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ABSTRACT

In this project we have examined implementation methodologies for the modular
manufacturing concept in the apparel industry. We looked at the traditional view of the modular
group: a small group of operators, some of who are cross-trained on several operations in the
group and can move around in the group to alleviate bottlenecks, and examined how to best
coordinate the efforts of such a flexible work group. We also investigated the concept of TSS
type work groups, showing a way to organize and operate such groups to attain maximum
productivity. We developed an emulation of the modular concept, using off-the-shelf software
which can be used for evaluative purposes. This is both a research tool and a decision support
tool for the factory supervisor. We provide analytical results to show the methods we present
are effective and efficient.
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1.0 Introduction

1.1 Overview and Problem Definition

In the apparel industry, Flexible Work Groups (FWGs)* are teams of workers cross-
trained in several operations which carry out entire assembly processes and are compensated as a

group rather than individually. The emphasis is on group effort and employee involvement,
quality at the source, and short throughput time. This concept is being used in a number of

production areas similar to apparel, such as shoe and curtain manufacture. Exploration of this

manufacturing method is ongoing in the apparel industry, and many makers have expressed a

strong interest in the concept.

In addition to the impact on productivity, there is likely to be an equally important
impact on quality. People working together as a team are likely to be more consistent in the
accuracy with which they perform their jobs. In this setting, there is the opportunity for real-

time feedback as to fabric and sewing defects before the garment is completely assembled. This

translates into raw material savings as well as a reduction in required production repetitions. In

addition, the team members are apt to establish more pride in their work and motivation to

assemble defect-free garments in their group. Producing high quality, defect-free garments is
necessary to gain consumer confidence and to increase the competitiveness of U.S. apparel

makers with overseas manufacturers.

A third benefit of the FWG philosophy may be a significant reduction in work-in-process

(WIP) inventory, and the corresponding reduction in required plant floor space and carrying

costs. The savings associated with reduced inventory are reflected along the entire inventory

pipeline, including the supplier level. Furthermore, the physical reduction in WIP can greatly
reduce flow congestion and thereby enhance material control.

The FWG concept brings a new set of challenges. For example, the question of how the

manufacturing processes will actually be carried out becomes a much more complex one. This
involves not only the layout of the equipment, but also a careful evaluation of which operations

will be incorporated into the work module, which operators will work in the group, and which

operator will perform which operation. In addition, the overall manufacturing process is likely

"These groups are also called Modular MmufacIug Groups. We will use both terms in this report.



to require a much more complex control strategy and tracking system for order progress to be

updated.

The FWG concept brings social as well as technological challenges. First' the

implementation of a FWG requires a cooperative and conscientious attitude from those persons

working in the FWG. This may be brought about by the use of proper training and various
incentive programs. Operator absenteeism becomes a problem when team operation depends

upon everyone being present and contributing. In addition, the team concept requires a great

deal more self-management, offering an even greater challenge to the workers involved. This is

also likely to mean that plant managers must become more flexible and must set more realistic

goals for meeting market conditions.

We make some basic assumptions concerning the enterprise in which the FWG will

operate and what issues we will address. We assume the task (or tasks) to be accomplished by
the group has been predetermined. We do not address the social issues. We focus only on the
"how to" of improving the performance of the flexible work group.

1.2 The IDEF Model

This project fits into the IDEF models precisely as defined by Jayaraman and Malhotra

(1992). This can be observed by examining nodes A53 and A532. In Node A53, Produce
Garments, the manufacturing method represented by modular groups fits into the Cut Package at

the Sew and Finish Garments node (A532). Further verification of this placement in the IDEF
model presents itself in the link from Produce Garments to Grade and Sort Garments, labeled

with "Finished Garments." The breakdown of Node A532 shows more of the modular concept.

In node A5321, Control Sewing and Finishing Production, one sees the sewing and finishing

assignments going out to nodes A5323 (Transport Garment Sub-Assemblies) and A 5324
(Process Garment Sub-Assemblies). From A5323 the garment subassemblies are moved from

their storage area (whether it be a nearby table, rack, or another area of the plant) to the sewing

line to be processed (node A5324).

Further examination of the breakdown of node A5324 shows even more detail. The

modular line may be involved in all the sub-processes of the garment sub-assembly processing.

These can be seen in nodes A53241, Set up sewing and finishing unit, A53242, perform sewing

and finishing operations, A53243, inspect garment sub-assembly, and A53244, re-work garment

sub-assembly. Note that these processes are connected sequentially. The actual performance of

the sewing and finishing operations are preceded by the setting up of the sewing and finishing
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unit, with the connection made by operator assignments. This key link is where we define the
TSS rules as the operator assignments. Illustrations of these nodes from the IDEF model are
given in Appendix A. Further details can be found in the technical report prepared by
Jayaraman and Malhotra (1992).

It is also important to note that the organization of the sewing processes as defined in the
IDEF model parallels that of the object-oriented structure defined in the architecture designed
for our VME. This architecture is described in Section 5.

1.3 Scope of the Project

Our objective in this task order has been to investigate Flexible Work Groups and
determine organization performance methodologies which will cause the FWG to perform more
productively. We have accomplished this objective by investigating four topics. We have
examined how the concept of FWG is being implemented in the apparel industry. From this, we
have put forth two efforts to define methods for improving the performance of the FWG. The
first effort deals with the dynamic operator scheduling problem. Following we will report on
our research with the work groups that perform similarly to those marketed by Americas 21st
The fourth topic is our Virtual Manufacturing Enterprise (VME) tool.

This report is organized as follows. Section 2.0 itemizes the trips we made to
manufacturing facilities which were using various types of manufacturing methods. The
dynamic worker assignment work is discussed in section 3.0, and the analysis based on the TSS
concept in section 4.0. The VME development is described in section 5.0. Section 6.0 provides
a summary of the work and some conclusions, Section 7.0 describes the demonstrations of the
TSS line which have been performed and are planned for the near future, and references are
cited in Section 8.0.

2.0 What Manufacturers Are Doing

2.1 Russell Corporation

Russell Corporation is located in Alexander City, Aiabama. Dave Howell, Russell's
Corporate Training Director, has been very helpful is helping us to understand how the work
groups in Russell's plants are operated.

The teams are configured by fiat from management, with no formal analysis of how well
their skills might complement the team. In addition, management suggests to the team captain

3



how some simple worker reassignments might be made during production. These are quite

simple; they typically consist of not much more than moving person 1 to machine A when

production there is behind schedule, and person 2 to machine B when it is behind. It seemed

clear that our strategies could do better with insignificantly more effort.

Another point of interest at Russell included the continued use of bundles on the

production floor. The casual observer would have a hard time discerning the difference from

these modular teams and production using the progressive bundle system. However, the teams

have increased procdntivity, although it is unclear why. It could be something as simple as a

sense of camarh(deiie in the work force. For example, the operators were seen wearing team T-

shirts with the ,tarn's logo. However, just having the ability to rescue an operation which has

fallen behind in production may also be the underlying reason for the improvement.

2.2 Fashion Star

The project team visited Fashion Star, Inc., near Carrollton, Georgia. This company

manufactures uniforms and specialty clothing on a contract basis. Their orders often consist of

only a few garments (sometime even just one). This means that production must be very

efficient. Changeovers must happen easily and the operators must be flexible in their work

skills. There is a large variety of styles, fabrics, and alteration variations.

Currently, this company is using a Unit Production System on the sewing floor. There is

very little work-in-process anywhere in this facility. Even the cutting area is clear because they

cut only one garment at a time, due to the preciseness with which they construct their products,

i.e., cut-to-order. In general, the entire plant seemed to be quite efficient.

Such efficiency in operation is a goal being reached for by most of the apparel

manufacturing plants in the United States. We feel that the work being done in this research

project can help many factories achieve that goal.

2.3 Oxford Slacks

Oxford Slacks is located in Monroe, Georgia. Phil Williams, the Division Staff Engineer

was our host for this visit. We toured the entire plant at Monroe from operational planning the

finished goods' distribution facility. However, our focus for the day was their experience with

the progressive bundle system and attempts to use modular manufacturing.

A few years ago, much time and expense were invested in converting the Monroe plant

to a modular manufacturing facility. Now, however, Oxford has deemed their efforts

4



unsuccessful, and has abandoned using the modular concept entirely. Problems at Oxford
included groups that were too large, increased material handling time by operators. problems

with compensation of the groups, and lack of enthusiasm from the workers, even after proper
training. All of these could have been avoided if our study had been available to them.

Their current system uses progressive bundling, with huge amounts of work-in-process

material on the sewing floor, in the cutting room, and in finishing/inspection. In addition,
throughput time is far too long for today's dynamic market.

3.0 Control Strategies for Flexible Work GrouDs

3.1 Introduction

When a production line is labor-intensive the manufacturing firm faces numerous issues
in how best to coordinate its work force. If the tools used for manufacturing are expensive, then

multiple workers must share the tools on the production line for the operation to be economically
viable. How best to coordinate multiple workers on a labor intensive production line is the focus

of this section.

Figure 1 shows a prototypical manufacturing line consisting of machines and their
associated buffers. These buffers hold goods that are waiting for the next operation. Each
production unit starts in the buffer for machine one, and must go through each production step
sequentially before a finished good is placed in the final buffer. We assume that workers cannot
combine their efforts on one machine or production step.

The time required to complete a production step varies from machine to machine. For
this reason, manning each machine with a worker results in an unbalanced line. That is, a fast
machine at the front of the line can tend to build large buffers of work-in-process in front of
slower work stations, while such fast stations at the end of the line can be starved for work
awaiting product from slower machines. Instead, one can use fewer workers than machines in an
attempt to better balance the line. Workers can be trained on more than one production step so
that faster machines are operated less frequently than slower machines during the production
cycle. Such a group of workers which move from one machine to another during production are
an example of a flexible work group

If workers seldom move to new machines, excessive work-in-process can tend to build;
however, moving workers too frequently might incur excessive costs for worker movement and
machine set-up. In addition, the time required to complete a production step may be dependent
on the worker operating the machine; complicating the coordination of the group.
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Apparel manufacturing is an example of labor-intensive production. The machines are

expensive, and thus the firm must use multiple workers on a production line. The skills required

for the various production steps are similar enough that cross-training workers on multiple

operations is successful. The industry has been pushed to lower their work-in-process, and

flexible work groups are used to better balance the production lines and shorten the production

cycle. Some apparel manufacturers specially train their workers and design their machines so

that single unit batches can effectively be used as workers move from one machine to another

after every production step is completed. Other manufacturers use larger batches, build more

work-in-process, and move workers in the group less frequently.

We examine how best to coordinate the efforts of a flexible work group. How many

workers should be used on a given production line, and how should their movement be

scheduled? How much production capacity is gained by adding one more worker? Which

workers should one choose for a given line and which machines should each operate? Is a

complex algorithm to schedule workers necessary or can a simple scheduling algorithm perform

just as well? This section addresses these and related questions.

Buf1 MachI Buf2 Mach2 Buf3 Mach3 Buf4 Mach4 Buf5

Figure 1. A four machine production line with asynchronous product transfer. Buffer 1 holds
raw material and Buffer 5 holds finished goods.

3.2 Production Lines

We call each instance of the product an item. The average production rate of a
production line is the number of items that have completed production divided by the time

elapsed. We measure the effectiveness of our production lines by the average production rate.
Accordingly we assume that there is no shortage of items to begin processing nor of space to put
completed items.

Let the processing time of work station j be pj, and let P = ý:Pi be the total work content
i

of the product. A line with n workers can produce, on average, no more than one item every P/n
time units, a production rate of n/P items per time unit. If a line produces at a rate of n/P we say

6



that it is balanced because each worker, on average, contributes an equal amount of time P/n on

each item produced.

Since only one worker can operate a work station at a time, the line cannot produce items

any faster than the processing rate or any single work station. Thus the production rate can be no
larger than 1/pmax where pmax is the longest processing time on any work station. We call this
work station with the largest pj the bottleneck work station, since its processing rate can restrict

the production rate of the entire production line.

Figure 2 shows the production line where the work content of the product is depicted as a
horizontal line of length P, and individual work stations correspond to intervals of the line.

Figure 3 is a "displacement diagram" of the production line, where the Work content of the
product is again depicted as a horizontal line of length P. The diagram also shows the relative

position of each worker at a particular instant in time. Since only one worker can operate a work
station at a time, only one worker can be depicted on the displacement diagram within the
interval of any given work station. Initially we assume that processing times are deterministic

and independent of the worker, so that during production each worker can be imagined to move

along the line of work content at the same uniform speed.

Figure 2. The production line depicted as a line of length P. Each work station corresponds to
an interval of the line.

L Ila g,4 g- 2

Figure 3. The displacement diagram with 4 workers. The gi are the gaps between successive
workers.

A worker's predecessor on the production line is the closest worker who is nearer the

start of the line. If no other worker is nearer the start of the line, his predecessor is the worker
nearest the end of the line. A worker's successor on the production line is the closest worker who

is nearer the end of the line. If no other worker is nearer the end of the line, his successor is the
worker nearest the start of the line.

7



We call the length of the interval of work content between worker i and his successor a

gap and let gi denote the length of this gap measured in units of processing time.

n
Lemma 1 j.gj = P throughout production.

i=i

Proof: The gaps always form a partition of the work content. '-

3.3 Centralized Control of Worker-Machine Reassignments

We consider centralized rules for making synchronous worker-machine reassignments in

which the worker reassignments are made at predetermined times. Two variations of this model

are considered-in the single time period or 1-period model the worker-machine assignment is

fixed throughout the entire production cycle; in the multiperiod or T-period model the worker-
machine assignments can change at the start of each of T time periods.

3.3.1 Latency Time

Consider a six-machine 1-period model in which each machine with its worker

assignment can process a unit every 10 seconds. The time to handle the unit before and after

production is considered negligible or included in the production times. The first unit is

produced after one minute. In the course of a production day, the initial delay time or latency for

the first unit to complete production is negligible. Thus to simplify throughput calculations we

ignore the latency time of the first unit through the line. For T-period models we ignore the

latency time of the first unit at the start of each time period. This will not introduce significant

inaccuracies as long as the length of each time period is much greater than the latency time.

3.3.2 I-Period Worker Assignments

Consider the problem of assigning n workers to n machines in a 1-period model. The

throughput of the production line is equal to the production rate of the slowest operation on the

line. Thus we seek to find a worker assignment that maximizes the minimum production rate

over all operations. Such an optimization problem is known as the "bottleneck matching"

problem. A simple approach to solving the bottleneck matching problem is to solve a series of

regular matching problems. We first attempt to find a feasible matching using only the largest

production assignments of worker to machines. We continue to allow smaller and smaller

production assignments until each machine can be assigned a worker. The resulting assignment

is optimal for the 1-period model. The above approach is illustrative, but much more efficient

procedures have been developed (see Chvatal, 1983 and Lawler, 1976).

8



mac•in es

1 2 3
a- 10 20 30

workers b- 10 20 39
C-1 100 100 100

Figure 4. Worker Rates for 3 worker 3 machine problem

Figure 4 shows the number of units each worker can produce per hour for a 3 worker-3
machine instance. A solution to the bottleneck assignment assigns worker c to machine 1, b to 2,

and a to 3, yielding a throughput of 20 units/hour.

3.4 T-Period Worker Reassignments

Reassigning workers throughout the production cycle can improve throughput over the
fixed assignment-in fact we show that the throughput can be improved by an arbitrary amount.
A flow model is also given that efficiently determines the throughput of a T-period assignment.

3.4.1 Improving Throughput With a T-Period Assignment Model

Figure 5 shows a 3 worker-3 machine instance where the rate of worker c is denoted by
any arbitrarily large constant M, i.e., worker 3 is much faster than the other workers on the line.

Consider a production cycle composed of 3 time periods, each time period of length one hour.

Workers are only permitted to be reassigned at the start of each one hour time period. In this

instance it is clear that throughput is maximized by spreading worker c over each machine. An

optimal schedule is shown in Figure 6. Note how the fast worker c starts at machine 1 and then
moves to machines 2 and 3 respectively. The successive reassignments allow the fast worker c to

move the bulk of the units through the production line.

machines
1 2 3

a.. 1 1 1
workers b.- I I I

c-1 M M M

Figure 5. Worker Rates for 3 worker 3 machine problem

machines
1 2 3

3- a b c
time periods 2- a c b

14 c a b

Figure 6. Optimal Worker Assignments
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Figure 7 indicates the potential production capacity of each machine in each time period
according to the worker rates specified by the optimal worker assignments of Figure 6. In this
instance each machine is able to produce up to its capacity in each time period, and thus Figure 7

also shows the actual production flow of units. This production flow achieves a total production
of M + 2 units for the 3 hour production cycle. A solution of the bottleneck assignment for the

1-period model yields a production of only 3 units for the 3 hour production cycle. Thus it is

possible to get arbitrarily better production from a T-period model than the 1-period model.

macbin es
1 2 3
1 1 M

time periods 1 M M
1-- M 1 I

Figure 7 Optimal Worker Assignment Rates and Production Flows

3.4.2 Measuring Throughput in a Multiperiod Model

Given a worker-machine assignment in a T-period model, one can determine the
production of finished product by solving a maximum flow or "maxflow" problem (see Chvatal,

1983 and Nemhauser and Wolsey, 1988). The maxflow network has the structure shown in

Figure 8, on the next page.

4
T
I
M $ Figure 8. Maxflow for a 4 Machine-5 Period
E bf
E I• Model.

1 2 8 4
MACHINE8 •

pl : wl prooasod by nahl e In IP t
% : un In buffrI t ft opodt

A unit of flow on the horizontal arcs represents a unit of production on a given machine

in a given time period. The vertical arcs represent units that remain in the buffer of a machine
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from one time period to the next. The capacity of a given horizontal arc corresponds to the
production capacity of that machine for that time period. The capacity of such a machine is
determined by the worker assigned to that machine in that time period. The capacities of vertical

arcs are those of the corresponding buffers. The flow in the network is modeled with buffer 1 in
time period 1 representing the source node and buffer n + I in the last time period being the sink

node. The maximum throughput is then determined by solving for the maxflow in this network.

The nodes represent buffers; horizontal arcs represent production; vertical arcs represent

work-in-process at the end of a planning period, the last time period being the sink node. The

maximum throughput is then determined by solving for the maxflow in this network.

3.5 A Heuristic for T-Period Worker Reassignments

We present a heuristic for multiperiod models in which the buffer capacity is effectively

infinite.

3.5.1 Maxflow-Matching Heuristic

In the maxflow model for measuring throughput, various schedules or worker-machine

assignments over time affect only the capacities on the horizontal or machine production arcs of
the maxflow. Our optimization problem is to find a worker schedule that creates the horizontal

arc capacities in the maxflow model that allow the largest flow. We present a heuristic that

iterates between solving the maxflow problem and finding an improved worker assignment.

3.5.2 Minimum Cuts in the Maxflow Graph

cut

4
T
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Figure 9. A Cut in a Maxflow Graph
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An optimal solution to the maxflow problem also determines a minimum cut in the graph
(see Chvatal, 1983 and Nemhauser and Wolsey, 1990). Figure 9 shows an example of a cut in a
maxflow graph. When such a cut is of minimum capacity it provides some useful information to
both a manager of the production line and to one seeking optimal worker schedules. The min
cut defines a set of edges, machine-time period pairs, that form the bottleneck of the production
line; that is, the capacity of at least one of the edges in the min cut must be increased if the
production cycle is to produce any additional units within the production horizon T. For
example, if the cut shown in Figure 9 is a minimum cut then it indicates that additional capacity
on machine 4 in any time period will not improve the throughput of the line. In particular the
throughput will not be improved unless the capacity of machine 3 in time periods 4 or 5,
machine 2 in time periods 2 or 3, or machine 1 in time period 1 is increased. One should note

that throughput is not guaranteed to improve if such capacities are increased, but that the
throughput will definitely not improve unless the aggregate capacity of this particular set of arcs
is increased. We are not assured of an improvement in throughput with an increase in the
capacity of the min cut because multiple min cuts of the same aggregate capacity may exist.

In the uncapacitated model minimum cuts have a special structure. As the time period
increases the machine number in the cut will monotonically increase. This is because one cannot
have an infinite capacity vertical arc in the minimum cut, which is the case if the cut "doubled
back". Thus we conclude the following.

Theorem For the uncapacitated T-period model the production bottleneck machine will
remain the same or move down the production line as the time period increases.

Proof: Suppose on the contrary that machines a and b are the bottleneck machines in
time periods t + 1 and t respectively, a < b Thus the capacity of the min cut includes the
capacity of the vertical arc representing the buffer of machine a + 1 into time period t + 1. Since
the model is uncapacitated this implies that the capacity of the min cut is infinite. But since all
machine capacities in all time periods are finite a cut of finite capacity is achieved by a simple
vertical cut through any machine in all time periods.

3.5.3 A Maxflow-Matching Iteration

Consider any worker schedule. After solving the maxflow problem we have isolate a
minimum cut whose capacity C equals that of the total production of the line. We want to find a
new worker-machine assignment that makes the minimum capacity of all cuts greater than C. If
we are successful in finding such a reassignment then the throughput will improve. The
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heuristic attempts to find such a reassignment by focusing its search on one time period at a
time.

Consider any single time period t in which we seek a worker reassignment that will

improve throughpuL To do this we need to know the impact of a reassignment for each machine

j in time period t; that is, we must understand the effect of a worker assignment in time t on the

cuts of the maxflow graph. We first remove the assignments for time t and then determine the

minimum capacity cut through each machine or horizontal arc for time period t - denoting the

capacity of such a min cut though machine j as cjt. Thus we now know that the throughput will

improve if the capacity we assign to each machine j in time period t plus the value cjt exceeds

We can easily look for the existence of such a reassignment for time t by looking for a

bipartite matching in a graph with nodes corresponding to workers matched with nodes for each

machine. An arc is included from a given worker to a machine j if and only if the resulting

capacity of the assignment plus cjt exceeds C.

Thus we now just look for any feasible matching in this bipartite graph for time period t

if one is found an improvement in throughput will result. If a matching is not found then we are

assured that there is no possible reassignment of workers in just time period t that can improve

throughput. We then can repeat the procedure for other time periods. After no more

improvements can be found for any time period the heuristic terminates. Such a procedure is not

guaranteed to be optimal, since an improvement in throughput may be obtainable by changing

the assignments simultaneously in more than one time period. A more formal presentation of

the algorithm is given in Figure 10.

To calculate each cjt we solve a maxflow with each machine's capacity in time period t

set to infinity, except for that of machine j, which we set to zero. The resulting maxflow yields

the value cjt"

To update the capacity of the min cut we could resolve the maxflow with the new

assignment from the matching. A more efficient procedure takes the minimum over all machines

at time T of cyt plus the capacity of the new assignment for machine j.
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Let rii = Capacity of Worker i on Machine j for one period; Make any Initial Worker

Assignment or Null Assignment; Solve Maxflow, SET C = Capacity of Min Cut;

SET t =1;

WHILE t • NumberofTimePeriods DO SET Assignment of Workers at Time t to

Null Assignment;

FOR j = I to Number ofMachines DO

SET cij = Min Cut Capacity Through Machine j at time t;

ENDFOR

Create Bipartite (WORKER)x(MACHINE) Matching;

Include Edge(i, J) if and only if rii + cit > C;

IF Feasible Matching Found THEN

Update Assignment for Time Period t with Matching;

Update C = Capacity of Min Cut;

I SET t = 1;

I ELSE

SET t = t+ 1;

ENDIF

ENDDWHILE

Figure 10. Maxflow-Matching Heuristic.
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3.5.4 A Sample Problem

Figure 11 shows the rate matrix for an hour of production for an 8 worker-8 machine

instance.
machines

_ _ _ 1 2 3 4 56 7 8
10 10 10 10 10 10 10 10
1 4 3 8 0 22 10 11
8 8 9 1 1 3 3 4

workers 12 13 0 11 11 16 12 0
3 2 9 2 5 6 9 1
1 25 3 1 3 4 7 1
1 0 1 2 5 6 1 1

_ 12 1 0 11 5 16 1 1
Figure 11. Worker Rates for 8 worker 8 machine Example

The heuristic was implemented on this sample problem using 10 one-hour time periods.

The results are shown in Figure 12. The straight line shows the throughput over time achieved

by the optimal bottleneck solution for the 1-period or fixed worker assignment problem. If we
instead allow workers to change assignments in a 10-period model we achieve superior results
by the end of the production cycle. It is interesting to note that the T-period assignment was not
always superior to the 1-period model until later in the production cycle. This is because the T-
period model was able to utilize its buffers and, in effect, could position itself for greater

throughput later in the cycle.

4.0 Production Lines That Balance Themselves

4.1 Introduction

Traditional means of organizing a production line, such as a classical assembly line, are

inflexible. In a classical assembly line, workers are assigned fixed work stations and the station
with the greatest work content determines the production rate. Realistically, there are only two
ways to change the production rate: either change the number of shifts, or else redistribute the

tasks, tools, and parts over different stations. The first allows only coarse adjustments and the
second is expensive and disruptive. This inflexibility is partly due to the way in which traditional

production is organized, where a centralized authority designs a globally coordinated pattern of

material movement and task execution that is then rigidly followed by all workers.
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It is particularly important that production systems be flexible when products have

extreme seasonalities or short life-cycles, such as in the apparel industry. To increase flexibility

of production, there has recently been introduced into the apparel industry a variation of the

assembly line in which there are fewer workers than stations and workers walk to adjacent

stations to continue work on an item. Control of the line is decentralized: each worker

independently follows a simple rule that determines what to do next. This idea has been

commercialized by Aisin Seiki Co., Ltd., a subsidiary of Toyota, and named the "Toyota Sewn

Products Management System," or TSS1. It is marketed in the western hemisphere by Americas

21st

We shall prove that, when a TSS line is configured as a "pull" system, then, during the

natural operation of the line, the work content of the product will be spontaneously reallocated

among the workers to balance the line without conscious intention or management intervention.

Furthermore, when no station has "too much" work, then the line achieves the highest production

rate possible for the given workers. This capacity for self-organization allows management to

fine-tune the production rate by simply changing the number of workers on the line, which in

turn elicits a spontaneous reallocation of work.

4.2 Decentralized Control of a Production Line

Call each instance of the product an item and consider a flow line in which each item

requires identical processing on the same sequence of m work stations, as in Figure 13. A station

can process at most one item at a time, and exactly one worker is required to accomplish the

processing. (This type of line is typical of the apparel industry, where each work station is

generally a sophisticated sewing machine through which an item must be guided by a single

worker.) M, FM
Figure 13. A simple flow line in which each item requires identical processing on the

same sequence of work stations.

A registered trademark of Aisin Seiki Co., Ltd.
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We assume that each item requires the same total amount of processing, according to

some work standard, and we normalize that total to one "time unit." Let the processing

requirement at station j be pj, a fixed percentage of the total standard work content of the

product. For convenience, define Po = 0.

Unlike most other production models, ours includes specific representation of the human

workers on the production line. Our model formalizes the notion that some workers are faster

than others: The skill of cach worker is summarized by his "velocity" vi > 0, where the time it

takes worker i to complete the work at station j is Pj/vi.

Of course this model is not perfect (no model of people is likely to be). The obvious

weakness is the assumption that the velocity of each worker is uniform over all tasks. (For

example, this assumption is grossly violated at robotic machines on which a worker simply loads

the item for processing and then removes it when done, so the processing time at such a station

is largely independent of the attendant worker.) Nevertheless, each of the three production

managers we interviewed agreed that some workers are generally faster than others and that our

model was a reasonable approximation of this, especially if velocity is interpreted as a measure

not just of skill but also of vigor, motivation, and enthusiasm. The managers also pointed out

that this model seems natural in the apparel industry, where worker skill levels are monitored

and expressed as a percentage of work standards.

One way of evaluating the productive capacity of a line is by estimating its maximum

long-term average production rate during the manufacturing of a single product. In our modol,

no work-er can work at more than one station at a time so that worker i cannot produce more than

vi items per time unit; consequently no way of organizing the workers can achieve an average
n

production rate that exceeds P = Yvi items per time unit (where n is the number of workers);
i=1

and this rate is achievable only if no worker is ever blocked. We will show that, when properly

configured, a TSS line will spontaneously allocate work content among the workers to achieve

this ideal.

The TSS line functions as a sort of "bucket brigade" in which workers move down the

line, each devoted to a single item. When the last worker completes his item, ite releases it,

moves back up the line, and takes over the work of his predecessor, who in turn preempts his

predecessor, and so on until the first worker, after having been preempted, introduces a new item

to the line. This behavior is realized by requiring each worker to independently follow these

rules:
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I TSS Rule (forward part) Remain devoted to a single item, and process it on successive

work stations, queuing before a busy work station if necessary. If you complete processing the

item or if you are preempted by another worker, then release the item and begin to follow the
Backward Part.

TSS Rule (backward part) Walk back toward the beginning of the line until you

encounter an item. If necessary, preempt the worker with that item. Begin following the
Forward Part.

ILet the number of workers n and their velocities vi be fixed. Then the production rate of
a TSS line is determined by the sequence of the workers on the line (which by the logic of the

j TSS Rule remains fixed), and by the initial positions of the workers when production is begun.

It is difficult to visualize the behavior of workers on a TSS line because they operate

asynchronously. It is helpful to view the line as a dynanmic system (see, for example, Devaney,
1989). The state of the system at any time t is given by the vector of worker positions x(t) = (x1

Q(),.. ., xn(t)), where the position of worker i is expressed by the fraction x#{t) of work

completed on his item by time t, as illustrated in Figure 14.

xl x2  xn

I P 2 Pm
Figure 14. The standard work content of the product is represented as a line segment

normalized to length 1. The position of worker i is given by xi, the cumulative fraction of work
content completed on his item.

The state space of the system is a subset of the unit hypercube, as illustrated in Figure 15.
Note that x, -s x2 < < xn because the TSS Rule does not allow workers to pass one another. The
saw-toothed edge of the feasible region arises because no more than one worker can use a station
at a time.

The vector-valued function x(t) expresses the dynamics of the TSS system, but
unfortunately, x(t) is difficult to describe directly. Accordingly, we make an important modeling
assumption that is consistent with the real lines we have seen: that the time to walk back and
preempt a worker is small. Therefore we can imagine that when the last worker finishes an item,

I then-at the same instant-worker n preempts worker n-l, who preempts worker n-2,.. ., who
preempts worker 1, who introduces a new item into the system. We say that the line resets at
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such an instant, and we call the time between resets a phase. This simplification frees us from

worry about the details of x(t): We can restrict our attention to the sequence {x0 , x1, x2 ,... ) of

worker positions at those instants when the line resets 2. Continuing the metaphor of a dynamic

system, we call such a sequence the orbit of worker positions beginning at x°.

The duration of a phase is the time between successive completions of items and is

therefore the cycle time of the line. In a TSS line, successive cycle times can differ because

phases are not all of the same duration: If the position of the last worker at the beginning of

phase p is x . then phase p will be of duration (1 -x)v,.

Let xP be the positions of the workers at the start of phase p. Then by definition x1 = 0
k-I k

and for convenience we define x P, = 1. If xi e ( X pj, , pj) then worker i is busy at station k
j=O j=O

and, because workers are not allowed to share stations, there can be no other xi with a value in

this interval. Let b(xi) and e(xi) be the cumulative fractions of work content at the beginning and

end of the station currently occupied by worker i. If worker i has just completed work at station
kI

k, so that xi = , pj then define b (xi) = e(xi) = xi.
j=O

The vector xP can be interpreted as suggesting an allocation of work, with the interval of

work content [Z ,x.,A ] assigned to worker i. Define the gap gi between worker i and i+1 as the

clock time required for worker i to complete his imputed allocation of work, as follows.

"I" (e(x,.)-xA,) (b(x,) - x;)1
pPImax 0 and Vi+i - if worker i+ l is not currently blocked.

IP 
Vi 

!•i+ 1 Vi

g:-=

m r -X if worker i+l is blocked.

I 2 Such a restriction is called a Poincare section of the dynamic system and is a standard technique for

analyzing complicated dynamics.
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X2

0 ZI

Figure 15 The phase space of a TSS line with two workers, whose positions are

given by (XI, X2 ), is that portion of the unit square on or above the saw-tooth
line. (The tick marks on the axes corespond to the partition of work among
the stations.)
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The first part of expression 1 consists of two terms: the first is the clock time required for
worker i to reach the position of his successor i+1 if worker i is not blocked; and the second term
is the delay if worker i is blocked, in which case i reaches i+l 's machine at time (b(xA,) - -4)vi+l
but i+I does not finish there until time (e(xi,) - xA)vi+l . The second part of expression 1 defines

the gap in "degenerate" cases, when several successive workers block each other.

For worker positions xP we say that gPis the corresponding (imputed) allocation of work.
Note that gp. = maxi Ig' ) would be the time between completed items if the line were operated

as a classical assembly line based on the imputed allocation of work. Accordingly, gA can be
interpreted as the imputed cycle time of the line with workers in positions 0. This interpretation

will be useful to us in evaluating the productivity of TSS lines.

4.3 TSS As a Pull System

In our model a TSS system has complicated piecewise-linear dynamics that depend on
the partition of work among the stations and the initial positions and velocities of the workers.
However, we can show that, when the line is configured as a "pull" system by sequencing the
workers from slowest to fastest, then the dynamics become dramatically simpler and very useful.

In fact, the line becomes self-organizing: the workers will spontaneously and without intention

space themselves so that the line produces at a constant rate. Moreover, if no station has "too
much" work, then the production rate is P, the maximum achievable under any organization of

the workers.

Let gO be the allocation of work corresponding to worker positions x0 . Then the orbit
(g }__ 'A of any initial vector of gaps converges to a unique allocation

Theorem 1 Let all workers be of distinct skill levels and sequenced from slowest to
fastest (v1. < .... <v.,,); then there exists a unique g* to which the successive allocations of
work converge, independently of the initial allocation of work.

Proof For convenience of the reader, we present the proof for a special case of our model

in which workers are allowed to share stations (but not to pass each other). Alternatively, this

may be seen as the limiting case of a process in which the number of stations is greatly increased
so that each is assigned a tiny portion of the work content. In this simplified model, when the
workers are sequenced from slowest to fastest, then no worker is ever blocked. This makes the

analysis considerably simpler, yet includes all of the main ideas from the more complicated

model.
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Because no worker is ever blocked, the imputed allocation of work of a line changes after

each phase as follows: gP*1 =gP,andfori=2,...,n,

= ((x+ viz.) - (X!", + vi- I g))/vi (2)

= (i/vi + (xe., + (G - vi.1/v)g (3)

(vil/vi)gi. + (1 - viil/vi)g , , (4)

where expression 4 follows from expression 1, the definition of gap. We can write these

equations as a linear system

gp+I = TgP,

where each row of the matrix T sums to 1 and, because vi-I < vi, each element Tij is in [0,1].

Therefore T can be viewed as the transition matrix of a Markov chain that, it is straightforward

to show, is irreducible and ergodic. Thus, by the fundamental theorem of Markov Chains, there

exists a unique g* such that, for any gO, limnk_-. TkgO = g* (see Ross, 1980, for example).

n1

Unfortunately, if at this stable configuration some workers are blocked, then the

maximum production rate might not be achieved. However, when no workers are blocked at the

stable configuration, then the production rate is P, the largest that can be achieved by any way of

organizing the given workers, even if one were to provide them with additional work stations.

Corollary 1 If the system is at a fixed point at which each worker finishes at his initial

station before the preceding worker attempts to use it, then

1. Worker i repeatedly executes the same interval of work content

L i- i 
1

IVj IVj
P I P

2. All workers invest the same work, as measured by the clock, in each item produced.

3. The production rate is P, the largest possible.
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Proof We find the value of g* by solving the system of equations Tg* = g*, and then use
the definition of gap to solve for x*. The other claims follow by simple algebra. 0l

Theorem 1 and its corollary may be interpreted as showing that, to configure a bucket
brigade from well to fire, one should put the fastest people close to the fire; then the people will,
without intention, space themselves to convey the greatest possible flow of water upon the fire.

Note that the hypotheses of the corollary are easy to check: Worker i will complete his
imputed allocation of work without being blocked if worker i+1 finishes at his initial station
before worker i reaches it; that is, if

(e(xi+l) - xi+l)IVi+l :5 (b(Xi+l) - xi..+l)[V..i+1,

1Vj j

where xi = hp I and xi+1 p=

Figures 16, 17, and 18 show the convergence of a system from three complementary
points of view. Figure 16 shows an example of how the movement of the workers stabilizes,
with the faster workers allocated more work; Figure 17 shows the convergence of the system
within the state space of worker positions; and Figure 18 shows the average production rate
converging to optimum. These simulations were generated by three workers of velocities v = (1,
2,3).

Our theorem suggests that, when configured as a pull system, the TSS line is robust in
several senses. First, it will rebalance itself after a one-time disruption; for example, when a
worker takes a break, the work content will be spontaneously reallocated among the remaining
workers. It will also continually rebalance itself in the presence of noise, such as small variance
in the time to complete a task. Furthermore, the line will rebalance itself to account for "drift,"

such as when workers tire and slow (as long as the workers remain sequenced from slowest to
fastest). Finally, the line is self-balancing without knowing the statistics of task times or even
worker velocities; all that is required is to know the relative velocities of the workers (who is
faster).

Not only is the TSS line robust, so is our model: If an actual production line is close to
our idealized model, then observed behavior will be close to predicted behavior. For example, if,
contrary to our assumption, the time to walk back and preempt a worker is non-zero but small,
then the TSS line will exhibit behavior close to that predicted by our model. Similarly, if one
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worker slows slightly so that he is no longer faster than the person behind him, then-as long as

the discrepancy is not great-the system remains close to optimum. Thus it might not matter that

details of our model are simplistic, as long as they are not egregiously false.

4.4 Complicated Behavior

Even when workers are sequenced other than form slowest to fastest, there is always a

stable allocation of work-however, the stable allocation might not be an attractor and so from an

arbitrary starting position the allocation of work might not stabilize. Instead, the system can be

trapped in highly complicated behavior patterns that are suboptimally productive.

Let f be the function, given implicitly by the TSS Rule, that maps xP to xp"

Lemma 1 The functionf is continuous.

Proof Let 4 and yf be two nearby alternative positions for worker i at the start of phase

p. Then by the logic of the TSS Rule, at the end of the phase, the alternative positions of worker

i can be no farther apart, so that after the line resets V+ 1 - y/i+•l < V - /i . Therefore, xP+! is

close to yP+l whenever 0 is close to yP.

Theorem 2. For any given sequence of the workers on the line, there exists a fixed point

x* such that if the workers start at positions x*, then (in the absence of perturbations) they will

reset to x* at the end of each phase.

Proof. We continuously extendfso that its domain is the entire closed n-cell defined by

0:< x, 5< <x 2 5 ... < xn < 1. To do this, make the natural extension to the TSS rule so that, if

more than one worker should be assigned to the same station, then the worker with the item

closest to completion (that is, greatest xi) has priority and the others must wait to use this station

until he has finished. (This extension is never necessary in practice; it is just a means of

satisfying the hypotheses of the theorem we ill invoke.) Now, sincefis continuous on an n-cell.

by Brower's Fixed Point Theoremf has a fixed point (Bollobas, 1990). Furthermore, this fixed

point must be within the natural domain off because, by the logic of the extended TSS rule a

point in the extended domain cannot remain fixed underf
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Eventual allocation of work

time
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Figure 16 A time-expanded view of a TSS production line with workers se-
quenced from slowest to fastest. The solid horizontal line represents the total
work content of the product and the solid circles represent the initial positions
of the workers. The zigzag vertical lines show how these positions change over
time and the rightmost spikes correspond to completed items. In this simulation
the system quickly stabilized so that each worker repeatedly executes the same
(optimal) portion of work content of the product.
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X3

0 X2

Figure 17 The positions of the workers on the production line at successive
instants when it resets. (Since the position of the first worker is always 0 when
the line resets, only (x2 ,x3), the positions of the second and third workers, are
plotted here.) From any initial position the system converges. Here the fixed
point is (1/6,1/2).
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cumulative production

time

Figure 18 When workers are sequenced from slowest to fastest, the cycle time
converges to a unique value, independently of where the workers start on the
line. In this instance, as the system approaches its limiting configuration, no
worker is ever blocked; therefore the production rate approaches P = 6, the
maximum possible.
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Unfortunately, when workers are sequenced other that slowest to fastest, a fixed point
can be unsustainable in the real world. The difficulty is that, when workers are sequenced other

than from slowest to fastest, a fixed point can fail to be an attractor; moreover, the fixed point

can, perversely, be a repeller, so that if the system ever deviates, however slightly, from the
fixed point, then is must inexorably diverge from it (Devaney, 1989). In the real world, this
deviation must occur because the data that determine the fixed point are -ot knowable exactly,

and moreover, might change over time.

Figures 19 and 20 show a simulation in which the fixed point is a repeller and any orbit

that strays must eventually be trapped by a limit cycle with production rate less than that of the
fixed point. (This simulation was generated by three workers of velocities v = (3,2,1).) The

suboptimality results from the fact that a faster worker can be repeatedly blocked by a slower
worker, with consequent loss of production rate.

In other simulations we found instances of quite large cycles, some at the limits of the
numerical resolution of our computer and the patience of the observers. For example, when v =

(1.0,1.02,1.0) there is an attracting limit cycle of length 1159.

In simulations of a TSS line we also observed such phenomena as multiple fixed points

of differing production rates (for a fixed set and sequence of workers) and limit cycles that
depended on starting positions of the workers. Furthermore, even slight changes in the data

(distribution of work content over the stations, initial positions of the workers, and, especially,
values of the vi) could result in wildly varying behavior of the line.

In practice, repeated, complicated reallocation of work is not necessarily a problem if

each worker continues to visit the same subset of stations. Then it is possible that the only effect

is, for example, that a worker might preempt the sewing of a long seam at different spots in

successive resets. However, if the work allocations vary so that workers visit a changing set of

stations, then the line can become difficult to manage. For example, in simulations some workers

visited most of the stations while other colleagues were blocked by slower workers and visited

few stations.

To enforce manageability, some commercial TSS lines are set up with a metarule that

restricts each worker to a predetermined contiguous subset of stations. This has some (at least

theoretical) disadvantages: It can waste productivity by forcing a worker to be idle; it reduces the
flexibility of the line by making it more involved to add or remove workers; and it might not be

necessary if workers are sequenced from slowest to fastest.
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0 X 2

Figure 19 The positions of the workers on the production line at successive
instants when it resets. In this instance the fixed point (1/2,2/3), indicated by
*, is optimal, but a repeller; and any orbit that strays from it will be trapped by
the attracting but suboptimal limit cycle consisting of the points (3/15,7/15),
(7/15,7/15), (11/15,11/15), and (2/5,13/15), indicated by e's.
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cumulative production

time

Figure 20As the system is trapped by a limit cycle, the cycle time oscillates and
the average production rate converges to 60/11, which is less than the maximum
value of P = 6.
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More troubling than complicated behavior is anomalous behavior: When workers are

sequenced uther than from slowest to fastest, it can happen that the production rate can be
increased by slowing or even by removing a worker. For example consider the TSS line with p

= (1/2,1/4,1/4) and v = (2,1, 2). The production rate of this line increases if worker 3 slows to v3

= 1. The production rate will also increase if worker 2 is removed from the line. (The converse

behavior holds as well, in which adding a worker or speeding up a worker causes the production
rate to fall.)

We emphasize tha. ..,ne of this complicated or anomalous behavior pertains when
workers are sequenced from slowest to fastest. Using the above arguments we can state the

following theorem.

Theorem 3 When a TSS line is configured as a pull system, the production rate can

never be increased by slowing or removing a worker.

Incidentally, we have been told that commercial TSS lines are frequently configured with

the fastest workers at the very first and very last positions. If this actually increases the

production rate, we conjecture that it is due to psychological factors. Our model predicts no

benefits from putting a fast worker first on the line.

4.5 Related Work

There has been a wealth of work on production lines, far too much to survey here, but

most differs from ours in not modeling the worker explicitly. Generally the worker is simply
identifies with a work station the location of which remains fixed. Our model seems unusual in

that we treat workers as resources distinct from the stations at which they might work; moreover,
we model even individual workers by specifying their skill levels.

Ostolaza, McClain, and Thomas (1991) described assembly lines with some additional

flexibility: For each pair of adjacent work stationsj and j+l there is a shared task pj that may be

done at either station; furthermore, that decision can be made during production. Ostolaza et al.,

gave evidence that, if all processing times are exponentially distributed, then the line can

function effectively even if each station uses a simple rule to decide which of its waiting tasks to

perform next and whether to perform the shared task itself or to pass responsibility for it to the

following station. Their model was intended to be suggestive, since the distribution of task

times is chosen for tractability rather than plausibility.
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The production line described by Ostolaza et al., differs in several ways from the TSS

line. First, workers are identified with work stations and the line is balanced by clever
management of work-in-process inventory. In contrast, the workers on a TSS line move to
where the work is and so there is no work-in-process inventory beyond that in the hands of the

workers. Another difference is that the line of Ostolaza et al., does not allow tasks to be split
between work stations (workers), while the TSS line allows task preemption at any time. This
suggests that the line of Ostolaza et al., might be more appropriate where task preemption is very
costly and it is not too expensive to provide two sets of tools for each of the shared tasks. A TSS
line seems more appropriate when preemption is not costly and tools are expensive, as in the

apparel industry.

Even if preemption is costly, one can amortize preemption costs under TSS by
manufacturing batches rather than single items. By the logic of the TSS Rule there can be at
most n preemptions during the manufacture of a batch. Manufacturing batches of size k reduces

the per-unit preemption cost by a factor of k. Of course the savings in preemption costs must be
balanced against the cost of a k-fold increase in work-in-process inventory.

Schroer, et al., built a simulation model of a particular TSS line (Schroer, Wang, and
Ziemke, 1991). However, the point of their work was to demonstrate capabilities in object-
oriented simulation and so they did not pursue analysis of the TSS system. Instead they were
content to gather statistics and observe that the line seemed to work well. Our model predicts
analytically all of the statistics they gathered through simulation.
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4.6 Implementation of the TSS rules at the AMTC Demonstration Center

The TSS Rules were implemented at the AMTC demonstration center at Southern Tech

in the final phase of this project. In the first two experiments we wanted to observe how the

allocation of work changed with different allocations of workers to positions in the line. The

third experiment demonstrates how the production rate can depend on the number of units

handled at the same time by each worker. Seven operations were performed in the module for

assembly of milspec BDUs. Each worker started from the first operation on their first garment,

then operated under the TSS rules. The results of the experiments are presented below.

Experiment #1 (two workers on the line)

l-A: Workers arranged __> >
slowest fastest

Timings taken for each BDU were at the hand-off from the first to the second worker and

at the time the garment was finished. The two operators were able to complete 6 garments in 30

minutes.

.BDU number Hand.off Time* Finish Time*
I --- 10.55

2 8.28 11.46
3 2.997 8.333

4 6.02 9.58
5 3.856 9.14
6 5.18 9.14

* Times are in minutes.

Figure 21. Work allocation for 2 workers arranged slowest to fastest.

l-B: Workers arranged ___> >
fastest slowest

All other factors are the same as 1-A.

BDU number Hand-off Time Finish TimeI

1 --- 10.37
2 8.88 11.28
3 2.17 14.031
4 11.84 13.49
5 2.075 12.575
6 10.29 12.57

Figure 22. Work allocation for 2 workers arranged fastest to slowest.
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Observe that completion of six garments required considerably longer than 30 minutes in

this case. The problems arising were to be expected since the slowest worker was at the front of

the line. The fast worker spent a lot of time waiting to hand-off her garment before returning to

the beginning of the line to introduce a new unit. This is attributed not only to the inappropriate

arrangement of the workers, but also to the lack of experience of the slow worker on the

operations at the end of the line.

Experiment #2 (three workers on the line)

This experiment is exactly like #1, with the addition of a third worker.

2-A: Workers arranged > >___;
slowest fastest

BDU number IFirst Hand-off Timel Second Hand-off Time Finish Time*

I --- --- 12.22
2 --- 11.02 14.72
3 8.27 3.68 14.17
4 3.76 2.14 14.03
5 2.15 8.09 12.92
6 8.03 2.67 13.00
7 2.58 2.37 12.39

Figure 23. Work allocation for 3 workers arranged slowest to fastest.

2-B: Workers arranged _> >
fastest slowest

BDU number First Hand-off Time Second Hand-off Time Finish Time*

1 ...--- .9.99
2 --- .8.21 12.04
3 .6.03 4.16 11.50
4 3.99 1.61 9.99
5 1.70 4.27 10.22
6 4.29 4.27 12.25
7 4.26 3.64 10.35

Figure 24. Work allocation for 3 workers arranged fastest to slowest.
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Experiment #3

In all of these runs, three workers arranged >.
slowest fastest

The workers all begin at station 1 and introduce one, two, or three garments (in that order) in
each of the succeeding runs. This group of garments is moved along the line as a "unit."

3A. The unit is one (1) garment. Total production was 15.889 garments.
Max WIP = 3. 15 completed garments, 1 was 59.5% complete, and 1 was 29.4% complete.

3B. The unit is two (2) garments. Total production was 15.945 garments.
Max WIP = 6. 14 completed garments, 2 @ 59.5%, 1 @ 46.1% and 1 @ 29.4%.

3C. The unit is three (3) garments. Total production was 15.52 garments.

Max WIP = 9. 12 completed garments, 3 @ 71.6%, 2 @ 46.15%, 1 @ 29.4%, and 1 @ 15.6%.

There are two main points we see from these experiments that extend the current practice
of TSS. (1) It is apparently better to sequence workers from slowest to fastest. You get
spontaneous plus higher production rate. Interestingly, you can interpret this as placing the
bottleneck to production first on the line. This appears to contradict the traditional wisdom that
one should put the fastest worker first because "you can't get it out until you get it in;" but in
fact, since TSS is a "pull" system, you can't get it in until you get it out. (2) Despite claims by
Americas 21st, the size of a "unit" is an issue. They say a unit is one item. One might actually
get better production throughput by defining a unit to be more than one item. Of course, it is
possible to push this too far-, if a unit is large enough then you are back to the bundle system!

4.7 Conclusions

We have examined several TSS lines in operation, courtesy of Americas 21st. A typical
one, which produced trousers, was configured with three workers and seven stations. The
stations were arranged in a "U"-shape to reduce travel time of the workers. The total time for the
line to reset was 7-10 seconds, which was an order of magnitude less than the work at a station
(45-90 seconds) and two orders of magnitude less than the total work content of the product
(about 6 minutes). In light of this, it seems reasonable that our model assume instantaneous
resets.

The TSS line has many attractive properties. First, it is effective in that it can achieve

maximum production rate. The TSS Rule is simple, which makes it easy for the workers to learn.
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It is parsimonious in its data requirements, which are only the relative speeds of the workers (not
"even their values); and it does not require knowledge of task times. It is adaptive: The line

configures itself without management intervention. Finally, the TSS line has negligible work-in-
process inventory: one item for each worker.

A TSS line can also be implemented "on top of" a classical assembly line: First the tasks

are distributed over the stations, which will typically result in an imperfect allocation of work
among stations. This first allocation is static and unchanging. Then workers, sequenced from
slowest to fastest, follow the TSS rule on the line. A second allocation of work emerges, this
time among the workers. This second allocation is dynamic and self-correcting and it can
smooth over imperfections in the underlying static allocation.

There seem to be two main issues in configuring a TSS line. First, the workers should be

sequenced from slowest to fastest so that the line will be selfbalancing-then the allocation of
work will stabilize. Next, bottlenecks should be eliminated so that, after the line has balanced
itself, no workers are blocked- then the production rate will be P, the largest possible for any

way of organizing the given set of workers.

Stations early in the line are more likely to be bottlenecks to production because those
stations are staffed by the slower workers. The simplest way of avoiding bottlenecks is to move
work or stations with high work content toward the end of the line (insofar as allowed by

precedence constraints among the tasks). Toward the end of the line such stations will be staffed
by faster workers and so require less clock time. Alternatively, one could resort to standard fixes
such as replacing a bottleneck station with two new stations that partition the work of the

original.

Incidentally, in studying simulations of TSS we noticed some interesting behavior when

there were multiple bottleneck stations on a line on which workers had been sequenced from
slowest to fastest. If we eliminated the last bottleneck, then faster workers that would have

otherwise been blocked at this station were reallocated toward the front of the line. The earlier
stations were no longer bottlenecks when staffed by the faster workers. Thus reducing the work
at the last bottleneck eliminated all preceding bottlenecks. In our experiments the converse did

not hold.

At first glance it appears that a TSS line can be improved, or at least equaled by changing

the implementation slightly. For example, it seems natural to consider having the workers circle
through the work stations, so that after a worker finishes an item, he begins a new one at the
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work station. This avoids preemption altogether, but it requires that every worker be trained at

every task. Worse, such a line can sustain a production rate no greater than that of the slowest
worker, because all the others will eventually catch up to him and must queue behind him. This

cannot be fixed by allowing workers to preempt in the forward direction because a preempted
worker would have to remain idle until his work station became free again, and so the line could

not keep all workers busy.

Another variation of TSS that seems appealing at first glance but fails to work as well is
this: Each worker, when blocked, leaves his partially completed item in a buffer before the busy

station and then follows the backward part of the TSS Rule. Unfortunately, under this variation

workers tend to migrate to the region preceding a bottleneck station, where work-in-process
inventory accumulates. Furthermore, the resulting allocation of work is quite unbalanced and the

production rate suffers.

Finally, we mention that the following simplified model can be useful in estimating the
production rate or the appropriate number of workers for a TSS line. When all workers are of

almost the same skill level, then since the work standard can be rescaled, we can assume without
loss of generality that all vi - 1. In this case the maximum production rate of n workers is minIn,

l/pma) items per time unit; and it is straightforward to show that the TSS line achieves this rate
on average over each n consecutive items (after the first n). This expression for production rate
makes clear the effect of adding additional workers: both production rate and station utilization
increase proportionally with n until n Z l/Pma, at which point they increase no further.

5.0 The Virtual Manufacturing Enterprise

5.1 Introduction

A manufacturing enterprise is a system composed of components exhibiting significant

decentralized decision making and control. A Virtual Manufacturing Enterprise (VME) is a

network of functional modules implemented in software, where each module emulates some

component of the manufacturing enterprise. Using this concept, it is not incorrect to say that
each of the modules is a VME in itself. In this work we have constructed one such module for

the apparel manufacturing enterprise, a VME to model the flexible work group. This model is
very flexible and can be used to emulate the real time operation of a work group on the shop

floor.

Conventional wisdom says that manufacturing enterprises can only be studied in the

field. Such studies are very expensive and, as a result, often very limited. To determine a
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change to the system, the actual system must be changed. Since components cannot be isolated
and studied in a laboratory environment, it is very difficult to understand the interactions among

components. Also, it is impossible to field study conceptual systems which have not yet been
built. A major difficulty with studying a manufacturing enterprise in a laboratory is the
methodology for adequately emulating a field environment has not been developed.

This virtual manufacturing enterprise will provide more than the capability to simulate
the actual factory; the goal is to emulate the system. With each functional component modeled
in software, and each of these operating independently of the others, it will be possible to
dynamically interact with one or more processes which the remainder of the factory continues to
operate as normal. In a real industrial setting, this is how such an interruption would actually
transpire. If the automatic belt loop maker experienced a breakdown, it does not mean the entire
sewing room must shut down in order to deal with that problem. So will the VME operate.

The ability to study alternative configurations and design concepts for the FWG, and the

ability for real-time tracking of the system operation will be inherent to the design of the facility.
During the course of this project, the system developed models only a the emulation of modular
manufacturing. However, the system architecture will be designed and implemented so that later

expansion to a full-fledged factory emulator can be easily accomplished.

Our VME has such a large scale architecture. The system has the following abilities.

A. runs in either real time or simulated time, i.e., time must be scalable.

B. runs on a network, with pieces of the VME distributed throughout the network, and at

the same time all components being synchronized.

C. is independent of whether the pieces are real or software emulation.

D. allows different pieces to operate on different time scales (to allow studying some
part more carefully than others).

E. is recursive in design so that each piece can be composed of still more pieces (again

allowing us to model in more detail where needed).

In section 5.2 a detailed architectural description of the Flexible Work Group VME will
be given. Section 5.3 describes how to operate the VME.
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5.2 The VME Architecture

5.2.1 Description of Clses

In this section we describe the set of the classes in vmeclass.c. Literal names of
functions, variables, classes, etc., are boldfaced.

class slist

This is a simple class to implement a (one-way) linked list of void pointers. The idea is

to re-derive the class for whatever types you need, casting the void pointer to the appropriate

type. Operations include appending to the list, stepping to next node in the list, getting value of

the void pointer at a node, and deleting a node.

class node

This class implements a doubly linked circular list. Each node on the list has a name
(char array) and a type (enumerated type object.types) associated with it. Operations include
creating a node, adding or changing the type and name fields of a node, and searching the list for
a node with a certain name. The purpose of node is to act as a parent class for the simulation

objects and allow garbage collection; every object in the simulation is on the same node list.

class hash list

This class is derived from slist, thus it is a singly linked list. The void pointer in slist is

cast to a hash-node pointer, hash-node is a structure defined to have a char pointer and a void
pointer. The char pointer points at an exact string, used to index an entry in the list, and the
void pointer points at some information structure. hash-list, along with the class hash, is meant

to be re-derived for whatever kind of hash table is needed.

class hash
Implements an array of hash lists in order to support a full hash table. One routine,

newentry, adds a new entry consisting of an identification string and a pointer. newentry
hashes the string to get an index into the array of hash_lists. Then the string and pointer, stored

in a hash-node structure, are added to the end of the hash list. The routine find reverses this
operation; given a string, it will find the correct hashbnode structure and return the

corresponding information pointer.

class buffer table

Derived from the hash class, this implements a hash table of buffer pointers (see class

buffer).
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class cell table

Also derived from the hash class, this is a hash table of cell pointers (see class cell).

class eval-elem

This class is used in executing the simulation. Also, it is derived from slist; it supports a

singly linked list of cell pointers. The order of this list corresponds to the order in which the

simulation objects will be evaluated during a clock tick. Because of the discrete nature of time in
computer simulation, a true parallel simulation is difficult to achieve. Instead, the simulation

is evaluated one object at a time, in reverse order of the process flow.

I class executable
This class is derived from eval-elem, cell table, and buffer table. The constructor

builds an eval-elem list, analogous to compiling a program. The function iterate evaluates one

step (clock tick) in the simulation.

dam simulation clock

Keeps track of the time in the simulation. Has some hooks to support real time

simulations, but effectively this is just a counter.

I class screen image
This class holds and manipulates information about the image (Widget) corresponding to

a given simulation object, such as a buffer or a cell.

class buffer

I This class is used to specify connections between the cells. Objects awaiting processing

wait in an input buffer, and are put into an output buffer after being worked on. There is one

buffer between each pair of connected cells (one cell's output buffer is the next cell's input
buffer). A buffer has fields describing which cells it is connected to, what kind of items it holds

(the name of the items is in a char array), and how many items it holds (a long). On the screen,

a buffer is represented by a Widget that looks like a thermometer.

class buffer list
Derived from slist, this class implements a list of buffers. The idea is that a cell may have

several inputs and outputs, and a variable length list of buffer pointers is more robust than a

fixed array of input and output buffer pointers.
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class cell
A cell is the basic unit of the simulation. It roughly corresponds to a (real life) machine

or process. It maintains a list of input and output buffer, cell is not meant to be used in this

form, but to be a base class for machines with specific properties. During a time tick in the

simulation, a cell decides whether it is done with its current operation or not. If so, it puts its

contents into the appropriate output buffers and gets more items from its input buffers.

class sequential-machine

Derived from cell, this is the simplest notion of a machine. It takes in one kind of thing

from its input buffers, 'processes' the items for some number of time ticks, and puts the result

into its output buffers. It has fields to keep track of: how long it takes to do a process, how

many input items are needed, and how many items to put out when done. A real life example of

a sequential machine is a fabric cutter: one kind of input, fabric, and one kind of output, cut

fabric. The Widget for a sequential-machine is a sewing machine.

class spec list
Derived from slist, this implements a list of spec.node structures. Each spec.node

structure has text field and a buffer-list. This class is meant to be used with the heterogeneous

machine type, where several different types of input are allowed. Each spec.node structure will

correspond to a kind of input.

class hetero machine

This class is more complicated than the sequential machine, rather than taking only one

kind of input, a hetero machine can take several. A real life example would be a machine that

assembles skateboards. The input parts (wheels, trucks, deck) are different. At the end of the

operation, one kind of item comes out, an assembled skateboard.

class source

This is a derivative of sequentialmachine that has no input source is meant to start a

simulation (i.e., be the first cell in the simulation). The Widget for source is an arrow coming

up out of a hole.

class sink

This is also a derivative of sequential machine, and has no output. sink is meant to be

the last cell in a simulation. The pixmap for sink is an arrow pointing into a hole.
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class paraflelnmachine

This class is meant to model a passive machine or process where the number of items

operated on is large. A real life example would be chairs that have been painted. Any number

of chairs can be drying at the same time, and new chairs can be added at any time.

class process

This is a derivative of cells that supports both inputs and outputs. It contains a sub-level

of the simulation that the user can descend into. Once in the sub-level, users can create and

connect additional machines that will all have the process as their parent. Processes can

themselves contain processes and can be used to represent groups, departments, manufacturing

processes and generally any operation that requires more than one machine.

5.2.2 Description of Source Files

constant.h Include file with #defines for Widgets, i.e., each #define indexes a global

array of widgets. In the SUN version, this has been somewhat replaced by vmewidg.h.

structs.h Include file defining some structures for vme-chan.c.

vmeerror.c Implements a global error handler. Appends an error message to a file

hardcoded at the beginning of this module (currently, this file is "vmeerror.log"). The format of

the error call is:

error.handler(error..type level, char* format, ...)

where level can be MILD, SERIOUS, or FATAL (specified in the vmeconsts.h file).

The other arguments are a printf style format string and a variable number of arguments. An

example of a call to the error handler is:

error handler(SERIOUS, "bad argument: bee(% d)\n", i);

vneslist.c Methods for the slist class.

vine buff.c Methods for the buffer class.

vine ell.c Methods for class cell.

vmie chan.c More X Windows support code.
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vmecopy.c Functions to make a copy of a cell. These routines are used by the edit

code; when a cell is edited, a temporary copy is made so as to allow the user to cancel the edit.

When the 'apply' button is clicked, the temporary cell is copied back to the original.

vme-ctrl.c Supplies functions to hook in the "control software," i.e., user defined

functions.

vine eval.c This is an outdated module; at the present time it is empty.

vme-exec.c Methods for class executable. This class is used to 'compile' the simulation:

when the constructor is invoked, it constructs a linear list of cells, corresponding to the order in

which they should be evaluated during a time tick. (This is necessary because the simulation

engine does not support parallel operations -- there is a definite ordering). The list is constructed

based on a breadth first search of the cells, with buffers connecting cells, starting with the last

cell in the process (a sink cell).

vine hash.c Methods for the class hash list.

vine hete.c Methods for the class hetero machine.

vme htab.c Methods for class hash. Includes routines for hashing a string, searching

the hash list, and adding an entry to the hash list. Relies on routines defined in the module

vmeehash.c.

vme load.c Loads a simulation from a file. Recognizes files generated by vme-save.c

as well as free format user files. Contains a relatively sophisticated parser.

vme node.c Methods for class node, a circular doubly linked list. There should be one

node ring, corresponding to a simulation. Each node corresponds to a simulation object. The

ordering of the list has nothing to do with the simulation; this list is to allow global searches of
cells and buffers, and to facilitate garbage collection.

vmepara.c Contains methods for class parallel machine.

vine-save.c Saves a simulation to a file by generating definitions for each object and
connection in the simulation. Each simulation object has a function called
generate cellc definition (if the object is a cell) or generate buffer-definition. The string

returned by each of these calls is written to a file.
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vme scrn.c Associated with the class screen image, this module acts as an interface

between the simulation engine and the X Windows Widgets that you see on the screen.

vie_seqm.c Defines the methods for the class sequential-machine.

vme sink.c Methods for the sink class.

vme som'.c Methods for the source class. This is derived from the sequential machine

class, so it is a small module.

vine spec.c Methods for the specjlist class, used by the heterogeneous machine class.

vme widg.h See description of constant.h.

5.3 How to Operate the VME

5.3.1 A Sample Simulation

Examnle of a Simulation

This section describes the steps in creating and running a simulation via a simple
example. This example assumes that the simulation is created interactively, while running the
program, rather than by editing a ,siin file (.sim is the file suffix for simulation files). Also, the

descriptions of pulldown menus, etc. are not exact as there are some differences between the Vax
and Sun implementations. The user should be familiar with graphical user interfaces, i.e., know
how to open a menu or drag an item across the screen with the mouse.

The first step is to run the program; this is done by typing vine at the command line
prompt (for the VAX version, type run vine). A large empty window will pop up, with a GT

logo in the upper left hand comer and a row of menu buttons across the top of the window. The
buttons will read "File Edit Run Display Customize", in that order. Moving the mouse arrow

over one of these buttons and pressing the left mouse button will open that menu. From here on,
moving the mouse arrow over an item and pressing the left mouse button will be referred to as
dicking on that item. To select an item on a menu, click the menu button to open the menu,
holding the mouse button down, and move the mouse arrow down until it is over the selection

you want. The name of the selection will be highlighted; let go of the mouse button to select it.
You can quit the program at any time by opening the File menu and selecting Quit.
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We'll start out with a very simple simulation with just 3 elements: a source, a sink, and a
sequential machine. Sources and sinks are used to define the beginning and the end of a

simulation and usually don't have a physical analog. Though there are three elements in the
simulation, only the sequential machine corresponds to a real life machine. In this case, the
sequential machine will represent a sewing machine.

Since we are starting with an empty simulation, the first step is to create the needed cells.
The source, sink and sequential machine mentioned previously are all examples of cells.
Connections between cells are called buffers, and will always appear as a vertical bar graph in a
box.

The edit menu allows the user to create, delete, and edit cells in the simulation. We will

create the three cells by using the create entry of the edit menu three times. Go ahead and select
it now; a window will pop up allowing the user to select the kind of cell and the name. Type
"1"start" in the name field at the top of the new window; this is the name of the cell we are
creating. Select a source cell from the machine type list with the mouse by moving th mouse

I arrow over the text that says source and pressing the left mouse button. The text will now be
highlighted; click the Okay button to actually create the cell and close the window. Generally,
wherever an Okay button appears, there is also a Cancel button. If you make a mistake or

change your mind about something (and this is true for any of the popup windows in the
simulation), click the Cancel button to tell the program to "forget about it." Now a start icon will
annex in the upper left comer of the screen. Move the icon to the middle left of the screen by
dragging it with the mouse: move the mouse arrow over the icon, press the left mouse button

I down and hold it (the arrow will turn into a small hand), and move the hand to where you want
to put the icon. Let go of the left mouse button to complete the move. Now create a sequentialI machine cell and name it sewing machine, dragging it to the center of the screen after you have
created it. Also create a sink cell and name it end, and drag that to the middle right of the

I screen.

The next step is to specify the connections between the cells. Move the mouse cursor so

that it is over the middle machine and click the left mouse button once. The sequential machine
icon will be highlighted. Select the edit entry of the edit menu. A large edit window will pop

j up. Click the add button below the input from list at the lower left comer of the window. The
new input menu will pop up. Type the name of the connection in the name field - call it cloth.
Then use the mouse to select the entry on the list labeled start (the list is the cells available to

connect to). When start is highlighted, click on the Okay button to close the window and

implement the change. Click the mouse on the quantity field, below the word Quantity, next to
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the input list. The default value is -1; change it to 10. There is no need to hit return; if you do,

the simulation will make the change and close the window, just as the Okay button does. If you
do inadvertently close the edit window, you can just open it again using the edit selection. Now
click the add button below the output to list at the lower right comer of the edit window. A

menu very similar to the new input menu will pop up, only this one is to specify the output

connections. Type shirts for the name of the connection. Select end from the list and click the

Okay button. Click the mouse on the quantity field next to the output to list and change the

default setting to 10. At the top of the edit window, click on the production rate; change the
default value to 5. Now click on the Okay button at the bottom of the edit window. We have

specified the connections in the simulation, their capacities, and the rate at which the machine
labeled sewing machine works.

Now we need to specify the production rates for the other two machines in the simulation
start and end. Click on the start icon to highlight it, and select edit from the edit menu. An

edit menu will pop up. Notice that under the output to list, sewing machine is already

specified. Click on the production rate and change the default value to 10. Now click Okay to
make the change; the edit window will disappear. Click on the end icon to highlight it, and

again select edit from the edit menu. When the edit menu pops up, sewing machine will be on
the input list. Click on the production rate and change the default value to 10. Click the Okay
button.

Now we are ready to run the simulation. But first, it is always a good idea to save your

work. Click the file button and select the save entry. For the file name, type simplesim. Click

the Okay button or hit return to save the simulation and close the window. The file simple.sim

will look like the following.

# simple.sim cell definitions

sizewindow(xpos=600, y_.pos=500)

# "World Cell" is virtual.

sink(thruput=10,numin=l ,celljname="end",x_pos=505,y-.pos=205);

sequential-machine(thru-put-5,numn-in=l,numout=l ,cellnarne="sewing

machine",xpos=266,ypos=210);

source(thru-put= 10,num.out=5,ceUllname="start",x.pos=54,ypos=215);
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# Connections between cells

connect.output(fromf"sewing machine",to="end",what="shirt",capacity= 10);

connecLoutput(from= "start",to="sewing machine",what="cloth",capacity= 10);

Now we have to compile the simulation by selecting the reset entry on the run menu.

This is a necessary step before the first run during a session and after a cell has been added or
deleted from the simulation. It is analogous to compiling a program: if a change has been made,

the program needs to be recompiled. A status box will pop up when you select reset. Use the

mouse to drag it off to the side of the main window. Now the simulation is ready to run: select
the start entry from the run menu.

In running the simulation, the thing to watch is the buffers (they look like bar graphs or

thermometers). They will be 0% full when the simulation is first started. As the simulation
runs, and under our parameter values, we see the buffer between source and sequential machine

slowly fill up. The sewing machine can't keep up with the supply.

Now stop the simulation by clicking the stop entry of the run menu. Edit the sequential

machine cell (the middle one) and increase its work capacity by making the production field 10

rather than 5. We don't have to recompile the simulation because we have only edited a cell, not
added or deleted one. Run the simulation again. This time the buffer between start and sewing

machine stays near 0% full. Quit the simulation by selecting the quit menu.

vine load.c and -sim files

Vme_load.c is the source file for the routine that takes care of loading in a simulation.

Simulations are saved to files with a suffix of .sim. They can be created automatically by the

simulation, created by using a text editor, or a combination of the two. The file format of a .sim
file is purposefully made flexible to make it easy for the user to edit their own .sim files.

5.3.2 The Preprocessor

When a line of text from a .sim file is read in, several things happen. The line is
truncated at the first # not in a quote (sandwiched between "'s). Anything after the # is taken to

be a comment. All whitespace characters (spaces, tabs, etc.) are stripped, and all upper case

characters are converted to lower case, except for quotes. The first occurrence of a "character

signals the beginning of a quote. All characters after that are ignored until the next ", which
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signals the end of the quote. The preprocessor will not change anything in quotes; it will pass it

through untouched. An example would be, given the line:

ConnectInput ( FROM="this", To = 'THAT!" ); # comment

The preprocessor would pass the following line to the parser:

connect_input(from="this",to="THAT! ");

Also, if the parser gets an argument it cannot match, or an error in the transition table, it
will throw away that line and try to restart on the next one.

5.3.3 Transition Table

The following transition table describes the pattern matching process that vme_load.c

goes through when it reads a line of text. The leftmost column describes the current state of the

parser. The top row describes the current token. The entry indexed by the state and the token is

the next state of the parser.

letter _ ( ) = number " other

Start I / I / / / / /

1 11 1 2 / / I / / /

2 13 / / / / / / / /

3 13 3 / / 4 / / / /

4 1/ / / / / 6 5a / /

5a 1 5a 5a 5a 5a 5a 5a 5b 5a 5a

5b I / / End / / / 2 /

6 1/ / / End / 6 / 2 /

End I / / / / / / / /

Start = wait until prefix is seen
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1- get prefix name, quit when a ( is seen

2 = wait for argument

3 = kind of argument, quit on = sign

4 = decide whether quote or number

5a/5b = quote

6 = number

End = end of this line

/ = not an allowed transition

5.3.4 Format of an Input Line

A typical line in a .sirm file is:

sequential-machine(thin.put=5, num-in=l, num-out=l,

cellname= "sewing machine", x-pos=266, y-pos=210);

The first text, sequential. machine, describes what is being created. It is called a prefix.

Given a prefix, the general form of a line is

prefix(argl = value, arg2 = value,...)

Allowed prefixes are:

connectoutput connect-input

sequentialmachine sink

source parallel.machine

heteromachine sizewindow

process-machine

Connect-output and connect input create buffer connections between cells.

Size_window specifies the size of the main window. If the new size is smaller than the default
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size, the request is ignored. The other prefixes create cells of the same names (i.e., source creates

a source cell). Allowed arguments are

from to what

cellname thru-put numin

num-out xpos y-.pos

capacity

The arguments from, to, what, and cell_name all expect strings.

i.e.,

from = "Kalamazoo"

The other arguments expect numbers, i.e.,

x-pos = 237

If an argument is excluded, the parser will fill in a default value for it.

5.3.5 What the Arguments are For

from Text specifying who the predecessor of a current cell is, so a buffer connection
can be made between current cell's input, and from cell's output.

to Text specifying which cell comes next, so current cell's output can be connected
to the to cell's input.

what When specifying a buffer connection, the what argument tells what the buffer

will hold.

cell name Text name of a cell.

thru.put Throughput for a cell.

num.in Number of items processed at a time by a cell.

num out Number of items output by a cell when it is done processing.

51



x.Ios x co-ordinate, in pixels, of a cell. When used with sizewindow, it refers to

window width in pixels.

y.pos y co-ordinate, in pixels, of a cell. When used with sizewindow, it refers to

window height in pixels.

capacity Number of items a buffer can hold.

Not all argument types are relevant for all prefixes. In fact, the parser only allows certain

arguments for each prefix:

eM Allowed Ar=umens

connect-output from, to, what, capacity

connect-input from, to, what. capacity

sequential-machine cellnjame, thrutput, numjin, num-out, x-pos, y..pos

sink cell_name, thru._put, num-in, x-pos, y-pos

source cell.name, thn'u-put, num._out, x._pos, y.pos

parallel-machine cell-name, thru.put, x-pos, ypos

hetero machine cell_name, thru...put

sizewindow x_pos, ypos

processmachine cell-name, num in, num..out, x.pos, y-pos

5.3.6 A Quick Glossary of Terms

Cell - In the simulation, a cell corresponds to some sort of real life machine, for example

a sewing machine or a cloth cutting machine.

Buffer - A buffer corresponds to anything in between two cells. In real life, this could

be a conveyor belt, or simply pieces of fabric stacked on the floor.

Node - This can refer either generically to a member of a list, or to the class. When

referring to the class, node will be boldfaced.
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Simulation Engine - The part of the program that actually runs the simulation. For all

practical purposes, this is the set of files with the prefix vine, i.e., vine cell.c.

Simulation Object - Anything you see on the screen is a simulation object. Things that

look like sewing machines or trucks, for example, are cells. The bar graphs, or thermometers,

are buffers.

Widget - The X-windows name for any of the objects you see on the screen. Each cell

and buffer has an associated Widget, the Widget being the graphic representation (for instance

the Widget for a sequential machine looks like a sewing machine).

5.4. The VME Completion

The VME described above, essentially presents only the user interface for the modular

simulation. No operational rules were incorporated into the simulation, particularly the TSS

rules. During the final phase of the project difficulties in maintaining our programming

personnel sent us on a search for an efficient way to finish the VME. This search led us to a

company called Imagine That! which produces a powerful and flexible simulation software

product called Extend. In addition, this company has a module designed especially for

manufacturing which accompanies Extend. Amazingly, Extend is designed and operates in

almost the exact manner of our VME design, including a graphical, animated user interface, and

hooks which allow I/O from the real components of the manufacturing enterprise. This package
was acquired from Imagine That! and in a brief period of time we were able to finish the VME.

Our simulation program incorporating the TSS rules is available to anyone who has access to a
Macintosh computer and the Extend software.

6.0 Deliverable Demonstrations of the TSS line

6.1 Demonstration at the GTRI AAMTD site

The project team has been very impressed with the work Ms. Carol Ring has done at the

demonstration center at Southern Tech in setting up a modular line and training the operators to

work on this line in a very productive manner. She has experimented with various groups of

sewing stations, various arrangements of the sewing stations, and various garments to be sewn in

the line. Her initial work was managed solely by herself, with only unintrusive supervision by

Mr. Bill Cameron.

We proposed to Carol the idea of implementing the TSS rules in her line. She was sure it

wouldn't work since the line had been set up as "push" line. However, she agreed to retrain the
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operators and assist with the experimentation we described in Section 4. After seeing the TSS

line in operation, Carol has become an enthusiastic believer in the TSS concept, and has

implemented the method on a full-time basis.

On March 18, 1993, the TSS line was part of a demonstration presented by the AMTC to

a group of Naval officers from Mantech.

6.2 Demonstration At An Apparel Manufacturing Site

A second demonstration of the VME was held on April 21, 1993, in Raleigh, North

Carolina, at Champion Products, Inc., Clayton Plant. We made contact with Champion Products

through America's 21st, who introduced Champion to the TSS concept. Champion makes

simple athletic apparel such as T-shirts and gym shorts. They will soon introduce their most

complicated product, a hooded sweatshirt. They are a division of Sarah Lee, which also own

Coach Leatherwear, which factory we visited previously.

Our hosts for the demonstration were Mr. Mitchell Johnson, Plant Manager, and Mr.

Tom Tanner, Division Training Manager. Both were very helpful, smart, and thoughtful.

Champion has about 50 TSS teams of 2-5 workers per team. This plant receives cut cloth from

another facility, then sews, and boxes the product. Labelling and packaging is done elsewhere at

the present time. Management's goal is to have 80% of their effort stable, 15% seasonal, and 5%

e intal/exceptional.

Champion continues to use some sit-down sewing, but they are trying to phase it out,

except for workers who have physical attributes which do not allow them to do stand-up sewing.

The sit-down sewing area is a jungle of power cords from the ceiling to the machines. There is a

big contrast with the TSS area.

Some characteristics of their system are given in the following paragraphs.

"* Direct labor represents only 6-8% of the value of a product.

" TSS uses simpler, less cxpensive, but more flexible machines. This means that TSS-

produced items have a higher percentage of direct labor, but the system is more robust

because it is not dependent on very expensive, highly productive, but vulnerable special

purpose machines.

"* Machine utilization is on the order of 10%! This is because of the average of 2.2

machines per worker. Under the bundle system they had 1.00002 machines per worker.

They admit that a large investment in capital is part of the price of a TSS system, but

claim that one more than makes it up in other ways.
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When Champion starts a team on a new product, they sew "in circles" until everyone has
experience at all stations. Then management and workers together decide the sequence

of workers. They do NOT define zones, (and may have been the ones to originally
thought of doing away with them).

"* At first, workers stayed within their zones because they wanted to concentrate only on

"their" work, not to avoid the work of others, but to specialize on what they were best at

(and consequently so they could make more money). Management had to require the

team to change the sequence occasionally to maintain cross-training. Without cross-

training, productivity crashed every time a new product was introduced or other changes

occurred.

". When first setting up TSS, Champion assigned the older and slower workers to the end

of the line since the work included inspection and packaging, which was thought to be

less demanding than sewing. Productivity took a nose-dive. They now try to put the

team leader at the end of the line (closer to the finished product). Their metaphor is that

the last worker is the "locomotive that pulls the tain."

There are certain incentives which Champion uses to promote the TSS system to their

operators.

"* Workers are not allowed to "clock out" when their machine is down. Instead it counts

against their productivity and pay. This gives workers an incentive to maintain the

equipment. The workers also apply considerable pressure on the repairman to come

running when something goes wrong. If the machine is not fixed within 15 minutes, it is

replaced. Champion maintains about $100,000 worth of backup machines.

"" Champion sells TSS as a healthier way of to sew. They claim that repetitive motion

injuries, such as carpal tunnel syndrome, are way down under TSS.

"" Management guarantees a certain base pay (in the neighborhood of ($5.50). They are

expected to earn about $6.25 by meeting standards (which increase each week over a six

week period). Each team can increase its base pay by earning up to four "flags," which

are awarded for 0 injuries, 100% quality, 100% attendance, and one other criterion.

Each worker of any team that has won all four flags during the preceding week gets an

addition $0.50 per hour.

"* Apparently under the bundle system there are a few superstars earning as much as $16.00

per hour, but with most far below that. Such disparity is not allowed under the TSS
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system because it means that something is out of balance. By giving the teams incentives

rather than individuals, balance is maintained.

Our impression of their operation is that they run the most effective of the TSS

operations we have seen so far. They are devoted to TSS, but have renamed it CSS for

Champion Sewing System. They think the main advantages of the TSS system over other unit

production systems are flexibility and teamwork.

7.0 Summary and Conclusions

In this project we have examined implementation methodologies for the modular

manufacturing concept in the apparel industry. We began by gathering background information
from the field and from the literature with regard to both the manufacture of apparel and the

notion of flexible work groups. We have taken two different views of how such a method could

be used, and carefully analyzed both. This work has shown that the idea of organizing the

manufacturing floor into teams of operators is more than just a modular, it can bring a great deal

of flexibility to the sewing room.

In the first view of flexible work groups, we looked at the traditional view of the modular

group: a small group of operators, some of whom are cross-trained on several operations in the

group and can move around in the group to alleviate bottlenecks. We examined how to best

coordinate the efforts of such a flexible work group. The solution method for this problem

involves a maxflow-matching heuristic. The maxflow portion allows us to find very good

throughput rates while the matching portion determines the dynamic worker assignments that

occur during the production cycle. All this can be done in real time so that supervisors could

learn to use a computerized decision support system which would have this methodology

imbedded.

In the second view of flexible work groups, we examined the organization and operation

of the line according to methods derived from a commercially marketed manufacturing method

known as TSS. We have shown that such a line is effective in achieving maximum production

rate, the TSS rule is simple for the operators to learn, data requirements are sparse in that only

relative speeds of the workers is needed, and that it is adaptive since the line configures itself

without management intervention.

Beyond the analytical work in this project, we also developed a tool that has proved

invaluable to our work. This tool is called a virtual manufacturing enterprise (VME). Although

the conceptual idea involves an entire manufacturing enterprise, including suppliers and
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distributors, our tool has been developed solely for the flexible work group. It consists of a set

of software modules which work together to emulate the actual functioning of a flexible work
group. This tool has provided many insights that have led to the results reported in this
document. The VME can be invaluable on the factory floor for the facility planners who are
concerned with productivity.

In conclusion, we have developed methods for implementing the modular concept which
are effective and are themselves flexible. We feel that we have accomplished our goal of adding
flexibility to the manufacture of apparel. Our work has provided simple and efficient means for
doing effectively what so many apparel manufacturers are struggling to do on the factory floor.
We look forward to implementing these ideas in actual factories.
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