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EXPLOITING STRUCTURAL SYMMETRY
IN A SPARSE PARTIAL PIVOTING CODE"

STANLEY C. EISENSTAT' axD JOSEPH W. H. LIU?

Abstract. This short communication shows how to take advantage of structural symmetry
to improve the performance of a class of partial pivoting codes for the LU factorization of large
sparse unsymmetric matrices. Experimental results demonstrate the effectiveriess of this technique
in reducing the overall factorization time.
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1. Introduction. Many implementations of sparse LU factorization with par-
tial pivoting compute the factors one row or column at a time. Each step involves
both symbolic operations (to determine the nonzero structure) and pumeric opera-
tions. With the development of fast floating-point hardware and vector processors.
the symbolic operations have come to represent a nontrivial fraction of the overall
factorization time. Thus any sizable reduction in this symbolic overhead would have
a significant impact.

The technique of symmetric reduction [4] exploits structural svmmetry to decrease
the amount of structural information required for the symbolic factorization of a sparse
unsymmetric matrix (i.e.. for obtaining the nonzero structures of the factor matrices).
This has the practical advantage of decreasing the run-time.

In this short communication, we show how to use symmetric reduction to im-
prove the performance of a class of partial pivoting codes for the LU factorization of
large sparse unsymmetric matrices, in particular. Sherman’s NSPFAC (a more recent
version of NSPIV (8]) and a code of Gilbert and Peierls {7]. For some problems the
speedup is more than a factor of two.

Notation. For an n x n matrix M and two sets [ and J of subscripts. we let
M denote the submatrix of M determined by the rows in [ and the columns in J.
As a special case. we let Af;, denote the submatrix of M determined by the rows in
I

We let G(M) denote the associated directed graph. Here edges are directed from
row to column: i.e., (r,c) is an edge in G{M) if and only if m,. is nonzero. We use

. A oy . .
the notation r —= c¢ to indicate the existence of an edge from r to ¢ in G(M), and
r <4 ¢ to indicate the existence of a path from r to c. We also adopt the conventic
that i =% i for any i.

2. Unsymmetric symbolic factorization. Let 4 be a sparse unsymmetr. -

n x n matrix that can be decomposed (without pivoting) inte L. U, where L is lowe Q‘K
triangular with unit diagonal and U is upper triangular. Let F denote the filled matr QQ == - -

~

L+U. O=
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254 TIMELY COMMUNICATION

Assume that we have determined the nonzero structures of the tirst k& — I rows of
Land U:ic., letting K = {1,....k=1}and K = {k..... n}. we know the structure
of

FK' =LK. “i’LfKu = ( LKK “) hal ( (Q[\'K lhI: \)

The following result relates the structures of the rows L., and {7, to the existence
of certain paths in G(Ug. ).
R R F oo 4 Up
THEOREM 2.1 (see [T])). k — i if and only of k —— m === for some m.
Thus. to determine the nonzero structure of Fi, = Li. + [&.. we can secarch
G(U «.) for nodes reachable from some node m for which agm #= 0.

3. Two sparse partial pivoting codes. We focus on two hplementations of
sparse LU factorization with partial pivoting: Shermaun’s NSPFAC {a descendant of
NSPIV 81) and Gilbert and Peierls’s code .77 (referred to here ax GP).

NSPFAC factors A by rows using column partial pivoting. While computing £;..
it represents the structure of the current. partiallv formed row oy an ordered. linked
list of subscripts corresponding to nonzero columnns. The linked list is initiahized to
the nonzero columns in Ag.. For each nonzero +,, (in increasing column order). the
structural and numeric updates from {/,. to Fy, are applied in a single loop. one
clement at a time. The numeric update involves two levels of indirection.

Gilbert and Peierls {7} observed that it is not necessary to apply the row updates
in increasing order —any order consistent with a topological order of G{Ux x| would
suffice. They also noted that a depth-first search of G(U'y.) starting from the nonzero
columns of A;. gives the nonzero structure of Fy.. and that a topological ordering
can be obtained as a byproduct. without additional work. Using this result. they
show that GP runs in time proportional to the number of floating-point operations.
a property not shared by other sparse partial pivoting codes.

In computing Fi..! GP first does a depth-first search to compute the structure
of Ly, (but not L',) as above. Then. for cach nonzero +, (in topological order). it
applies the structural updates from U;. to Ukx. and the numeric updates from L, to
Fi. in a single loop. one element at a time.

To estimate the time NSPFAC and GP spend in nonnumeric computations. we
wrote a sparse LU factorization code (called NF) that uses a predetermined pivot
sequence and precomputed factor structures.? Bv using the same pivot sequence and
factor structures as computed by NSPFAC or GP. we car, measure how much time
would be spent if the nonnumeric operations involving svmbolic factorization and
pivot selection were removed.

Table 2 gives the run-times® for ten problems from the Harwell -Boeing collection
[3]. For each test matrix A. the rows of the matrix were preordered by a minimum
degree ordering of 44", as suggested by George and Ng [5]. The results for the Sun
SparcStation/1 show that the nonnumeric overhead can exceed 50 percent. For thc

YAlthough GP computes the LU factorization by columns using row partial pivoting. to be
consistent we describe the Gilbert-Peierls approach by rows. In the numerical experiments. GP
factored A! rather than A.

INSPFAC scales rows by muitiplying by the reciprocal of the pivot: GP scales columns by dividing
by the pivot. To make the comparisons fair, we used two versions of NF.

3All programs were written in Fortran; use double-precision arithmetic: and were compiled with
optimization enabled (277 -0 (SC1.0 Fortran V1.4) on the SparcStation/ 1. x1f -0 (XL FORTRAN
Compiler /6000 Version 2.2) on the RS/6000).
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TABLE 1
Nonzeros in original and filled matrices.

Problem n nz(A) | nx{Fnsp) | nz{Fcp)
GEMATI11 4929 | 33185 79774 79757
JPWH991 991 6027 134741 131502
LNS3937 3937 { 253407 403017 403520
LNSP3937 3937 | 25407 383313 383340
MCFE 765 | 24382 68288 68288

ORANI678 2529 | 90158 262250 262365
ORSREG1 2205 | 14133 374957 374957
SAYLR4 3564 | 22316 624742 624742
SHERMAN3 {j 5005 | 20033 409475 409475
SHERMANS ;i 3312 | 20793 242556 242556

TABLE 2
Time {(1n seconds) for NSPFAC/GP and NF unth the same pwot seguence.

SparcStation/1 RS /6000 !

Problem NSP NF | GP NF NSP NF GP NF

GEMATI1 2.61 1.44 3.23 1.59 1.75 048 198 050
JPWH991 2979 1775 | 3254 1875 1953 5201 1897  5.10
LNS3937 68.58  39.76 | 73.79  42.86 || 43.27 1188 | 4502 12.38
LNSP3937 6334 3516 | 6542 3792 |l 3838 1058 | 3977 1098
MCFE 7.18 4.16 7.89 1.63 183 1.28 165 1.32
ORANI678 3217 1564 | 2941 1681 2182 487 ] 17.78  5.13
ORSREG!1 9243 5626 | 103.94 60.40 || 6023 1633 | 6220 17.33
SAYLR4 168.39 102.90 | 189.65 110.18 i 110.07 29.80 | 118.82 30.78
SHERMAN3 || 97.31 5860 | 10758 62.70 || 6288 17.10| 6518 17.32
SHERMANS || 4250 2601 | 4798 27884 2790 773 ] 2925 7.92

IBM RS/6000 Model 320. which has relatively faster (with respect to the speed of its
integer unit) floating-point hardware, the nonnumeric overhead can exceed 70 percent.

4. Symmetric reduction. Theorem 2.1 characterizes the nonzero structure of
Fy, in terms of the structure of A, and paths in the graph G(Ugk.). But by removing
from G(Ugk.) edges that are not needed to preserve the set of paths. a process called
transitive reduction [1], we can decrease the amount of searching required to determine
the structure.

If we remove all such redundant edges, then we get the elimination dag (directed
acyclic graph) (6], the minimal subgraph that preserves paths. However, if we remove
fewer redundant edges, we will still preserve the set of paths. The search time will
be larger than for the elimination dag, but the total time (including the time for the
reduction) may be less.

Symmetric reduction [4] is based on structural symmetry in the filled matrix F.
The symmetric reduction of G(U. ) is obtained by deleting all edges (i, m) for which
;i * u;j # 0 for some j < min{k,m}. In effect, all nonzeros to the right of the first
symmetric nonzero are deleted; if no such symmetric nonzero exists, then all nonzero
entries are kept. We denote the resulting symmetrically reduced matrix by Uk..

Figure 1 shows the structures of two partial factor matrices Fy, , and Fg, .,
where Ky = {1,2,3,4} and Ks = {1,2,3,4,5}. We use “e” to indicate a nonzero
entry in the original matrix, and “o” an entry that fills in. Since #4; * 14 is the only
symmetric nonzero pair in Fk, ., only the nonzeros to the right of u;4 are pruned
from Uk, . to get U Ke»- On the other hand, there are two more symmetric nonzero
pairs in Fi, ., {52 * 25 and €54 * ugs, so that nonzeros are pruned in rows 2 and 4 to

get st'..
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1 ¢ 0 . 1 .
2 e o ~ 2 o o
Freo = Ukqo =
. 3 o o -] 3 o = o
[ 4 o e o 4 o e o
1 e o . 1 .
2 * o 2 .
Fre..= ° 3 o o ° E’K.,.— 3 o o =
. 4§ o e o
e o o 5 o o 5 ¢ o

Fi1G. 1. An example to dlustrate symmetric reduction.

TaBLE 3
Narmalized time for the ortginal and two modified versions of NSPFAC/GP.

SparcStation/ 1 1IBM RS/6000
Problem NSP Red Mod|{ GP Red Mod || NSP Red Mod| GP Red Mod
GEMAT11 1.81 1.76 156 203 169 1641 365 250 2291396 264 250
JPWH991 1.68 1.27 109 {1.74 109 1094 376 158 1191372 1.24 121
LNS3937 1.72 130 1121172 1.12 1121 364 167 127364 1.36 133
LNSP3937 1.80 1.32 1.1211.73 1.14 1131 363 168 1291362 136 133
MCFE 1.73 139 1.21 /170 1.19 1.17 | 3.77 186 1.43 {352 142 1.38
ORANI678 206 1.79 1601]1.75 1.25 1.21 | 448 286 2511347 162 149
ORSREGI 164 1.27 107 |1.72 108 108|369 158 117359 120 1.18
SAYLR4 164 1.26 1071172 107 107 369 159 1201386 1.26 1.24
SHERMAN3 166 1.30 1.08 {172 109 108 { 368 159 1.18 1376 1.27 125
SHERMAN3S 163 126 1091172 1.11 1.11 4 361 163 123[369 133 128
Harmonic Mean || 1.73 1.37 1.17|1.75 116 1.15]] 3.75 1.78 137|368 140 1.36

Symmetric reduction preserves the set of paths in G{U) (see {4]). The argument
can be adapted to show that it also preserves the set of paths in G(Ux.). The following
result is an immediate corollary of this observation and Theorem 2.1.

COROLLARY 4.1. k =i if and only if k 2 m Z58 i for some m.

5. Numerical experiments. We incorporated symmetric reduction into NSP-
FAC and GP. In the process, we made a number of small modifications to the codes.
In NSPFAC, we split the innermost loop so that, when applying the update from
Uj. to Fi., we complete the structural update before performing the numeric update.
Furthermore, we removed one of the two levels of indirection from the numeric update.

In GP, we removed the structural update to Ui. from the innermost loop and
disabled the test for accidental cancellation, for otherwise symmetric reduction might
not preserve paths. Furthermore, we combined the symbolic computation of L. and
Uk. into a single depth-first search that computes the structure of Fj. using Corollary
4.1.

Table 3 presents the ratios of the run-times of the original and two modified ver-
sions of NSPFAC and GP to the corresponding NF using the same pivot sequence.
The versions labeled “Red” include only those changes needed to incorporate symmet-
ric reduction: the versions labeled “Mod” also include the changes that remove one
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level of indirection (NSPFAC) or combine the depth-first searches (GP). As in Table
2, the rows of each test matrix A were preordered by a minimum degree ordering on
AAL.

The results show a dramatic decrease in the overall factorization time. The re-
duction is more pronounced on the RS/6000 due to the relatively faster floating-point
hardware. An even more dramatic reduction would be expected on a vector processor.

There are other ways to improve these sparse partial pivoting codes. One is to
use path-symmetric or partial path-symmetric reduction. as described in |4]. Another
is to switch from nodal to supernodal elimination (2], which we expect will give a
substantial improvement. A code with these features is currently under development
by the authors.

Acknowledgment. The authors thank John Gilbert for making available a pre-
release of sparse Matlab, which was used to generate the row orderings for the test
problems. and for suggesting the notation used for edges and paths.

REFERENCES

[1] A. V. AHo. M. R. GaRev. anD J. D. ULLMAN, The transitive reduction of a directed graph,
SIAM J. Comput., 1 (1972}, pp. 131-137.

2] C. C. AsucrarT. R. G. GriMes, J. G. LEwis. B. W. PEYTON, axD H. D. SiMON. Progress
in sparse matrz methods for large linear systems on vector supercomputers, luterat. J.
Supercomputer Appl., 1 (1987). pp. 10-30Q.

(3] I. S. Durr. R. GRIMES, AND J. LEWIS, Sparse matriz test problems. ACM Trans. Math.
Software, 15 (1983). pp. 1-14.

4] S. C. EISENSTAT AND J. W. H Liu. Ezploiting structural symmetry n sparse unsymmetric
symbolic factorization, SIAM J. Matrix Anal. Appl.. 13 (1992). pp. 202-211.

{5] J. A. GEORGE AND E. NG. An implementation of Gaussian elimination with partial prvoting
for sparse systems, SIAM J. Sci. Statist. Comput.. 6 (1985), pp. 390-409.

[6] J. R. GILBERT AND J. W. H. Liu. Elimination structures for unsymmetric sparse LU factors,
Tech. Report CS-90-11. Department of Computer Science. York University., North York.
Ontario, Canada. 1990.

{71 3. R. GiLBERT AND T. PEIERLS. Sparse partial pivoting in time proportional to arithmetic
operations. SIAM J. Sci. Statist. Comput., Y (1983). pp. 862-874.

(8] A. H. SHERMAN, Algorithm 533: NSPIV, @ FORTRAN subroutine for sparse Gaussian elim-
nation with partwal pivoting, ACM Trans. Math. Software. 4 (1978). pp. 391-398.

Acceaston For

NTIS GRA&I
g L T ITTTDGTIDS | DTIC TAB
e Unanncunced

Jusntilitat o

alalc]

By

Distribution/

Availability Codes

jAvail and/or

Dist Special

r!|a0]

S
L
~




