the same as the Discrete Fourier Transform.

The underlying theory for this transform,namely that of harmonic analysis

on finite groups, has been known for quite some time [23, 24]. We have essen-

tially applied the theory to the finite afline group, having been motivated by radar

ambiguity function theory [36, 9, 51.
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We will review familiar properties of DFT's that are consequences of har-

monic analysis on finite fields, and then investigate harmonic analysis on the finite

afline group Ap, where p is a prime number. Focusing on a specific finite affine

group, we then develop the Discrete Affine Fourier Transform (DAFT), using a

specific finite affine group for illustration. (This transform should not be confused

with the Affine Wavelet Transform). After establishing the Inverse Discrete Affine

Fourier Transform (IDAFT), some transform properties analogous to the DFT will

be shown, namely those involving the relationships between the DAFT and the

norms and convolutions of its function spaces. Finally, we show how the DAFT

would be useful for solving wideband inverse problems.

A.2 Some More Mathematical Background

Associated with a set S is the vector space of all complex valued functions

on S denoted by .(S). This .F(S) is a vector space in a natural way. If S is finite,

.7(S) is isomorphic to Rn where n is the number of objects in S.

As an example, .F(Z.) is the space of all complex valued sequences on

Z,:{flf = (fo,.. .,f,-)}. Addition on '(Z.) is simply componentwise addition

of sequences and scalar multiplication is defined similarly. An norm may be defined

on 7l(Z,): 11f1[2 = E. fk7•. These norms induce an inner product as in usual

Hilbert space theory.

The space .r(G) is defined analogously, with ( forming the index set of the

sequences. Each member pk of the sequence will be a matrix of fixed dimension
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nk. A norm for f = (l,...,fm) is: iifii 2 = E=onktr(jfj), where" denotes

the Hermitian transpose of a matrix. In the case of Z2, when all the irreducible

representations are one dimensional, the norm becomes the familiar one. Of course,

these norms induce their corresponding inner products.

A.3 The Discrete Fourier Transform

As stated above, the theory of the Discrete Fourier Transform (DFT) is

merely harmonic analysis on Z,,, the group of integers modulo an integer [28, pages

546-548]. Harmonic analysis simply means expressing the functions on the group

as a sum of the irreducible representations of the group.

The DFT can be seen as the mapping from the space of all complex se-

quences on Z. to the space of complex sequences on Z,. Its explicit form is:

Ew = wfi t (A.1)
t=O

The DFT formula is thus intimately related to the "harmonics" of Z,,.

In addition, the Inverse Discrete Fourier Transform (IDFT) may be defined, also

involving the characters of Z.:

Sn-1

At-fw (A.2)

The DFT has some nice properties. It is well known that the DFT preserves

norms: 11fl12
= l1f 112. Secondly, the (cyclic) convolution of two n-length sequences
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defined by:

n-1

(f*g)i =, f,.g=-,, (A.3)
r=1

t - r performed with modulo n arithmetic, is conveniently mapped to component-

wise multiplication of their transforms: (f*.g)• = 1," §,. These two properties of

the DFT form a foundation for a full range of applications [33].

A.4 The Discrete Affine Fourier Transform

A.4.1 The Finite Affine Group and Its Representation Theory

Motivated by the affine group's intimate relationship to the wideband am-

biguity function [36, 9], and inspired by Auslander and Tolimieri's approach to the

DFT [5, page 866], we investigate the so called finite affine group, denoted by Ap.

This is the set of 2 by 2 matrices of the form:

(; :)~(A.4)
with a taking nonze'ro values in Z2 and r, any values in Zp. The group operation will

be the usual matrix multiplication, however using modulo p arithmetic. Modulo p

arithmetic is necessary for every nonzero integer to have a multiplicative inverse.

This condition may be loosened slightly by requiring that the multiplicative group

of the ring have a primitive generator, a condition true for Z,, with n = 2,4, p, 2p,

[25, page 44]. However, for simplicity's sake, we shall consider only the case of Ap.
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A.4.2 The Discrete Affine Transform

The theory of Fourier transforms for the finite noncommutative group had

been discovered for quite some time [24, page 114] . We will now construct the

Discrete Afine Wavelet Transform (DAFT), the affine analogue of the DFT, using

this theory. This process involves identifying "harmonics" on the group 4A, and

then applying the formula for the Fourier transform in the literature to this case

[24, pages 77,81]. We shall use A 3 as an illustrative example.

Identifying all the harmonics of Ap.

We identified all the irreducible representations of .AP in a semi ad hoc

manner, by using two results in finite group representation theory. The first is that

the number of the characters of a group is equal to the number of its conjugacy

classes, and the second is that the sum of the squares of the dimensions of each

irreducible representation is equal to the number of elements of the group [29]. We

found that there were p conjugacy classes in Ap, hence p irreducible representations.

And then:

12 +... 12 +(p- 1)2 =p(p- 1). (A.5)

P-1times

Therefore AAp had to have p one dimensional characters and one p - 1-

dimensional character. We found the explicit form of the representations by some

trial and error, by consideration of their subgroups with some trial and error.
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Incidentally, we found [34], which confirmed some of the results of this section.

The explicit form of the representations follow. We note that not all of them are

one dimensional.

The "harmonics" of Ap consists of p - 1 one dimensional representations

and one p - 1-dimensional representation, a total of p elements, as follows:

po(g',T) = 1

pW(g ,Tr) = e -1

Pk(g, T). = e ,-'

2 "( P-2)0
PP,-2(g,r') = e ,- (A.6)

where g is the number with which every nonzero element of Zp may be expressed

as a power of g. The p - 1-dimensional representation pp-_ is that representation

induced from the one dimensional representation:

Z=L
X(1,) -0 (A.7)

The difficulty of expressing the DAFT explicitly in general results from not yet

knowing the explicit form of this representation.



60

We now consider the representation theory of A3 . The group A 3 consists

of six elements, since there are two choices for s and three choices for r. Because

.s is never zero, we can express it as a power of 2. (This fact holds for general -4,

although the base of the exponential may not necessarily be 2). Hence the space

of complex functions on the group are those sequences of length six. However,

the set of "harmonics", the irreducible complex representations of A3, consists of

only three elements, a consequence of the group's noncommutativity. Hence we no

longer have a group of harmonics, but something more complicated.

Explicitly, the characters of A 3 are:

po(2 ",r) = 1 (A.8)

p,(2,r) = (-I)' (A.9)

p2(2( = (A) 10)0 w2 1 0

Constructing the DAFT

The next two sections consist of applying the results of Hewitt and Ross [23,

24] to our specific group, involving translation of their mathematical formulations.

Given a sequence f on Ap, that is, f has the form:

f = (fi.0,. . ,fl,,,f2.o,. .,f,-.., fp), (A.11)

we can construct a sequence j on A., the set of "harmonics" of A,, called
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the Discrete Fourier Transform (DAFT) as follows:

Since each representation of 4A is associated to a finite linear space, we

can use the space's inner product to define a coefficient of two vectors,u and v,

associated with the representation:

"Ch,&% r") =< p(gl',r)u, V > (A. 12)

We use this concept to clarify the transform for a finite, noncommutative group

such as ours. The DAFT is simply the sum:

< f (pk)u, V >= • Cukf (gs r7) (A. 13)

For .A4, f((pk) can be seen as an n x n matrix, where n is the dimension of the linear

space involved.

The DAFT may be written explicitly for .43 as follows: if f = (Uo, fhi, f 12, f2o, f2l, f221

is a sequence on A3, the sequence f consists of:

fi.= Z
(20,1r)eAp

S= Z
(2•,r)+A +

f02

(110+ Wf11 + W 2f12 fao + W2f21 + Win2

fao + Wfn +W2f22 flo +wL2 fn + Wfi)
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Constructing the IDAFT

The DAFT is not onto for general groups. However, since Ap is finite, the

DAFT is onto, and we have the existence of the Inverse Discrete Affine Fourier

Transform [24, page 420]. Consider the space of all matrix valued sequences on AP,

that is, the space of all sequences with the "harmonics" of Ap as the index set:

f = (fo,fi,.... - fp-i), (A.14)

where the first p - 1 entries are simply scalars, and the last entry is a p - 1 x p - 1

matrix. The function f whose DAFT is f is:

P 2 
2 i sj

f,.,. = E e P-f
k=O

+(p - 1)tr(f - pp-,I_(g', (A.15)

where tr denotes the trace of a matrix. This formula will be called the Inverse

Discrete Affine Fourier Transform (IDAFT).

The IDAFT can be written for the case of A3 as follows: Let f = (fo, fi, 12)

be a sequence on the set of "harmonics" of A3 . We note in passing that j2 is a two

by two complex matrix. Then the function whose DAFT is j is:

f J,,, =o + (-1)fjl + 2tr(f2. p2( 2 ", T)) (A.16)
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A.4.3 Interesting Properties of the DAFT

The DAFT has a number of interesting properties, quite similar to the

DFT. We will mention two here, one related to norms and the other related to con-

volutions. We have proved them explicitly for .A3 only, however the generalizations

seem straight forward. Since the proofs are computational in nature, they have

been omitted.

Defining a norm on the sequences on A3 by:

iifi 2 = Ifo012+1I.1 2 +2tr(h3f;), where denotes the Hermitian transpose, we

found that: lill =i 61f1112. This fact should generalize to be: Ili 1i = P(P- 1)a'f 112,

for general Ap.

The affine group theoretical convolution of the form:

f*g(s,T0) - f(x,y)g[(z,y)-(s,r)] (A.17)
(z,y)EAp

is mapped via the DAFT to componentwise multiplication:

f*g = .. (A.18)

The right side denotes componentwise multiplication, as in the DFT case,

with the matrix components multiplied as regular matrices. We were surprised that

the products reversed order under the transform, a fact proven for the case of A3

only (This fact has not been mentioned in any works that we have seen).
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A.5 Towards An Application of the DAFT

This section will describe a possible application of the ideas discussed. It

will be seen that it can only be a sketch at best, yet hopefully detailed enough to

motivate further research.

One of the important applications of affine deconvolution is the solution of

wideband inverse problems. Consider the received signal r(t) given by:

r(t) = or E e-2p(so, To)f(e-'ot - ro)dTodso (A.19)

where p(8o, Tro is the complex scattering strength at delay 70 and dilation so, and

f(t) is the transmitted probing signal. The time varying transmission or scattering

channel causes the signal to be delayed by To and its time-scale dilated by e-2.

For narrowband signals the time dilation reduces to the well known Doppler shift.

The inverse problem is to determine p(so, To) from received signal r(t) and from

the known probing signal f(t). This can also be called the identification of linear

time-varying systems [46].

Let us consider processing of the received signal by the correlation receiver.

The correlation receiver computes an inner product of received signal r(t) and the

processing waveform g(t), which is time-delayed and scaled. If the received signal

contains colored noise in addition to the scattered probing signal, the optimum

processing waveform is not the dilated and delayed version of the probing signal.

We also recognize that the correlation receiver output 1(a, T) is an affine wavelet
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transform of r(t) with respect to the processing waveform g(t). Thus,

I(s, ") = Wr (A.20)

= < r(t),g(e-t - r)e-" > (A.21)

= 10 -(ot -. "o)e- (A.22)

g'(e-'t - -r)e-1dTrodso) dt (A.23)

Interchanging the order of integration, we have:

1sr)= LI01 (J' e-Iff(e-80t - To) 9g(ef )e-'dt )dTodso. (A.24)

We now recognize that the inner integrals are an inner product and we have:

l(s,,r) = IJ op(so,,ro) < U(so,Tro)f(t),U(s,T)g(f) > drodso, (A.25)

where U(.o, ro) and U(s,,r) are unitary affine transformations [9]. Since U(so,"o)

is unitary, its adjoint is equal to its inverse and we have:

l(8,r) = LI/p(bo,Tro)<f(t),U-(so,Tro)U(s,r)g(t) > drodso (A.26)

= C ,1P(so, ro) (A.27)
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( f(t) g*(e('o- +e 2 r~ dt )dradso (A.28)

The inner integral is the wideband ambiguity function,

WA 1•(e-(°-8b), r - e-(8-80)ro). Hence the most recent equation may be seen as a

continuous convolution on the affine group [32, 6]:

l(s,r) = p *WA 1 .g (A.29)

-0 1:J p~so, To)WAf, 2 (es, r)(e'0 , To) 1 ]Jdrodso (A.30)

I j0p~o,'o) Af,(e(-8 Tr - e&(8'*)ro)dTods0). (A.31)

Thus the solution of the wideband inverse problem is equivalent to deconvolution.

The solution of this inverse problem can be attacked in several ways. One

could use Kahlil's formula as suggested by Napharst [32], or wavelet transform

inversion as suggested by Heil and Walnut [22], Young [46], and Grossmann and

Morlet [17]. Use of the DAFT to deconvolve a discrete scattering problem would

be another approach for additional insight into the solution of the inverse problem.

Many difficult computational and discretization problems remain to be worked

out. We hope that the Discrete Affine Fourier Transform Theory may have other

interesting applications to wideband time-varying system theory.
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A.6 Looking Ahead

We have performed some harmonic analysis on a finite noncommutative

group. Noncommutativity generally makes such analysis very difficult, but finite-

ness of the groups saves the day. The same strategy may be applied to other

groups such as the Heisenberg group for instance. As the affine group underlies

the wideband ambiguity radar theory, the Heisenberg group plays a major role in

narrowband ambiguity radar theory. Deconvolution is a major problem there too.
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