A COMPARISON OF TRANS-EQUATORIAL IONOSPHERE PROPAGATION PREDICTIONS FROM AMBCOM WITH MEASURED DATA

by

John W. McKinstry

March, 1993

Thesis Advisor: Richard W. Adler

Approved for public release; distribution is unlimited.
This thesis examines radio propagation conditions over trans-equatorial (TE) paths. The study precedes Project PENEX, a field experiment to measure and collect calibrated HF skywave signal strength data for polar, equatorial, and near-vertical incidence propagation paths. PENEX will benchmark the absolute accuracy of the signal-to-noise models in the MEDUSA propagation model now being developed by the Naval Command, Control and Ocean Surveillance Center.

Since only minimal information is available about TE paths, a comprehensive review of the published literature on TE experiments was completed, with emphasis on TE paths between magnetic conjugate points. Data from such paths have revealed the presence of unusual propagation modes which are not predicted by standard propagation programs such as PROPHET, IONCAP, and AMBCOM. The review of the literature revealed that Stanford Research Institute (SRI) published measured data on a TE path between the Pacific islands of Kauai and Rarotonga.

A comparison was made between the SRI data and predictions for the same path to assess the usefulness of current prediction programs for TE paths. The SRI AMBCOM program was used for this comparison. As expected, sizeable differences were found between the predicted and measured results, especially during times when unusual propagation modes were present. This suggests that prediction programs should be modified to include the observed TE modes.
This thesis examines radio propagation conditions over trans-equatorial (TE) paths. The study precedes Project PENEX, a field experiment to measure and collect calibrated HF skywave signal strength data for polar, equatorial, and near-vertical incidence propagation paths. PENEX will benchmark the absolute accuracy of the signal-to-noise models in the MEDUSA propagation model now being developed by the Naval Command, Control and Ocean Surveillance Center. Since only minimal information is available about TE paths, a comprehensive review of the published literature on TE experiments was completed, with emphasis on TE paths between magnetic conjugate points. Data from such paths have revealed the presence of unusual propagation modes which are not predicted by standard propagation programs such as PROPHET, IONCAP, and AMBCOM. The review of the literature revealed that Stanford Research Institute (SRI) published measured data on a TE path between the Pacific islands of Kauai and Rarotonga.

A comparison was made between the SRI data and predictions for the same path to assess the usefulness of current prediction programs for TE paths. The SRI AMBCOM program was used for this comparison. As expected, sizeable differences were found between the predicted and measured results, especially during times when unusual propagation modes were present. This suggests that prediction programs should be modified to include the observed TE modes.
A COMPARISON OF TRANS-EQUATORIAL IONOSPHERE PROPAGATION
PREDICTIONS FROM AMBCOM WITH MEASURED DATA

by

John W. McKinstry
Lieutenant, United States Navy
B.S., Furman University, 1984

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March, 1993

Author: John W. McKinstry

Approved by: Richard W. Adler, Thesis Advisor
Wilbur R. Vincent, Second Reader
Michael A. Morgan, Chairman,
Department of Electrical and Computer Engineering
ABSTRACT

This thesis examines radio propagation conditions over trans-equatorial (TE) paths. The study precedes Project PENEX, a field experiment to measure and collect calibrated HF skywave signal strength data for polar, equatorial, and near-vertical incidence propagation paths. PENEX will benchmark the absolute accuracy of the signal-to-noise models in the MEDUSA propagation model now being developed by the Naval Command, Control and Ocean Surveillance Center.

Since only minimal information is available about TE paths, a comprehensive review of the published literature on TE experiments was completed, with emphasis on TE paths between magnetic conjugate points. Data from such paths have revealed the presence of unusual propagation modes which are not predicted by standard propagation programs such as PROPHET, IONCAP, and AMBCOM. The review of the literature revealed that Stanford Research Institute (SRI) published measured data on a TE path between the Pacific islands of Kauai and Rarotonga.

A comparison was made between the SRI data and predictions for the same path to assess the usefulness of current prediction programs for TE paths. The SRI AMBCOM program was used for this comparison. As expected, sizeable differences were found between the predicted and measured results, especially during times when unusual propagation modes were present. This suggests that prediction programs should be modified to include the observed TE modes.
TABLE OF CONTENTS

I. INTRODUCTION

A. GENERAL .. 1

B. PROJECT PENEX 2

C. THE TRANS-EQUATORIAL IONOSPHERE 4

1. Geomagnetic and Solar Parameters 4
 a. The Geomagnetic Coordinate System 4
 b. Geomagnetic Activity Indices 5
 c. Sunspot Number 5

2. Ionospheric Layers 6

3. Sporadic E (E$_s$) 9

4. Trans-equatorial Propagation (TEP) 9
 a. Afternoon-type TEP 10
 b. Evening-type TEP 12

II. THE AMBIENT COMMUNICATIONS MODEL (AMBCOM) 15

A. INTRODUCTION 15

B. SYSTEM FLOW 15

C. NATGEN ... 16
LIST OF TABLES

Table I. GAIN TABLE FOR ANT726, AMBCOM'S VERTICALLY POLARIZED LOG-PERIODIC ANTENNA 54

Table II. GEOMAGNETIC AND SOLAR DATA, JULY 1962 55

Table III. GEOMAGNETIC AND SOLAR DATA, AUGUST 1962 56

Table IV. GEOMAGNETIC AND SOLAR DATA, SEPTEMBER 1962 57

Table V. GEOMAGNETIC AND SOLAR DATA, OCTOBER 1962 58
LIST OF FIGURES

Figure 1. The Ionospheric Layers .. 7
Figure 2. The "Super-Mode" or FF mode responsible for A-TEP 11
Figure 3. The Field-guided mode responsible for E-TEP 13
Figure 4. AMBCOM System Flow ... 16
Figure 5. NATGEN control cards used to model Kauai-Rarotonga path .. 20
Figure 6. RAYTRA input stream used to model Kauai-Rarotonga path .. 23
Figure 7. COMEFF control input used to model Kauai-Rarotonga path .. 26
Figure 8. Map Showing Location of Kauai-Rarotonga Path 28
Figure 9. Propagation Spectrum, July 1962 30
Figure 10. Propagation Spectrum, August 1962 31
Figure 11. Propagation Spectrum, September 1962 32
Figure 12. Propagation Spectrum, October 1962 33
Figure 13. Occurrence of VHF Mode on Quiet and Disturbed Days during the Summer and Equinoctial Months of 1962 34
Figure 14. Converted Propagation Spectrum, July 1962 37
Figure 15. Converted Propagation Spectrum, August 1962 38
Figure 16. Converted Propagation Spectrum, September 1962 39
Figure 17. Converted Propagation Spectrum, October 1962 40
Figure 18. Example SNR table output from COMEFF 41
Figure 19. Predicted Propagation Spectrum, July 1962, Disturbed 44
Figure 20. Predicted Propagation Spectrum, July 1962, Quiet 45
Figure 21. Predicted Propagation Spectrum, August 1962, Disturbed 46
Figure 22. Predicted Propagation Spectrum, August 1962, Quiet 47
Figure 23. Predicted Propagation Spectrum, September 1962, Disturbed 48
Figure 24. Predicted Propagation Spectrum, September 1962, Quiet 49
Figure 25. Predicted Propagation Spectrum, October 1962, Disturbed 50
Figure 26. Predicted Propagation Spectrum, October 1962, Quiet 51
I. INTRODUCTION

A. GENERAL

Radio propagation aspects of trans-equatorial (TE) paths are examined in this thesis. This study precedes a series of actual propagation measurements under Project PENEX to be conducted in 1993-94 by the Naval Security Group Command, the Naval Command, Control, and Ocean Surveillance Center, and the Naval Postgraduate School.

Since very little information is available in textbooks and standard documents about HF TE propagation, a comprehensive review of the literature was completed. A bibliography of pertinent documents is provided at the end of the thesis. Information obtained from documents in the bibliography were of interest and value in identifying TE information and experiments.

A number of experiments have been conducted over trans-equatorial paths, and many of the researchers involved have reported unusual TE propagation conditions. These unusual conditions have included propagation of unusual modes, at unexpected frequencies and anomalously high signal amplitudes. One particular experiment was of special interest, since one of the paths involved will most likely be the TE path for the PENEX study. Stanford Research Institute (SRI) conducted a series of experiments on TE paths in the Pacific region during the nuclear test series of 1962. The path from Kauai in the Hawaiian Islands to Rarotonga in the Cook Islands was of special interest.
because the two islands are situated very nearly at magnetic conjugate locations. Sounder data from this path were published by SRI [Ref. 1].

A comparison was made between this sounder data and a standard propagation prediction program. While several prediction programs could have been used for this purpose (e.g., PROPHET, IONCAP and others), the SRI AMBCOM program was used in this study.

This thesis is divided into five chapters. The first chapter provides an overview of Project PENEX, and a brief description of the morphology of the TE ionosphere as it applies to the AMBCOM program. The second chapter will describe the AMBCOM algorithms. Chapter III will characterize the 1962 SRI measured data and the experimental setup. The fourth chapter will compare AMBCOM predictions with SRI's measured data. Conclusions and recommendations are in Chapter V. The interested researcher will find a bibliography of the equatorial ionosphere and TE propagation at the conclusion.

B. PROJECT PENEX

PENEX is an acronym for Polar, Equatorial, and NVIS (Near-Vertical Incidence Skywave) Experiments. The objective of the PENEX experimental program is to measure and collect calibrated HF skywave signal strength data for the purpose of benchmarking the absolute accuracy of the signal to noise (S/N) models in the MEDUSA propagation models now being developed by the Naval Command, Control, and Ocean Surveillance Center. Based on ten years operational experience and numerous comparisons to
experimental data, the radiowave propagation models in PROPHET and MEDUSA provide very accurate median predictions for mid-latitudes. The same propagation models perform only marginally in predicting short term signal variations. In fact none of the existing propagation codes in use do a good job.

PENEX researchers will target the propagation characteristics in auroral and polar cap regions, trans-equatorial (TE) regions, and the propagation mode known as Near-Vertical Incidence Skywave (NVIS). Project PENEX is a 2-year study (1993-1994) of HF propagation, unique in utilizing a wide-band spread spectrum matched filter technique. Employing direct-sequence spread spectrum modulation techniques, GPS location data, and a rubidium clock, researchers expect the data generated to be very highly correlated. The wideband signal (about 40 kHz) approach is attractive and offers the following features:

1. Absolute signal recognition in almost any kind of interference environment (spread spectrum processing gains > 800).

2. Sufficient time resolution (12.5 µs time delay resolution) to identify each mode of propagation and the power density in that mode.

3. Significantly reduced output power requirements (< 100W).

The TE portion of the experiments, the subject of the current thesis, is scheduled to be conducted in 1993-94 with a transmitter located on Kauai in the Hawaiian Islands and a receiver on Rarotonga in the Cook Islands.
C. THE TRANS-EQUATORIAL IONOSPHERE

1. Geomagnetic and Solar Parameters

 a. The Geomagnetic Coordinate System

 The Earth's magnetic field may be approximated by an earth-centered
dipole directed southward and inclined at about 11.5° to the earth's rotational axis.
Presently, the northern pole of the dipole is located approximately at 81° N, 84.7° W
using the geographic coordinate system [Ref. 2: p.60]. When studying or modeling the
ionosphere, the geomagnetic coordinate system is commonly used to map the ionosphere
to an earth-bound coordinate system. The geomagnetic coordinate system is based upon
the geographic location of the earth's magnetic poles. The longitudinal origin for this
system is the meridian line which passes through the north and south geomagnetic poles
and through the geographic south pole. The two systems are related with the equations
[Ref. 3: p.40]

\[
\sin \Phi = \sin \phi \sin \phi_0 + \cos \phi \cos \phi_0 \cos(\lambda - \lambda_0),
\]

and

\[
\sin \Lambda = \cos \phi \sin(\lambda - \lambda_0) / \cos \Phi,
\]

where

\(\phi_0 = \) geographical latitude for the northern geomagnetic pole,

\(\lambda_0 = \) geographical longitude for the northern geomagnetic pole,

\(\phi = \) geographical latitude,

\(\lambda = \) geographical longitude,

\(\Phi = \) geomagnetic latitude and
\(\Lambda = \text{geomagnetic longitude} \)

Although the AMBCOM program makes the geographic-to-geomagnetic coordinate conversion for the user, an understanding of the geomagnetic coordinate system is useful in understanding the model.

\subsection*{b. Geomagnetic Activity Indices}

AMBCOM uses the three-hour \(K_p \) index of worldwide magnetic disturbance to specify the current state of the earth's magnetic field. This index is based upon local \(K \) indices which are quasi-logarithmic values prepared at twelve selected observatories worldwide to describe the condition of the planetary magnetic field at each site. These local \(K \) values are corrected to calculate the planetary \(K_p \) index. The \(K_p \) index is calculated at three hour intervals for each of eight periods per day. The \(K_p \) indices range from zero, the least disturbed state, to nine which represents the most disturbed magnetic field. The \(K_p \) indices used for this thesis are published in the \textit{Journal of Geophysical Research} [Refs. 4, 5, 6, 7] and are listed in Appendix B. For this study the indices ranged from zero to seven, indicating that the geomagnetic field varied from a nondisturbed state to a considerably disturbed state.

\subsection*{c. Sunspot Number}

Sunspots, related to the solar flux, are characterized by strong magnetic fields which may approach 0.4 Tesla. They have approximately an 11-year periodicity in occurrence. Their occurrence was measured by the Wolf, or Zurich sunspot number, \(R_s \) [Ref. 2: p.29].
\[R_z = k(10g + s) \]

(3)

where

g = number of sunspot groups observed,

\(s \) = number of observed individual spots and

\(k \) = correction factor.

Daily values of \(R_z \) used in the present study were also derived from the Journal of Geophysical Research [Refs. 4,5,6,7] and are listed in Appendix B. The \(R_z \) number was discontinued in 1981 in favor of the International Sunspot Number, \(R_i \) [Ref. 2: p. 44].

2. Ionospheric Layers

Radio waves may be refracted or reflected as they encounter ionospheric layers during propagation. As rays move through various areas of the atmosphere, gradual changes occur in the speed of the waves as the temperature, air density, and levels of ionization change. On frequencies below 30 MHz, long distance communication is the result of refraction of the wave in the ionosphere, where free ions and electrons exist in sufficient quantity to affect the velocity of wave travel. Depending on the frequency used and the time of day, the ionosphere can support communications from very short ranges of less than 100 km (Near Vertical Incidence Signals - NVIS) to distances greater than 9500 km.

Ionization of the upper atmosphere is attributed to ultraviolet radiation from the sun, and results in several layers of varying densities at various heights surrounding the Earth. Each layer has a central region of maximum electron density, which tapers
off both above and below that altitude. The ionospheric layers that most influence HF communications are the D, E, E\textsubscript{1}, F\textsubscript{1}, and F\textsubscript{2} layers (Fig. 1). Of these, the D layer, with altitudes of 50-90 km, absorbs signals passing through it. The lowest region useful for returning radio signals to the Earth at HF is the E layer, with altitudes of 80-150 km. Its average height of maximum ionization is about 100 km. The layer refracts waves only in the presence of sunlight. Ionization is greatest around local noon, and practically disappears after sundown.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{The Ionospheric Layers [From Ref. 8]}
\end{figure}
The sporadic-E region, E, consists of relatively dense patches of ionization that drift around from 90-130 km above the Earth. Its effects become prominent above 21 MHz and into the VHF region.

The region of ionization mainly responsible for long distance communication is the F-layer. Its altitudes of ionization range from 150-600 km. It ionizes very rapidly at sunrise, reaching peak electron density early in the afternoon at the middle of the propagation path. The ionization decays very slowly after sunset, reaching the minimum value just before sunrise. During the day, the F region is split into two layers, the F1 and the F2. The F1 layer is usually not an important propagation medium unless it supports the only mode to propagate. Its refracting heights are between 150-200 km, forming and fading with the passage of the sun. After sunset, the F1 layer decays and is replaced by a broadened F2 layer, the primary medium supporting HF communications. The thickness of the layer ranges from 80 km during the day to a broad 150 km about 320 km above the Earth at night. The maximum range of a single hop off the F2 layer is about 4000 km. [Ref. 8]

Traditionally, the ionospheric layers have been characterized as well-behaved stratified layers. From very high resolution measurements of the medium, it is now widely accepted that the layers are in continual horizontal and vertical motion. Periods of high solar activity, with their impact on the ionosphere, often result in unusual propagation modes.
3. **Sporadic E (E,)**

Sporadic E is a thin reflecting layer in the ionosphere which comes and goes sporadically at E-region heights. The most important aspect of E,, is the maximum electron density or critical frequency $f_0 E,$ and its daily and seasonal variations. [Ref. 8: p.29]

Low-latitude or equatorial E, is basically a daytime phenomenon with little seasonal variation. Near the geomagnetic equator the critical frequency $f_0 E,$ exceeds 5 MHz for 90% of the daylight hours. Equatorial E, is due to a plasma instability caused by the high electron drift velocity. It is patchy and transparent, but seems to be a useful reflector on long TE circuits, making it possible to get higher MUFs than would be expected for normal propagation [Ref. 8: p.125].

Variations of the ionosphere at low latitudes are so strongly influenced by the earth's magnetic field, that it is usually more instructive to consider how the ionosphere varies with geomagnetic latitude or with dip angle of the earth's magnetic field rather than within a geographic framework.

4. **Trans-equatorial Propagation (TEP)**

In low-latitude ionospheres, the "fountain effect" redistributes electrons, moving them from the equator north and south to magnetic latitudes of 10° to 20°. The electromagnetic field causes electrons to drift upwards, encountering the horizontal lines of force of the earth's magnetic field. Electrons diffuse down these field lines to reenter the main body of the ionosphere where the field lines cut through the F region. This
causes large clumps of electrons at latitudes 10° to 20° from the magnetic equator. These clumps are the peaks or "crests" of the equatorial or Appleton anomaly [Ref. 8: p.30]

These crests are most developed in the late afternoon and early evening, during the equinoxes, and at solar maximum. Their critical frequencies, \(f_{\text{c}F_2} \), can exceed 20 MHz as compared to 10 MHz at the equator. The height of maximum electron density, \(h_nF_2 \), is less at the crests than at the equator. The significant change with latitude of \(f_{\text{c}F_2} \) and \(h_nF_2 \) is difficult to predict and may be responsible for some of the interesting propagation modes observed in the TE environment [Ref. 8: p.30]

Discovered in 1947 by radio amateurs, trans-equatorial (TE) propagation occurs on circuits which cross the equator, more or less at right angles, and have MUFs (maximum usable frequency) higher than the normal multihop modes. Stations attempting TE contacts must be nearly equidistant from the geomagnetic equator. Two types of TE propagation depend on different features of the equatorial ionosphere for their characterization [Refs. 9,10,11,12]. These are afternoon-type TE propagation (A-TEP) and evening-type TE propagation (E-TEP). Both types have been observed simultaneously on some circuits around 2000 local time [Ref. 8: p.126].

a. Afternoon-type TEP

A-TEP has the following characteristics:

- MUF greater than the normal 2F MUF, i.e., greater than 40-50 MHz.
- Peak occurrence from 1700-1900 local time, near the equinoxes and at solar maximum.
- Path lengths of greater than 6000 km.
Several theoretical models have been proposed in the past to describe the propagation mechanism in TEP circuits. Initially a double refraction scheme from the ionospheric crests was proposed [Ref. 13]. Although this model explains quite satisfactorily the A-TEP phenomena, it fails to predict the E-TEP basic characteristics [Refs. 9, 14].

Raytracing algorithms [Ref. 15] have determined the propagation mode for these signals is a "super mode" or FF mode, where the signal is reflected twice by the F layer, on opposite sides of the equator, without a ground reflection. Figure 2 illustrates this super mode, which is dependent upon the electron density concentrations in the anomaly crests already discussed. The crests occur at about 15° dip angle north and south of the magnetic equator where $h_n F_2$ is at a minimum. Therefore, a ray leaving a suitably placed transmitter can be reflected from the first crest in a direction to miss the Earth and

Figure 2. The "Super-Mode" or FF mode responsible for A-TEP [From Ref. 8]
strike the ionosphere at the opposite crest, before reflection back to the receiver. The MUF would be higher than the normal 2F MUF since the ionosphere at the crests is tilted upwards towards the magnetic equator, giving rise to larger angles of incidence. The MUFs are also higher because the critical frequencies are so in the crests.

Maximum observed frequencies (MOF) for this super mode can exceed 50 MHz. The high signal strengths are the result of focusing effects as rays arrive from a large range of elevation angles. Signals also pass through the absorbing D region only twice, as opposed to four times for a 2F mode, and are, therefore, less attenuated. This supermode occurs most frequently during equinoxes at solar maximum, and then not every day. Its occurrence depends on how the crests developed for a specific day.

b. Evening-type TEP

E-TEP usually supports higher frequencies than A-TEP and has different characteristics:

- peak occurrence from 2000-2300 local time, near equinoxes and near solar maximum.
- high signal strengths but with deep and rapid fading, and a large doppler spread, which can exceed 40 Hz.
- path lengths shorter than A-TEP, about 3000-6000 km.
- higher MOFs than A-TEP, can be greater than 100 MHz.

Based on measurements of elevation angles and group delays on a circuit between Japan and Australia a waveguide model has been suggested for the E-TEP [Ref.
The guiding of high frequency waves through field aligned irregularities has been examined theoretically by Nielson [Ref. 17], and this theory has been extended by using numerical techniques to explain TEP phenomena by Heron and others [Ref. 18]. A "whispering gallery" mode has also been considered to describe TEP [Ref. 19]. Data gathered for the fine structure of ionosphere has shown that there are elongated irregularities aligned with the geomagnetic field lines in the equatorial ionosphere [Ref. 20]. These are tubular shape depletion regions inside the equatorial ionosphere extending on both sides of the magnetic equator at least from 5° to 10° (magnetic dip). [Ref. 14]

The propagation mode for E-TEP is probably the "whispering gallery" or "field-guided" mode. Range spreading on evening ionograms indicate that the equatorial ionosphere is threaded with "empty" tubes aligned along magnetic field lines where the electron density is much lower than that of the surrounding ionosphere. Figure 3 shows that the propagation takes place by rays skidding around the walls of the tube, bouncing off the walls, and emerging at the far end of the tube [Ref. 21].

![Figure 3. The Field-guided mode responsible for E-TEP](From Ref. 8)
MOFs have been noted over 100 MHz, arising from very high angles of incidence. Large doppler shifts would be caused by the upward movement of the tubes, which rise rapidly to the top of the ionosphere after their creation near the base. The best circuits to support this theory place the transmitter tangential to the earth's magnetic field so rays commence at the altitude to enter the tubes. Highest MUFs would be achieved when the receiver is similarly placed. The circuit, therefore, should be symmetric about the magnetic equator, with transmitter and receiver located at magnetic conjugate points, as is the case with the Kauai-Rarotonga path. Like A-TEP, E-TEP is unpredictable night to night.
II. THE AMBIENT COMMUNICATIONS MODEL (AMBCOM)

A. INTRODUCTION

This chapter provides a brief description of applicable portions of the AMBCOM program. Details of the complete program and code are contained in the user's guides published by SRI International [Refs. 22, 23, 24].

AMBCOM was designed for batch processing using card images as input. Separate programs support each of the function areas modelled, i.e., the ionosphere model is generated by a program which passes its data to another program for calculating raytracing curves. The system flow is first explained followed by the programs and inputs which generated the TE data for the Kauai-Rarotonga path.

B. SYSTEM FLOW

The AMBCOM system is a multiprogram batch system written in FORTRAN and was executed on a VAX-3100 workstation at NPS. Programs NATGEN, RAYTRA, and COMEFF were used to generate the TE data, as shown in Figure 4. Data are passed between these programs by means of saved data files [Ref. 22: pp.107-155].

The execution input streams were constructed for each of the 123 days in the period of interest, July-October 1962. A file of 57 lines of code comprising the input streams for NATGEN, RAYTRA and COMEFF was executed successively for each day. In order to obtain a complete 24-hour table of the spectrum of interest, each day's input file
included as a parameter the average of the eight daily K_p indices (App. B). Total execution time for the 123 day campaign was three and half hours.

C. NATGEN

1. Overview

The purpose of NATGEN is to model the ionosphere along the communications path between two points. NATGEN builds a model of the F_2, F_1, and E layers at control points along the path. The control points are evenly spaced at 100 km increments with a maximum of 41 control points for paths longer than 4000 km. The control points are not necessarily located at the signal reflection points since raytracing is performed in RAYTRA. [Ref.22: pp.23-24]

NATGEN begins by reading ionospheric coefficients provided by the Institute for Telecommunications Sciences (ITS) in Boulder, Colorado, based upon the month, day,
and the current sunspot number (input stream variables). AMBCOM uses the ITS Blue Deck (a reference to earlier coefficient files that were issued on color coded computer cards) as the starting point for modeling the F_2, F_1, and E layers at each control point. Additional parameters describing atmospheric noise, ground conductivity, and ground permittivity along the path are read and passed to RAYTRA. [Ref. 22: p.23]

The semi-thicknesses, heights of maximum ionization, and the critical frequencies for the F_2, F_1, and E layers at each of the control points are passed as outputs from NATGEN. ITS upper, median, and lower decile values for sporadic E critical frequencies are passed to RAYTRA which performs all E calculations. NATGEN also passes on the location of the transmitter and receiver sites, the time of year, time of day, the current K_p index, the sunspot number, distance between control points, the number of control points, and the path length. [Ref. 23: pp.123-124]

2. Layer modeling

The ITS ionosphere provides the vertical incident critical frequency (f_i) for the E layer, the F_2 layer, and sporadic E. The E layer critical frequency (f_E) is always set to the median decile values. For the sporadic E and the F_2 layers, the upper, median, and lower decile values represent the critical frequencies 90%, 50%, and 10%, respectively, of the days for a given time and month [Ref. 26: p.89]. NATGEN allows the user to choose which of the F_2 layer values will be used as the F_2 critical frequency (f_{F_2}) for all ionospheric calculations. The default f_{F_2} value is the median decile number, and was used in this study. Two additional parameters for the F_2 layer are the ratio of the
semithickness of the layer (y_m) to the height of maximum density (h_n) and the maximum usable frequency (MUF) for a 3000 km path (M3000). [Ref. 22: p.25]

Using these coefficients, AMBCOM models the ionosphere at the control points. The F$_2$, F$_1$ and E layers are represented as three parabolic layers with the values for the F$_1$ layer derived from the F$_2$ and E layer models. The height and semithickness of the E layer are set at 115 km and 25 km respectively. The F$_2$ layer height is calculated using the ITS coefficients in a two step process. First the peak height of the F$_2$ layer (HP_{F2}) is calculated using the Shimazaki equation [Ref. 22: p.26]

$$HP_{F2} = \frac{1490}{M3000} - 176 \quad (4)$$

This value is corrected for signal retardation with a height factor (Δh) equation [Ref. 22: p.26]

$$\Delta h = \frac{f}{f_c} \ln \left(\frac{f/f_c + 1}{f/f_c - 1} \right) - 2y_m \quad (5)$$

where

Δh = the height error,

f_c = the critical frequency of the layer,

f = the transmitted frequency and

y_m = the semithickness of the layer.

The Δh factor is then subtracted from HP_{F2} to produce a corrected height for the F$_2$ layer.

The F$_1$ layer parameters are not represented by ITS data but are calculated using the E and F$_2$ layer parameters. The F$_1$ layer must overlap the F$_2$ layer by half of its own semithickness with the bottom of the F$_1$ layer set at 130 km. The critical frequency of the F$_1$ layer is calculated based upon the critical frequency of the E layer.
In the event that the F₂ layer critical frequency is lower than that for F₁, f_F₂ is set to 0.695. [Ref. 22: p. 27]

3. NATGEN Input Variables

AMBCOM is a batch system in which an input stream controls the execution of the system and resembles a series of 80 column computer cards. AMBCOM was originally designed during the 1970s when card input systems still predominated [Ref. 22: p.15]. Figure 5 is an example of statements used to execute NATGEN. The ASSIGN statements provide NATGEN access to the ITS file (ESSABLU.DAT), the conversion tables for the geomagnetic coordinate system (RAGCOT.DAT), two output files (IONOS.DAT and NOISE.DAT), and execution control cards one through four.

AMBCOM provides a large amount of flexibility in the control of data production. NATGEN models the ionosphere along any propagation path at any hourly time increment specified by the numbered control cards. The AMBCOM user defines the problem by specifying the transmitter and receiver locations, the sunspot number, the Kₚ index, and the time increment.

Control parameters were chosen to model the ionosphere, as closely as possible, to the 1962 SRI transmission paths. The intent was to execute the model from the perspective of a communicator who is attempting to estimate the possibility of communicating with another HF site under a given set of circumstances. Although the communicator does not have the advantage of using the sunspot number and Kₚ index
Figure 5. NATGEN control cards used to model Kauai-Rarotonga path tables for a current month, he should have a rough estimate of the current sunspot number and K indices at any given time.

Figure 5 shows the four control cards used to execute NATGEN. Card one is used to edit ionospheric parameters, and card two causes NATGEN to run the ionospheric generator program. Card three defines the geographic latitude and longitude of the transmitter and receiver; negative numbers indicate a west longitude or south latitude. Following the location information are the year, month, sunspot number, and Kp index. Card four indicates the beginning hour, ending hour and time increment.

Input streams were divided into one-day periods for the four-month study, with each day represented by an average Kp index. The values for sunspot number and Kp index were taken from the Journal of Geophysical Research [Refs. 4,5,6,7].
D. RAYTRA

1. Overview

The raytracing program (RAYTRA) model can be executed in two modes, point-to-point and radar. The point-to-point mode, used in this thesis, performs raytracing from a transmitter to a receiver. RAYTRA computes group times, phase times, signal losses, the effects of sporadic E and elevation angles at both sites. These data are saved for each successful propagation path and are passed to COMEFF.

The raytracing algorithm computes the propagation path based on data produced by NATGEN. A raytrace which ends within 1000 km of the receiver site is saved for further processing. When two rays bracket the receiver, the program interpolates a ray that falls within some preset value, in this case ten kilometers. The parameters describing this ray are saved for COMEFF. In the case where only a single ray is found, the program again interpolates until a ray close to the receiver is found. The AMBCOM User's Guide for Engineers [Ref.22: pp.35-56] provides an in-depth treatment of raytrace algorithms.

RAYTRA estimates the amount of absorption for each ray. The absorption calculations are divided into four parameters as follows:

- L_D is the divergence, i.e., free space spreading loss.
- L_A is ionospheric absorption loss such as deviative, nondeviative, and auroral losses.
- L_E is the loss resulting from sporadic E.
- L_G is the loss due to ground reflection along the path.
The total loss for a path is the summation of all of these factors. A full explanation of the RAYTRA path loss algorithms may be found in [Ref. 22: pp.56-80].

2. **Sporadic E Calculations**

RAYTRA offers two choices for computing sporadic E (E_s). The first method computes the reflection of a signal for frequencies below the blanketing frequency (f_{bE}). The blanketing frequency is computed based upon the location of the control point. The second method performs E_s reflection calculations for all frequencies less than f_0E_s. The value for f_0E_s is based upon the upper, median, or lower ITS f_0E_s coefficients passed from NATGEN. The choice of value is specified by the user. RAYTRA calculates f_0E_s dependent upon the percentage of E_s specified by the user. If 90% E_s is specified then RAYTRA uses the upper decile value of f_0E_s from the ITS file. For 50% E_s, RAYTRA used the median decile value.

3. **RAYTRA Input Variables**

RAYTRA, like NATGEN, provides the user with a number of options for controlling program execution. Options are specified with numbered control cards which represent input streams following the program execution statement. Figure 6 is an example of the RAYTRA controlling statements used for this thesis.

Card two controls the amount of E_s for a given execution. For this study, the default value of 50% was used. Card two also allow the user to set the level of man-made noise at the receiver. A residential or suburban setting was assumed as a liberal
Figure 6. RAYTRA input stream used to model Kauai-Rarotonga path

E. COMEFF

1. Overview

The communications effect (COMEFF) program evaluates the quality of a transmitted signal. NATGEN and RAYTRA dealt with the ionosphere and possible
ionospheric effects along a given propagation path. The only site-dependent information for those two programs were the site locations. COMEFF parameters include transmit power, antenna configuration, signal bandwidth, and other communication site-dependent data. Based upon these local parameters and the data produced by RAYTRA, the performance of a particular communications link using a given frequency can be characterized in terms of the signal-to-noise ratio (SNR), field strengths and doppler spread.

2. Program Features

COMEFF uses the data generated by RAYTRA for all of the saved modes as the basis for evaluation of a particular communications link. The raytrace descriptive data, for each ray, includes:

- take-off angle,
- group time,
- phase time,
- path loss,
- noise power (per 1 Hz),
- arrival angle and
- transmitter frequency [Ref. 22: p.112].

Multiple raytraces may be described for each frequency. COMEFF combines the effects of multiple modes to produce a single reception statistic.

COMEFF allows the user to include the effects of the antenna configuration on the communications link. The antenna data is taken from ANTLIB.DAT, the
AMBCOM antenna file. ANT726 was used as a Granger Associates vertically polarized log-periodic antenna [Ref. 27]. Appendix A contains the antenna gain table for the ANT726 antenna used at both transmitter and receiver in this thesis.

The COMEFF program provides a variety of output options. COMEFF will calculate the SNR, group time, doppler shift, phase, and delay spread for all frequencies specified in RAYTRA. Other options provide field strengths or analysis of signal quality as bit error rate. All requested data may be printed in several formats which include a listing of SNR, doppler shift, phase shift, and group times for each mode. COMEFF also produces a single report that sums the data for each frequency at a particular time. The SNR specified in the COMEFF summary report is a weighted accumulation of SNRs for all modes received from RAYTRA.

Weighted SNRs from the COMEFF summary report were compared to SRI's propagation spectrum, which lacked specific SNR data. This composite SNR is calculated by computing the power for each ray, combining these values and then subtracting the noise value. The power A_i for each ray is computed with the equation

$$A_i = \frac{(P_t G_t G_r c^2)}{4\pi L_i c^2 10^{12} L_r}, \quad (6)$$

where

- P_t = transmitter power (W),
- G_t = transmitter antenna gain,
- G_r = receiver antenna gain,
- L_i = path loss for the ith ray,
- L_r = receiving antenna loss,
c = speed of light and

\[f = \text{frequency (MHz)}. \]

The composite SNR value is given by the equation

\[\text{SNR} = 10 \log_{10}(\Sigma A) - N_s, \quad (7) \]

where \(N_s \) is the noise power density in dBW. [Ref. 22: p.83]

3. COMEFF Input Variables

Figure 7 is an example of the COMEFF input stream. Two control cards control program execution. The first card specifies transmit power, and path loss threshold. A bandwidth of 4 kHz and a transmitter power of 30 kW for SRI's sounder transmissions results in 7.5 W/Hz. The path loss threshold excludes modes with a path loss greater than the specified threshold. This parameter was set at 300 dB which effectively allowed all modes to be included. The second COMEFF control statement specifies antennas.

```
81 ***INPUT SETUP FOR COMEFF
81 134567890123456789012345678901234567890123456789012345678901234567890
81 ASSIGN SYSSINPUT FOR055:
81 ASSIGN DKA0:[MKICIMTRY]MAYFORM.DAT FOR020:
81 ASSIGN DKA0:[MKICIMTRY]COMOUT.DAT FOR059:
81 ASSIGN DKA0:[MKICOM]ANTLIB.DAT FOR008:
81 RR DKA0:[MKICOM]COMEFF
81 KAUAI-RAROTONGA PATH 25 OCTOBER 1962
81 0 1 2200 0 1 0 7.5 0.300 1 0 0 1.0
81 ANT726 ANT726
81 SET DEF [MKICIMTRY]
81 EXIT
```

Figure 7. COMEFF control input used to model Kauai-Rarotonga path
III. THE SRI TRANS-EQUATORIAL EXPERIMENTS

A. GENERAL

From June through October 1962, Stanford Research Institute (SRI) operated oblique incidence sounders on a 4800-km TE path from Kauai to Rarotonga as part of the test instrumentation for the 1962 nuclear tests in the Pacific. Workers observed anomalous propagation of HF modes from low HF into the VHF range across the TE path, and noticed this as a nocturnal phenomenon, occurring between sunset and sunrise. The propagation was unusual in that frequencies much higher than would usually be predicted were propagated over very long distances. This occurred on over 80% of summer nights and nearly 100% of nights during the equinoctial months. It was also observed that the mode showed a slight inverse correlation with magnetic activity, appearing later on magnetically disturbed days. The mechanism involved was believed to depend on field-aligned ionization and dip angle as it relates to the magnetic field symmetry. [Ref. 1]

B. THE EXPERIMENT

The observations made by SRI resulted as an outgrowth of the 1962 Pacific nuclear test series. Specific paths and equipment used were not selected specifically for the study of TE propagation.

One path studied was from Kauai in the Hawaiian Islands to Rarotonga in the Cook Islands. The two terminals of this 4800 km path are very nearly geographic and magnetic.
dip conjugates, with the magnetic equator very near midpath as shown in Fig. 8. The
great circle path is tilted about 10° from the magnetic meridian. This path will be used
for the PENEX trans-equatorial experiments. SRI workers used a Granger Associates
oblique-incidence sounder transmitter at Kauai and a sounder receiver at Rarotonga. The

Figure 8. Map Showing Location of Kauai-Rarotonga Path [From Ref. 1: p.4]
sounders swept from 4-64 MHz at various time intervals. Peak-pulse power output was
30 kW, using pulse widths of 100 μs (16 kHz bandwidth) and 1.5 ms (4 kHz bandwidth).
SRI used vertically polarized log-periodic antennas with 7-8 dB gain over isotropic and
a beamwidth of 110°. [Ref. 1: p.3]

The sounders operated from June through October 1962 providing data for all but
a few days of that period. Both the 100 μs and 1.5 ms received signals were recorded
on 35-mm film and later digitized to punched card format for their statistical analysis.
[Ref. 1: p.5]

C. ANALYSIS OF SRI DATA

1. Time/Frequency Behavior

The propagation frequency spectrum and the percentage of occurrence of
propagation on any frequency for one-hour periods are shown in Figs. 9-12. Percentage
occurrence is indicated by the length of the horizontal line. A line extending completely
across a one hour period indicates 100% occurrence during that month. Also shown are
sunrise and sunset times.[Ref. 1: p.6]

Figures 9-12 indicate that the VHF mode is a nocturnal process, commencing
generally at sunset, although it occasionally appeared up to two hours before sunset. The
average onset time for July and August was 0500Z, and for October and September,
0340Z. It was observed that the normal (2F, 3F, M, etc.) modes gradually faded out as
the VHF mode appeared.[Ref. 1: p.6]
Figure 9. Propagation Spectrum, July 1962 [From Ref 1: p.7]
Figure 10. Propagation Spectrum, August 1962 [From Ref. 1: p.8]
Figure 11. Propagation Spectrum, September 1962 [From Ref. 1: p.9]
Figure 12. Propagation Spectrum, October 1962 [From Ref. 1: p. 10]
The equinoctial month of October (Fig. 12) reveals that propagation occurred on almost all frequencies from 5-30 MHz nearly 100% of the time, save for two hours after sunrise. Figure 12 also indicates nearly 100% occurrence for 50-64 MHz between sunrise and sunset. Seasonally, then, September/October had a higher percentage of propagation on most frequencies than did July/August. [Ref. 1: p.6]

2. Correlation with Spread F and Magnetic Activity

Geomagnetic activity, as influenced by solar flares and sunspot activity, is known to influence ionospheric phenomena such as spread F. Figure 13 shows the occurrence of the VHF mode on quiet and disturbed days for the summer months of June, July, and August (Fig. 13a), and the equinoctial months of September, and October (Fig. 13b). The days were selected from the ten quietest and ten most disturbed days of each month based on both \(K_{p,m} \) and \(C_p \), the magnetic character. The curves of VHF mode

![Figure 13](image-url)

Figure 13. Occurrence of VHF Mode on Quiet and Disturbed Days during the Summer and Equinoctial Months of 1962 [After Ref. 1: p.14]
occurrence exhibit many of the same characteristics of spread-F occurrence. There is a negative correlation with magnetic activity where onset time is earlier on quiet days than on disturbed. Also, seasonally, there are earlier onset times, a higher percentage of occurrence, and longer persistence during the equinoctial months than during the summer months. [Ref. 1: p.13]

3. SRI Conclusions

SRI concluded that only two mechanisms for long range TE propagation of frequencies greater than about 30 MHz could explain their observed anomalies: super mode propagation and the guidance of waves by field-aligned ionization. A super mode would rely upon a pair of local maxima of ionization such as presented by the geomagnetic or Appleton anomaly. This pair, occurring at ± 20° magnetic latitude, allows two ionospheric reflections without a ground reflection. This super mode mechanism is generally observed between 1200-2000 LT; SRI's TE anomalies were nighttime phenomena, occurring at HF down to 4 MHz, so this was probably not the dominant mechanism. Field-aligned ionization at F-region heights, however, is an almost nightly occurrence. To invoke this mechanism, the magnetic field symmetry seems critical -- the dip angle must be just right. Since the terminals of the path were within sight of the equatorial spread-F belt, good coupling into field-aligned irregularities would be possible at altitudes above 200 km with reasonable take-off angles. [Ref. 1: p.33]
D. CONVERSION OF SRI DATA

Data from Figs. 9-12 were converted to surface contour plots for ease of comparison with the AMBCOM predicted spectra. Data was taken from each figure at two hour intervals since this is the interval for propagation chosen for AMBCOM's COMEFF summary report. For each two-hour period, propagation was considered to have occurred if the horizontal line which SRI used to indicate percentage of occurrence was greater than 50% of the two-hour period. Since amplitude data was not available from Ref. 1, contours were constructed for any level of observed propagation. Resulting contour plots, representing the conversion data, are shown in Figs. 14-17. This data will be compared with the predicted propagation patterns in Chapter IV.
Figure 14. Converted Propagation Spectrum, July 1962
Figure 15. Converted Propagation Spectrum, August 1962
Figure 16. Converted Propagation Spectrum, September 1962
Figure 17. Converted Propagation Spectrum, October 1962
IV. AMBCOM DATA ANALYSIS

A. ANALYSIS METHODOLOGY

AMBCOM's COMEFF program produces a summary table of composite SNR values (in dB), weighted by amplitude of each mode, for all frequencies and times for which calculations were desired. Figure 18 is an example SNR summary table for October 9, 1962. Frequencies were desired from 4-40 MHz; time (GMT) was plotted at two hour intervals. Only those frequencies which supported propagation are presented as output. To produce the data necessary for comparison with the contour plots of the known SRI data, a selectively sampled set of predicted data was desired. From each of

<table>
<thead>
<tr>
<th>CASE 10: SARAT-ARATONKA DATA 9 OCTOBER 1962</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR (in dB): 49. 47. 47. 47. 47. 47. 47. 47. 47. 47. 47. 47. 47. 47.</td>
</tr>
<tr>
<td>beamwidth correction</td>
</tr>
</tbody>
</table>

Figure 18. Example SNR table output from COMEFF
the four month's SNR data, the five days exhibiting the most magnetically disturbed character (D in tables of Appendix B) and the five days exhibiting the quietest magnetic character (Q in tables of Appendix B) were grouped separately as samples. SNR values of each month's disturbed days were averaged as were each month's SNR values for quiet days.

An appropriate graphical presentation of the mean SNR values was considered to be a surface-type contour plot, as other three-dimensional graphs, such as histograms, failed to display necessary detail of the data. Data was often not continuous in nature and trends were best observed in the contour plot format.

B. PREDICTED PROPAGATION PATTERNS

Figures 19-26 are contour plots of the mean values of SNR for the disturbed and quiet days for July, August, September, and October 1962. SNR values were grouped in ranges of ten dB, the corresponding contours are shaded with the highest values for SNR displayed darkest. Comparison of these plots with the converted propagation spectrum plots in Chapter three (Figs. 14-17) reveals that AMBCOM poorly predicted observed propagation for all months. However, some trends can be discerned that correspond with SRI's observed trends.

1. July Contour Plots

AMBCOM failed to predict propagation at 4 MHz for all months and only rarely above 32 MHz. It was noted (Figs. 19,20) that AMBCOM failed to predict any of the observed propagation (Fig. 14) between 0500-1600 GMT. The trends before sunset
at 0450 GMT and following sunrise at 1645 GMT are predicted fairly well; however, SRI did not observe the predicted propagation at 30-32 MHz around 2400 GMT.

2. August Contour Plots

Predicted propagation for August (Figs. 21,22) extended to higher frequencies (up to 38 MHz) around 2400 GMT. Again, this was not observed by SRI (Fig. 15) The typical null in propagation just before sunrise (1640 GMT) is correctly shown on both predicted and actual plots. Figure 21 for the disturbed August days indicates an erratic patch of propagation at 1800 GMT from 20-22 MHz that SRI also observed. The large area in Figure 15 showing propagation up to 33 MHz from 0500-1300 GMT is not predicted by AMBCOM.

3. September Contour Plots

With the equinoctial months, SRI observed (Fig.16) almost complete propagation. AMBCOM, while indicating much more extensive propagation (Figs. 23,24), fails to fully predict such strong propagation. Erroneously, AMBCOM predicted propagation from 2000-2400 GMT up to 40 MHz, while SRI did not note the same behavior.

4. October Contour Plots

Again, SRI observed nearly complete propagation from 4-40 MHz for the equinoctial month of October (Fig. 17) with a null around sunrise (1620 GMT). AMBCOM predicted this gap (Figs. 25,26), but failed again to predict the propagation from 30-40 MHz.
Figure 19. Predicted Propagation Spectrum, July 1962, Disturbed
Figure 20. Predicted Propagation Spectrum, July 1962, Quiet
Figure 21. Predicted Propagation Spectrum, August 1962, Disturbed
Figure 22. Predicted Propagation Spectrum, August 1962, Quiet
Figure 23. Predicted Propagation Spectrum, September 1962, Disturbed
Figure 24. Predicted Propagation Spectrum, September 1962, Quiet
Figure 25. Predicted Propagation Spectrum, October 1962, Disturbed
Figure 26. Predicted Propagation Spectrum, October 1962, Quiet
V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

A number of conclusions were reached during this study, as listed below:

• The bibliography provided at the end of the thesis provided a good background about TE propagation effects.

• The SRI sounder TE data were very useful in obtaining an understanding of TE propagation modes for a magnetic conjugate path. The presence of unusual nocturnal modes were shown to exist.

• This data provided an excellent basis for the comparison of predicted MUF/LUF values to observed MOF/LOF data.

• The SRI data lacked the amplitude information needed for a full evaluation of a TE path for PENEX purposes.

• The comparison of predicted values with observed values indicated significant differences, especially during nighttime hours. This would be expected since the AMBCOM prediction program, and other prediction programs, do not have a routine for the observed TE modes.

• While ANT726 from AMBCOM's ANTLIB.DAT is a vertically polarized log-periodic antenna [Ref. 27], its antenna pattern probably differs from that used by SRI, resulting in differences between predicted and observed data.
B. RECOMMENDATIONS

The AMBCOM program is now available from SRI on PC-based software. The author has not had the opportunity to use this new product. Currently, input control parameters must be located in specific columns, and no data entry programs exist to assist the user in entering these parameters. If data input were changed from the old control card approach to an interactive format for data entry, the program would be much easier to use. Additionally, graphical output displays should be added.

Since sizeable differences were found between the predicted and measured results for this TE path, it is recommended that prediction programs such as AMBCOM, PROPHET, and IONCAP be modified to include the observed TE modes.
APPENDIX A. ANTENNA GAIN TABLE

Table I. GAIN TABLE FOR ANT726, AMBCOM'S VERTICALLY POLARIZED LOG-PERIODIC ANTENNA

<table>
<thead>
<tr>
<th>FREQUENCY, MHz</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
<th>28</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>2.0</td>
<td>-18.0</td>
<td>-19.0</td>
<td>1.8</td>
<td>3.8</td>
<td>5.8</td>
<td>7.8</td>
<td>9.8</td>
<td>11.8</td>
<td>13.8</td>
<td>15.8</td>
<td>17.8</td>
<td>19.8</td>
<td>21.8</td>
<td>23.8</td>
</tr>
<tr>
<td>L</td>
<td>1.8</td>
<td>-18.0</td>
<td>-19.0</td>
<td>1.6</td>
<td>3.6</td>
<td>5.6</td>
<td>7.6</td>
<td>9.6</td>
<td>11.6</td>
<td>13.6</td>
<td>15.6</td>
<td>17.6</td>
<td>19.6</td>
<td>21.6</td>
<td>23.6</td>
</tr>
<tr>
<td>T</td>
<td>1.1</td>
<td>-18.0</td>
<td>-19.0</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>7.0</td>
<td>9.0</td>
<td>11.0</td>
<td>13.0</td>
<td>15.0</td>
<td>17.0</td>
<td>19.0</td>
<td>21.0</td>
<td>23.0</td>
</tr>
<tr>
<td>O</td>
<td>0.0</td>
<td>-18.0</td>
<td>-19.0</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>7.0</td>
<td>9.0</td>
<td>11.0</td>
<td>13.0</td>
<td>15.0</td>
<td>17.0</td>
<td>19.0</td>
<td>21.0</td>
<td>23.0</td>
</tr>
</tbody>
</table>

Note: The table above provides the gain values for Ant726, AMBCOM's vertically polarized log-periodic antenna at various frequencies. The gain values are given in decibels (dB).
The data contained in the following tables is compiled monthly in the *Journal of Geophysical Research* as Geomagnetic and Solar Data, J. Virginia Lincoln, Editor [Refs 4-7]. Last column annotations denote Q/q - 10 quiet days, Q - 5 quiet days, D - 5 disturbed days.

Table II. GEOMAGNETIC AND SOLAR DATA, JULY 1962

<table>
<thead>
<tr>
<th>Day</th>
<th>Kp (3-hour intervals)</th>
<th>Sum</th>
<th>Ave.</th>
<th>Q/D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kp</td>
<td>Kp</td>
<td>Rz</td>
</tr>
<tr>
<td>1</td>
<td>20 20 3- 30 2+ 2+ 2- 20</td>
<td>180</td>
<td>2.3</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>2+ 10 20 20 1- 2- 3- 30</td>
<td>15+</td>
<td>1.9</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>3- 10 2- 20 20 3- 2+ 1+</td>
<td>16-</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>20 4- 30 2+ 3+ 20 4+ 4-</td>
<td>25+</td>
<td>3.2</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>30 40 40 2+ 2+ 2+ 2+ 2+</td>
<td>24+</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>3+ 30 3- 4- 20 2- 2+ 20</td>
<td>21-</td>
<td>2.6</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>10 1- 1- 2+ 2- 2+ 30 3+</td>
<td>150</td>
<td>1.9</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>20 30 30 2+ 20 20 2+ 30</td>
<td>20+</td>
<td>2.5</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>2+ 20 20 1+ 1- 1- 1+ 2-</td>
<td>120</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>20 10 1+ 0+ 30 3+ 20 20</td>
<td>150</td>
<td>1.9</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>20 2- 3- 20 3- 2+ 3- 2+</td>
<td>18+</td>
<td>2.3</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>10 30 2+ 20 20 20 1+ 1+</td>
<td>150</td>
<td>1.9</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>30 1+ 2- 1+ 3- 3- 3- 30</td>
<td>19+</td>
<td>2.3</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>30 3- 3- 2- 2- 2- 10 20</td>
<td>170</td>
<td>2.1</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>30 10 1- 1- 1- 1+ 20 20</td>
<td>110</td>
<td>1.4</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>20 1+ 0+ 0+ 10 0+ 0+ 0+</td>
<td>6+</td>
<td>0.7</td>
<td>26</td>
</tr>
<tr>
<td>17</td>
<td>0+ 0+ 0+ 0+ 1- 0+ 0+ 10</td>
<td>4+</td>
<td>0.5</td>
<td>31</td>
</tr>
<tr>
<td>18</td>
<td>1+ 1- 1- 1- 1+ 20 10 8+</td>
<td>1</td>
<td>29</td>
<td>Q</td>
</tr>
<tr>
<td>19</td>
<td>1+ 2+ 20 30 2+ 1+ 3+ 3-</td>
<td>18+</td>
<td>2.3</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>3+ 40 40 3- 2+ 3- 3- 20</td>
<td>24+</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>30 3- 2- 2- 20 30 2+ 30</td>
<td>21+</td>
<td>2.7</td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td>30 20 2+ 2+ 1- 1+ 1+ 20</td>
<td>14+</td>
<td>1.8</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>10 2+ 30 20 1+ 10 3+ 2-</td>
<td>16-</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>24</td>
<td>2+ 10 10 1- 20 4+ 5- 40</td>
<td>20+</td>
<td>2.5</td>
<td>13</td>
</tr>
<tr>
<td>25</td>
<td>5+ 4+ 3+ 2+ 2- 1- 10 2+</td>
<td>20+</td>
<td>2.5</td>
<td>11</td>
</tr>
<tr>
<td>26</td>
<td>3- 6+ 6- 50 3+ 4- 4+ 37+</td>
<td>4.7</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>27</td>
<td>50 4- 3+ 3- 40 5+ 3- 40</td>
<td>31+</td>
<td>3.8</td>
<td>9</td>
</tr>
<tr>
<td>28</td>
<td>4- 4- 40 3- 30 4- 2+ 2+</td>
<td>26+</td>
<td>3.2</td>
<td>9</td>
</tr>
<tr>
<td>29</td>
<td>4- 2- 30 2- 3- 1+ 2- 170</td>
<td>2.1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>20 3- 20 0+ 1- 1- 1- 1+</td>
<td>10+</td>
<td>1.3</td>
<td>7</td>
</tr>
<tr>
<td>31</td>
<td>1- 1- 1+ 1+ 1- 20 4+ 4+</td>
<td>15+</td>
<td>1.9</td>
<td>0</td>
</tr>
</tbody>
</table>
Table III. GEOMAGNETIC AND SOLAR DATA, AUGUST 1962

<table>
<thead>
<tr>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Sum</th>
<th>Ave.</th>
<th>Kp (3-hour Intervals)</th>
<th>Q/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>5+</td>
<td>5+</td>
<td>60</td>
<td>4-</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>35-</td>
<td>4.3</td>
<td>0</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>3+</td>
<td>30</td>
<td>10</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>20</td>
<td>19-</td>
<td>2.3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>3-</td>
<td>3-</td>
<td>2-</td>
<td>3-</td>
<td>3-</td>
<td>3-</td>
<td>3-</td>
<td>20-</td>
<td>2.5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>20</td>
<td>2+</td>
<td>2-</td>
<td>2-</td>
<td>2+</td>
<td>2+</td>
<td>1+</td>
<td>140</td>
<td>1.8</td>
<td>10</td>
<td>q</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>20</td>
<td>3-</td>
<td>30</td>
<td>20</td>
<td>1+</td>
<td>1-</td>
<td>15+</td>
<td>1.9</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>3+</td>
<td>40</td>
<td>30</td>
<td>4-</td>
<td>3+</td>
<td>3-</td>
<td>3+</td>
<td>26+</td>
<td>3.3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>30</td>
<td>2+</td>
<td>2+</td>
<td>30</td>
<td>4-</td>
<td>5-</td>
<td>4+</td>
<td>27+</td>
<td>3.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>4-</td>
<td>40</td>
<td>3-</td>
<td>4+</td>
<td>3+</td>
<td>33+</td>
<td>4.2</td>
<td>8</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>5-</td>
<td>3+</td>
<td>40</td>
<td>30</td>
<td>2+</td>
<td>2+</td>
<td>3-</td>
<td>3o</td>
<td>26+</td>
<td>3.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>3-</td>
<td>3+</td>
<td>2+</td>
<td>2+</td>
<td>3-</td>
<td>10</td>
<td>10</td>
<td>18+</td>
<td>2.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>1-</td>
<td>0+</td>
<td>0+</td>
<td>1-</td>
<td>0+</td>
<td>1-</td>
<td>0o</td>
<td>40</td>
<td>0.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0+</td>
<td>10</td>
<td>1-</td>
<td>2-</td>
<td>2-</td>
<td>0+</td>
<td>0+</td>
<td>1o</td>
<td>70</td>
<td>0.9</td>
<td>15</td>
<td>Q</td>
</tr>
<tr>
<td>13</td>
<td>1-</td>
<td>1-</td>
<td>1+</td>
<td>1-</td>
<td>0+</td>
<td>1o</td>
<td>3+</td>
<td>90</td>
<td>1.1</td>
<td>24</td>
<td></td>
<td>Q</td>
</tr>
<tr>
<td>14</td>
<td>2+</td>
<td>2+</td>
<td>10</td>
<td>2-</td>
<td>2+</td>
<td>1o</td>
<td>3o</td>
<td>3+</td>
<td>170</td>
<td>2.1</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3-</td>
<td>5o</td>
<td>3+</td>
<td>2o</td>
<td>3-</td>
<td>3-</td>
<td>4o</td>
<td>270</td>
<td>3.4</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>50</td>
<td>3+</td>
<td>40</td>
<td>10</td>
<td>1+</td>
<td>2-</td>
<td>4+</td>
<td>5-</td>
<td>25-</td>
<td>3.1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4+</td>
<td>3o</td>
<td>3o</td>
<td>30</td>
<td>3+</td>
<td>4-</td>
<td>4+</td>
<td>5o</td>
<td>29+</td>
<td>3.7</td>
<td>53</td>
<td>D</td>
</tr>
<tr>
<td>18</td>
<td>3+</td>
<td>4+</td>
<td>5-</td>
<td>3+</td>
<td>3+</td>
<td>4+</td>
<td>2+</td>
<td>3+</td>
<td>28-</td>
<td>3.5</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>3-</td>
<td>2+</td>
<td>2o</td>
<td>2+</td>
<td>25-</td>
<td>3.1</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2-</td>
<td>2+</td>
<td>1o</td>
<td>2-</td>
<td>2o</td>
<td>1-</td>
<td>2-</td>
<td>0o</td>
<td>10-</td>
<td>1.2</td>
<td>39</td>
<td>Q</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>2-</td>
<td>1-</td>
<td>1o</td>
<td>1o</td>
<td>2-</td>
<td>1+</td>
<td>4-</td>
<td>120</td>
<td>1.5</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5+</td>
<td>40</td>
<td>5+</td>
<td>2+</td>
<td>3-</td>
<td>3-</td>
<td>3-</td>
<td>3-</td>
<td>32-</td>
<td>4</td>
<td>30</td>
<td>D</td>
</tr>
<tr>
<td>23</td>
<td>4-</td>
<td>3+</td>
<td>3o</td>
<td>3o</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>3o</td>
<td>3-</td>
<td>26-</td>
<td>3.2</td>
<td>27</td>
</tr>
<tr>
<td>24</td>
<td>3+</td>
<td>3o</td>
<td>4+</td>
<td>3+</td>
<td>4+</td>
<td>3+</td>
<td>4+</td>
<td>4-</td>
<td>28-</td>
<td>3.5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>40</td>
<td>3-</td>
<td>3o</td>
<td>2+</td>
<td>2o</td>
<td>3-</td>
<td>2o</td>
<td>3+</td>
<td>220</td>
<td>2.8</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>3-</td>
<td>3+</td>
<td>2+</td>
<td>2+</td>
<td>3-</td>
<td>2+</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10-</td>
<td>1.9</td>
<td>7</td>
</tr>
<tr>
<td>27</td>
<td>2+</td>
<td>2o</td>
<td>2+</td>
<td>0o</td>
<td>1-</td>
<td>1o</td>
<td>1-</td>
<td>1o</td>
<td>10-</td>
<td>1.2</td>
<td>7</td>
<td>Q</td>
</tr>
<tr>
<td>28</td>
<td>1+</td>
<td>2o</td>
<td>2-</td>
<td>2-</td>
<td>1+</td>
<td>0o</td>
<td>0+</td>
<td>0+</td>
<td>9+</td>
<td>1.2</td>
<td>14</td>
<td>Q</td>
</tr>
<tr>
<td>29</td>
<td>2o</td>
<td>3o</td>
<td>3+</td>
<td>4-</td>
<td>3-</td>
<td>3+</td>
<td>3+</td>
<td>230</td>
<td>2.9</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2+</td>
<td>3o</td>
<td>3-</td>
<td>4-</td>
<td>3-</td>
<td>4-</td>
<td>2o</td>
<td>22-</td>
<td>2.7</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5-</td>
<td>5+</td>
<td>5+</td>
<td>4-</td>
<td>3+</td>
<td>1+</td>
<td>3-</td>
<td>2o</td>
<td>28-</td>
<td>3.5</td>
<td>22</td>
<td>D</td>
</tr>
</tbody>
</table>
Table IV. GEOMAGNETIC AND SOLAR DATA, SEPTEMBER 1962

<table>
<thead>
<tr>
<th>Day</th>
<th>Kp (3-hour intervals)</th>
<th>Sum Ave.</th>
<th>Q/D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kp</td>
<td>Kp</td>
<td>Rz</td>
</tr>
<tr>
<td>1</td>
<td>3+ 2+ 5- 40 40 50 5- 40</td>
<td>320</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3o 5- 5- 5- 40 40 40 4+ 3+</td>
<td>340</td>
<td>4.3</td>
</tr>
<tr>
<td>3</td>
<td>40 5+ 4- 5+ 40 40 6- 6+</td>
<td>380</td>
<td>4.8</td>
</tr>
<tr>
<td>4</td>
<td>5- 6- 6+ 5- 40 40 4- 3o</td>
<td>350</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>1o 3+ 40 40 3o 4- 3- 3o</td>
<td>240</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4- 40 3o 40 3- 20 3o 3+</td>
<td>280</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>4- 4- 40 3o 3- 1+ 2o 1+</td>
<td>220</td>
<td>2.7</td>
</tr>
<tr>
<td>8</td>
<td>3+ 4o 40 3o 2- 20 1o 2-</td>
<td>210</td>
<td>2.6</td>
</tr>
<tr>
<td>9</td>
<td>3- 3o 1- 2o 2+ 2o 3o 3+</td>
<td>190</td>
<td>2.4</td>
</tr>
<tr>
<td>10</td>
<td>3o 3o 3o 2- 1- 1- 1- 1o</td>
<td>170</td>
<td>2.1</td>
</tr>
<tr>
<td>11</td>
<td>2+ 1+ 2+ 4- 1- 1- 2- 3-</td>
<td>15+ 1.9</td>
<td>51 q</td>
</tr>
<tr>
<td>12</td>
<td>3- 3o 7+ 5o 4- 5- 7- 6</td>
<td>390</td>
<td>4.8</td>
</tr>
<tr>
<td>13</td>
<td>4o 3+ 4- 3- 3o 4+ 5o 20</td>
<td>280</td>
<td>3.5</td>
</tr>
<tr>
<td>14</td>
<td>3o 3o 4o 2- 1o 2- 2o 2+</td>
<td>190</td>
<td>2.3</td>
</tr>
<tr>
<td>15</td>
<td>3o 4- 4o 3- 1- 2+ 3+ 3o</td>
<td>230</td>
<td>2.8</td>
</tr>
<tr>
<td>16</td>
<td>2+ 3- 1- 2o 2o 2- 3o 3+</td>
<td>180</td>
<td>2.2</td>
</tr>
<tr>
<td>17</td>
<td>2o 3- 2+ 1+ 2o 1+ 2- 2o</td>
<td>150</td>
<td>1.9</td>
</tr>
<tr>
<td>18</td>
<td>2- 1- 1o 1o 1o 1o 1o 1o</td>
<td>10+ 1.3</td>
<td>35 Q</td>
</tr>
<tr>
<td>19</td>
<td>3o 4+ 6- 4o 3+ 4+ 6o 5-</td>
<td>350</td>
<td>4.4</td>
</tr>
<tr>
<td>20</td>
<td>5- 3+ 2+ 4- 2o 1- 1o 1-</td>
<td>190</td>
<td>2.3</td>
</tr>
<tr>
<td>21</td>
<td>2o 3- 3- 2- 3o 4- 3- 3-</td>
<td>210</td>
<td>2.6</td>
</tr>
<tr>
<td>22</td>
<td>4o 4- 3o 4o 4- 4- 4- 2o</td>
<td>280</td>
<td>3.5</td>
</tr>
<tr>
<td>23</td>
<td>3+ 4+ 3o 3+ 1+ 1o 1o 1o</td>
<td>200</td>
<td>2.5</td>
</tr>
<tr>
<td>24</td>
<td>2+ 3o 1o 0o 1- 0o 2o 2-</td>
<td>110</td>
<td>1.4</td>
</tr>
<tr>
<td>25</td>
<td>0+ 1- 1- 2- 2+ 3+ 3- 3-</td>
<td>130</td>
<td>1.6</td>
</tr>
<tr>
<td>26</td>
<td>5+ 6- 3+ 2o 3+ 5- 4o 2+</td>
<td>310</td>
<td>3.9</td>
</tr>
<tr>
<td>27</td>
<td>3o 2+ 2o 2+ 3- 2o 1o 2-</td>
<td>170</td>
<td>2.1</td>
</tr>
<tr>
<td>28</td>
<td>3- 1+ 1- 1o 2+ 3- 2+ 3+</td>
<td>160</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>2o 3+ 3o 3+ 2+ 2+ 3+ 3+</td>
<td>250</td>
<td>3.1</td>
</tr>
<tr>
<td>30</td>
<td>4o 4+ 3o 3- 3- 2o 2- 1+</td>
<td>220</td>
<td>2.7</td>
</tr>
</tbody>
</table>

57
<table>
<thead>
<tr>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Kp</th>
<th>Kp</th>
<th>Rz</th>
<th>Q/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3+</td>
<td>4+</td>
<td>50</td>
<td>50</td>
<td>5+</td>
<td>5-</td>
<td>6-</td>
<td>5-</td>
<td>380</td>
<td>4.8</td>
<td>51</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>4+</td>
<td>4-</td>
<td>5-</td>
<td>4-</td>
<td>4-</td>
<td>4+</td>
<td>3-</td>
<td>1+</td>
<td>28+</td>
<td>3.5</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2-</td>
<td>2-</td>
<td>4-</td>
<td>2+</td>
<td>3+</td>
<td>2-</td>
<td>3-</td>
<td>3-</td>
<td>20-</td>
<td>2.5</td>
<td>22</td>
<td>q</td>
</tr>
<tr>
<td>4</td>
<td>2+</td>
<td>3+</td>
<td>30</td>
<td>20</td>
<td>1-</td>
<td>2+</td>
<td>20</td>
<td>3-</td>
<td>18+</td>
<td>2.3</td>
<td>18</td>
<td>Q</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>2-</td>
<td>1+</td>
<td>10</td>
<td>1+</td>
<td>3-</td>
<td>5-</td>
<td>3+</td>
<td>170</td>
<td>2.1</td>
<td>13</td>
<td>q</td>
</tr>
<tr>
<td>6</td>
<td>5-</td>
<td>4-</td>
<td>4+</td>
<td>10</td>
<td>3+</td>
<td>3-</td>
<td>0+</td>
<td>2+</td>
<td>22+</td>
<td>2.8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2-</td>
<td>3+</td>
<td>1+</td>
<td>20</td>
<td>1-</td>
<td>1+</td>
<td>3+</td>
<td>4+</td>
<td>19-</td>
<td>2.3</td>
<td>37</td>
<td>D</td>
</tr>
<tr>
<td>8</td>
<td>6+</td>
<td>4-</td>
<td>3+</td>
<td>4+</td>
<td>3+</td>
<td>5-</td>
<td>40</td>
<td>40</td>
<td>34+</td>
<td>4.2</td>
<td>40</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>6-</td>
<td>4+</td>
<td>5-</td>
<td>4-</td>
<td>4-</td>
<td>40</td>
<td>30</td>
<td>4-</td>
<td>33+</td>
<td>4.2</td>
<td>42</td>
<td>D</td>
</tr>
<tr>
<td>10</td>
<td>4-</td>
<td>3+</td>
<td>3-</td>
<td>3+</td>
<td>5-</td>
<td>4-</td>
<td>4+</td>
<td>3-</td>
<td>28+</td>
<td>3.5</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4-</td>
<td>50</td>
<td>4+</td>
<td>3+</td>
<td>4-</td>
<td>3o</td>
<td>4-</td>
<td>3+</td>
<td>300</td>
<td>3.8</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>2+</td>
<td>2+</td>
<td>4-</td>
<td>2-</td>
<td>1+</td>
<td>1-</td>
<td>1-</td>
<td>16-</td>
<td>2.2</td>
<td>63</td>
<td>Q</td>
</tr>
<tr>
<td>13</td>
<td>1-</td>
<td>1+</td>
<td>1+</td>
<td>3+</td>
<td>4-</td>
<td>3-</td>
<td>2+</td>
<td>30</td>
<td>18+</td>
<td>2.3</td>
<td>74</td>
<td>Q</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>4+</td>
<td>5-</td>
<td>5-</td>
<td>40</td>
<td>30</td>
<td>5-</td>
<td>4-</td>
<td>330</td>
<td>4.1</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3-</td>
<td>3+</td>
<td>2+</td>
<td>3-</td>
<td>2-</td>
<td>3-</td>
<td>1-</td>
<td>20</td>
<td>180</td>
<td>2.3</td>
<td>62</td>
<td>Q</td>
</tr>
<tr>
<td>16</td>
<td>3-</td>
<td>20</td>
<td>20</td>
<td>6-</td>
<td>40</td>
<td>20</td>
<td>4-</td>
<td>30</td>
<td>250</td>
<td>3.1</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3+</td>
<td>2+</td>
<td>3-</td>
<td>20</td>
<td>1-</td>
<td>00</td>
<td>10</td>
<td>1+</td>
<td>13+</td>
<td>1.7</td>
<td>43</td>
<td>Q</td>
</tr>
<tr>
<td>18</td>
<td>5-</td>
<td>5-</td>
<td>2-</td>
<td>1+</td>
<td>2-</td>
<td>3+</td>
<td>3o</td>
<td>1+</td>
<td>22-</td>
<td>2.7</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0+</td>
<td>00</td>
<td>50</td>
<td>5o</td>
<td>5-</td>
<td>5o</td>
<td>4-</td>
<td>4-</td>
<td>27+</td>
<td>3.4</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>2-</td>
<td>10</td>
<td>3-</td>
<td>3-</td>
<td>3o</td>
<td>4-</td>
<td>19-</td>
<td>2.3</td>
<td>28</td>
<td>q</td>
</tr>
<tr>
<td>21</td>
<td>4-</td>
<td>3+</td>
<td>2+</td>
<td>2+</td>
<td>20</td>
<td>4-</td>
<td>3o</td>
<td>20</td>
<td>22+</td>
<td>2.8</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2+</td>
<td>4-</td>
<td>30</td>
<td>40</td>
<td>4+</td>
<td>3+</td>
<td>3+</td>
<td>5-</td>
<td>20-</td>
<td>3.6</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>4-</td>
<td>3+</td>
<td>4-</td>
<td>3o</td>
<td>3+</td>
<td>290</td>
<td>3.6</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>30</td>
<td>4-</td>
<td>3-</td>
<td>30</td>
<td>4o</td>
<td>5o</td>
<td>5-</td>
<td>5-</td>
<td>31-</td>
<td>3.8</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4-</td>
<td>4+</td>
<td>4+</td>
<td>4o</td>
<td>4+</td>
<td>5-</td>
<td>5-</td>
<td>5o</td>
<td>350</td>
<td>4.4</td>
<td>43</td>
<td>D</td>
</tr>
<tr>
<td>26</td>
<td>4-</td>
<td>4-</td>
<td>5-</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>5+</td>
<td>4o</td>
<td>34+</td>
<td>4.3</td>
<td>48</td>
<td>D</td>
</tr>
<tr>
<td>27</td>
<td>4-</td>
<td>40</td>
<td>50</td>
<td>30</td>
<td>50</td>
<td>5-</td>
<td>3-</td>
<td>3+</td>
<td>31+</td>
<td>3.9</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3+</td>
<td>4+</td>
<td>3+</td>
<td>30</td>
<td>3o</td>
<td>3-</td>
<td>3-</td>
<td>3o</td>
<td>260</td>
<td>3.3</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>3-</td>
<td>3-</td>
<td>3-</td>
<td>2+</td>
<td>3-</td>
<td>3+</td>
<td>3+</td>
<td>22-</td>
<td>2.7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>3+</td>
<td>2+</td>
<td>30</td>
<td>3+</td>
<td>2+</td>
<td>20</td>
<td>23+</td>
<td>2.9</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>20</td>
<td>2+</td>
<td>2+</td>
<td>3-</td>
<td>20</td>
<td>2-</td>
<td>2+</td>
<td>3-</td>
<td>180</td>
<td>2.3</td>
<td>23</td>
<td>Q</td>
</tr>
</tbody>
</table>
LIST OF REFERENCES

BIBLIOGRAPHY

Abdu, M.A., and others, "Spread F plasma bubble vertical rise velocities determined from space ionosonde observations," Report INPE-2416, Instituto de Pesquisas Espaciais, Sao Jose Dos Campos (Brazil), 1982.

Aksenov, V.I., and others, "Investigation of sporadic solar radio emission and parameters of the Earth's ionosphere by Intercosmos-Copernicus 500, VI. Morphological and spectral

Bowen, E.D., "Propagation characteristics of the equatorial ionosphere as measured between magnetically conjugate points at VHF," in ESSA Conjugate Point Symp., v.2. session 3, July, 1967.

Communication Laboratory, Stanford Research Institute, film on "Nuclear weapon effects on the ionosphere (F region disturbances)," prepared for U.S. Electronics Research and Development Laboratory, Fort Monmouth, NJ, Contract DA 36-039 SC-87197, DASA Subtask 07.104.

Davies, K., and Barghausen, A.F., "The effect of spread F on the propagation of radio waves near the equator," in *Ninth Meeting of Ionospheric Research Committee,* AGARD, Copenhagen, Denmark, 1964.

71

Nelson, O.R., "Time and latitudinal distribution of the ionospheric irregularities in Brazil, through the VHF-scintillation and ionogram data analysis," Report INPE-3179, Instituto de Pesquisas Espaciais, Sao Jose Dos Campos (Brazil), 1984.

76

80
INITIAL DISTRIBUTION LIST

1. **Defense Technical Information Center**
 Cameron Station
 Alexandria VA 22304-6145

2. **Library, Code 52**
 Naval Postgraduate School
 Monterey CA 93943-5002

3. **Chairman, Code EC**
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, CA 93943

4. **Professor R. W. Adler, Code EC/Ab**
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, CA 93943

5. **Professor W. R. Vincent, Code EC/Ab**
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, CA 93943

6. **Bob R. Rose**
 NRaD, Code 542
 Naval Command, Control and Ocean Surveillance Center
 271 Catalina Blvd
 San Diego, CA 92152-5000

7. **Naval Security Group Command**
 Code GX (CDR. G.K. Lott)
 3801 Nebraska Ave NW
 Washington, DC 20393-5220

| No. Copies |
8. LT John W. McKinstry
 Naval Research Laboratory
 Code 9110
 4555 Overlook Ave.
 Washington, DC, S.W. 20345