
AD-A262 313

CRITERIA FOR COMPARING
DOMAIN ANALYSIS APPROACHES

SPC-92117-CMC

VERSION 01.00.00

DECEMBER 1991 DTIC

MI'AR2 5 1993D

E

"93-06062

S'. !• , -' • nApr, oved-- - fo, publtic ,,,, .,. 'E.
k 25 t

CRITERIA FOR COMPARING
DOMAIN ANALYSIS APPROACHES

Acceaý1ot For
NTIS CRy&!

SPC-92117-CMC u aoed

By

Avalabflity Codes

VERSION 01.00.00 Dist Avail andI /or
Special

DECEMBER 1991

Steven WartikS en P rietoDiaz Statement A per telecon Jack Klramer

Ruben Prieto-Diaz DARPA/SISTO
Arlington, VA 22203

NIIW 3/24/93

Reprinted for the

VIRGINIA CENTER OF EXCELLENCE
FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

February 1993

SOFTWARE PRODUCTIVITY CONSORTIUM, INC.
SPC Building

2214 Rock Hill Road
Herndon, Virginia 22070

Copyright © 1991,1993 Software Productivity Consortium, Inc., Hemdon, Virginia. Permission to use, copy, modify. and distribute
this material for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all copies
aud that both this copyright notice and this pcrimission notice appear in supporting documentation. The name Software
Productivity Consortium shall not be used in advertising or publicity pertaining to this material or otherwise without the prior
written permission of Software Productivity Consortium, Inc. SOfTWARE PRODUCITVITY CONSORTIUM, INC. MAKES
NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUHIAIIILrIY OF TiHIS MATERIAL FOR ANY
PURPOSE OR ABOUT ANY OTHER MATTIER, AND THIlS MAIERIAL IS PROVIDED WITHOUT EXPRE-SS OR
IMPLIED WARRANTY OF ANY KIND.

UNIX is a registered trademark of UNIX System Laboratories, Inc,

CONTENTS

ACKNOWLEDGEMENTS ... ix

MXcurIV SUMMARY .. xi

1. INTRODUCT ON .. I

1.1 Problem Statem ent ... 1

1.2 Domain Analysis and Software Reuse .. 2

1.3 Domain An alysis in Context I... I............. 3

1.4 Organization of This Report ... 4

1.5 Typographic Conventions .. 5

2. AN OVERVIEW OF SOME DOMAIN ANALYSIS APPROACHES 7

2.1 Jaworski's Approach .. 7

2.1.1 O verview ... 7

Z.12 Process and Products .. 8

2.1.3 Exam ples ... 9

2.2 Domain Analysis in Synthesis .. 9

Ill. Ov erview ... 9

2.212 Process and Products .. 10

2.23 Exam ples ... 11

2.3 The Faceted Classification Approach of Rubi.n Prieto-Diaz 11

2.3.1 O verview ... 11

2.3.2 Process and Products .. 13

2.3.3 Exam ples ... 15

iii

Contents

2.4 FO D A .. 15

2.4.1 O verview ... 15

2.4.2 Process and Products 15

24.3 Exam ples .. 17

2.5 Lubars' Support for Mechanized Reuse Using Domain Analysis 17

2.5.1 O verview ... 17

2.5.2 Process and Products .. 17

2.5.3 Exam ples ... 18

2.6 K A PTU R ... 18

2.6.1 O verview ... 18

26.2 Process and Products .. 19

2.6.3 Exam ples .. 20

2.7 Procedural Commonality 20

3. SIMILARITIES AMONG APPROACHES 23

3.1 The Definition of "Domain" . .. 23

3.2 Sources of Domain Knowledge ... 24

3.3 Objectives of Domain Analysis 24

3.4 Shared Concerns ... 25

4. COMPARISON CRITERIA .. 27

4.1 The Definition of "Domain" 29

4.2 The Determination of Problems in the Domain 30

43 The Permanence of Domain Analysis Results 31

4.4 The Relation to the Software Development Process 31

4.5 The Focus of Analysis .. 33

4.6 The Paradigm of Prcblem Space Models .. 34

4.7 The Purpose and Nature of Domain Models 34

4.8 The Organizational Model of Domains and Projects 36

iv

Contents

4.9 The Approach to Reuse 37

4.10 The Primary Product of Domain Development 38

5. APPLYING THE CRITERIA ... 39

5.1 Analysis of Criteria ... 40

5.1.1 The Definition of "Domain" 40

5.1.2 The Determination of Problems in the Domain 41

5.1.3 The Permanence of Domain Analysis Results 41

5.1.4 The Relation to the Software Development Process 42

5.1.5 The Focus of Analysis ... 43

5.1.6 The Paradigm of Problem Space Models 44

5.1.7 The Purpose and Nature of Domain Models 44

5.1.8 The Organizational Model of Domains and Projects 45

5.1.9 Th e Approach to Reuse .. 45

5.1.10 The Primary Product of Domain Development 46

52. Benefit of the Comparison Criteria ... 46

6. CONCLUSIONS ... 49

6.1 Is a Unified Domain Analysis Approach Feasible? 49

6.2 Selecting the Right Domain Analysis Approach 49

6.3 Trends in Domain Analysis Research .. 50

6.4 Comparing and Contrasting Approaches to Domain Analysis 50

REFERENCES ... 51

V

FIGURES

Figure 1. Genealogy of Domain Analysis Approaches 8

Figure 2 Jawdrski's Process for Domain Analysis 9

-Figure 3. Synthesis Domain Analysis Process (Partial) 11

Figure 4. Synthesis Domain Engineering Process 12

Figure 5. Software Development in Synthesis ... 12

Figure 6. Prieto-Diaz's Process for Domain Analysis (1987 Version) 13

Figure 7. Prieto-Diaz's Top-Down-Bottom-Up Domain Analysis Process (1990 Version) 14

Figure 8. FODAs Domain Analysis Process .. 16

Figure 9. Lubars' Domain Analysis Process ... 18

Figure 10. KAPTUR Domain Analysis Process 19

vi

TABLES

Table 1. Summary of Comparison Criteria ... xii

Table 2. Common Procedures ,or Six Domain Analysis Approaches 21

Table 3. Relation of Criteria and Contextual Factors 27

Table 4. Summary of Comparison Criteria ... 28

Table 5. Summary of Approaches ... 39

vii

Ubes

This page intentionally left blank.

viii

ACKNOWLEDGEMENTS

Thanks are due to Grady Campbell for providing the original criteria for comparison and to Jim
O'Connor for some thoughtful analysis of the differences between the various processes and products.
The document's present state is the result of insightful reviews by Grady Campbell, Bill Frakes, Fred
Hills, Rich McCabe, Sam Redwine, and Dave Weiss.

Ix

Adakna•dgcmcnts

This page intentionally left blank.

EXECUTIVE SUMMARY

Several of the Software Productivity Consortium's key technologies for process and reuse improvement
incorporate domain analysis. However, the Consortium has three approaches to domain analysis as-
sociated with it, and these approaches differ in goals, end products, and processes. Lacking criteria
for comparing the approaches, no one could justify using one approach over another. This has been
something of a problem for Consortium projects looking to select an approach. Moreover, two of the
approaches are still maturing; their architects need to know their strengths, weaknesses, and applica-
bilities if they are to become more useful. Member companies, who are increasingly interested in
performing domain analysis, also need to know which approach to use.

This report describes criteria for comparing domain analysis approaches. An organization can use
them to determine if a domain analysis approach will meet their needs. To some degree, they also rank
approaches in order of desirability.

Domain analysis occurs in response to some need, so the Consortium looked for software developm.-nt
factors that dictate the suitability of a domain analysis approach for a given organization. It settled
on the following five:

1. Software process needs: Constraints on the process model used to develop software.

2. Existing software base: The number and availability of existing applications in a domain and
their characteristics.

3. Business objectives: The long-term and short-term plans for buildirg and using the products
that result from domain analysis.

4. State of domain knowledge: The maturity of the domain.

5. Intended use of information repositories: How software developers are to use the products
of domain analysis.

These factors characterize an organization. By contrast, the comparison criteria say nothing about
an organization. They only characterize differences among domain analysis approaches. However. the
Consortium studied the relationships between those differences and organizational factors, and it
created an informal mapping between the two. An organization therefore uses the criteria by first
characterizing itself in terms of the five factors. It then characterizes a domain analysis approach in
terms of the criteria and, using the mapping, determines if the approach satisfies its needs.

The Consortium derived the criteria by studying similarities an,ý differences among existing domain
analysis approaches. Similarities included high-level objectives (the creation of artifacts that allow for
effective reuse and the capture and formalization of domain knowledge), the sources of domain knowledge

36

EamatM Summary

(domain experts, reference materials, existing systems), and--to the extent that their objectives axe
similar--agreement on difficulties in performing domain analysis (the need for precise definitions of
domain artifacts, how to validate the results of domain analysis, and economic considerations).

The Consortium uncovered ten criteria by which researchers or practitioners can contrast the
approaches. "hble 1 summarizes them.

"Lable 1. Summary of Comparison Criteria

Criterion Meaning Choices
Definition of 'domain" What a domain encompasses, how that - Application area

influences what is considered a domain, • Business area
and how organizations satisfy business
goals accordingly.

"Determination of problems in the The approach used to arrive at the set o Problem-oriented
domain of problems that make up a domain. - Solution-oriented

• Problem-/solution.
oriented

Permanence of domain analysis Whether products of domain analysis • Permanent
results evolve. * Mutable

Relation to the software How domain analysis activities fit into a * Pre-requirements,
development process software process, model activities (or dependent

vice versa). * Pre-requirements,
independent

_ Meta-process
Focus of analysis The fundamental concept on which * Objects and operations

analysts focus during analysis. - Decisions
Paradigm of problem space The fundamental concept emphasized • Generic requirements
models by the problem space model that the * Decision model

analysts derive. * Both
Purpose and nature of domain Intended uses of the products of • Repository
models domain analysis. * Software specification

o Process specification
Organizational models of domains Possible organizations a company might • Circumstance-driven
and projects use to maximize the potential of • Project-driven

domain analysis. • Domain-driven
Approach to reuse Strategies for exploiting the reusable * Opportunistic

components generated during domain • Systemr'atic
analysis and implementation.

Primary product of domain Most significant product resulting from * Reuse library
development domain implementation, guiding how 9 Application engineering

other products will be used. process

The Consortium applied the criteria to six approaches--the three Consortium approaches and three
developed elsewhere-so it could see trends in domain analysis. It discovered that approaches may
share similar goals but can meet these goals in very different ways. It also found that, according to
the criteria, no two approaches are exactly alike. This indicates that the criteria discriminate appropriately.

2ii

Em=ctiw* Summary

When the study began, the Consortium hoped that one outcome would be a recommendation for how
to create a unified approach to domain analysis. Such an approach would fill all Consortium needs
and would be useful in most situations. After performing this study, the Consortium does not believe
a unified approach is useful. Domain analysis occurs in response to some (software) need. There are
many different types of needs, and the products to support them vary. A unified approach would be
overly complex. The Consortium should instead supply a decision process for selecting among domain
analysis approaches. This report is a first step toward such a decision process. Projects that require
domain analysis could then define their needs precisely and select the approach that best meets those
needs. Meanwhile, domain analysis researchers must continue to improve their approaches and to
clarify the niche they fill.

xu

EWxe Summary

This page intentionally left blank.

liv

1. INTRODUCTION

This report presents a framework for comparing domain analysis approaches. The Consortium has
several goals in doing so:

L To provide a means for practitioners to determine which approach best suits their needs.

2 To study the feasibility of a unified approach to domain analysis that is applicable across domains.

3. To show trends in domain analysis research.

4. To provide domain analysis researchers with a common conceptual ground.

The Consortium based the comparison on criteria derived from six existing approaches. The criteria
show conceptual differences that relate to contextual needs, i.e., they determine how and where
practitioners should use a given domain analysis process.

The remainder of this section states the problem more exactly and defines some concepts.

1.1 PROBLEM STATEMENT

One characteristic of an emerging technology is the many manifestations it assumes before its
practitioners recognize standard terminology and semantics. This is certainly true of domain analysis
which, in its relatively brief existence, has come to mean many things to many people. Surveys of
domain analysis approaches (e.g., [Prieto-Diaz and Arango 1991]) show underlying similarities;
broadly speaking, everyone agrees that domain analysis is the analysis of some area, leading toward
some predetermined goal. However, the diverse goals, products, and processes of the approaches--which
this report will cover in depth-have left people confused about which approach will best fit their needs.

This confusion stems from two causes. One is the conflicting goals people have for domain analysis.
Although originally intended to promote software reuse (Neighbors 1984), domain analysis is also use-
ful for capturing domain knowledge (Shlaer and Melior 1989), for helping people learn about domains
(Arango 1988), or for combinations of these goals. A second cause of confusion is the difference be-
tween the products that result from various approaches. How, for example, should a practitioner de-
termine the circumstances under which the faceted classification scheme espoused by Prieto-Diaz
(Prieto-Diaz 1987) characterizes differences between components more accurately than the hierarchi-
cal structures of FODA (feature-oriented domain analysis) (Kang et al. 1990)? Lubars represents ab-
stract designs using an extended flowchart model incorporating object-oriented concepts (Lubars
1991). How does this compare to Synthesis (Software Productivity Consortium 1991), which does not
prescribe a particular model for abstract designs, or to FODA, which uses the Design Approach for
Real-Time Systems (DARTS) design method (Gomaa 1984)?

1

1. hntmduction

Domain analysis is still immature. Eventually, one approach may become standard, but this seems
unlikely. People are already applying domain analysis on a broad spectrum of projects. The diversity
of these projects introduces external factors that influence which domain analysis approach is appro-
priate. Sorting out these factors introduces more confusion than the two causes listed above; indeed,
it drives those causes. FODA abstract designs probably will be more useful to a project that intends
to use DARTS than to one using object-oriented design. The opposite holds true for Lubars' approach.

If no single approach meets all situations, then people must understand how to select the one that
best fits their needs. The person making such a selection must understand how domain analysis can
fit into a software development process. He must also be able to evaluate the possible benefits of using
domain analysis at each step of the software process his company employs and, more particularly,
he must be able to compare the short-term and long-term benefits and costs provided by the ap-
proaches he is considering. He must therefore be prepared to weigh the immediate needs and
possibilities of his organization against the expected future gain. In short, he faces a challenging task.

1.2 DOMAIN ANALYSIS AND SOFTWARE REUSE

Domain analysis has other uses besides reuse, but most people want to use it to that end. The Consortium
therefore gives a general statement of how it believes domain analysis affects reuse. The definitions
below apply to all domain analysis approaches it has studied.

Researchers have identified different types of reuse. They categorize the types based on various factors
(see [Basili et al. 19871), such as type of entity being reused (code, design, documentation, etc.) or the
kinds of adaptation needed (verbatim reuse, reuse of generic parts, reuse of fragments, etc.).
Practitioners are asking for domain analysis approaches that accommodate all types of reuse.

Domain analysis is concerned with knowledge acquisition and with methods to make use of that
knowledge. Software reuse involves using these methods. Therefore, the Consortium is interested in
what these methods can offer. Assume that a developer has a stated need-a module specification,
for instance-and hopes to fulfill it by reusing an existing component rather than writing one from
scratch. The base situation (no domain analysis) implies no defined methods for reuse. A minimal
domain analysis approach must yield methods that tell developers what opportunities they have for
reuse-that is, what components are, or need to be, available. The ideal domain analysis approach
would define methods that tell the developer everything he needs to know about reuse: which compo-
nent best matches the specification, how to adapt it if it does not meet the specification exactly, and
so on. The approach thus mechanizes reuse.

This suggests that researchers classify types of reuse in terms of software development processes, for
two reasons. First, they can define a scale based on just how mechanical the methods are. The more
mechanical the method, the less need for creativity, which implies less effort. Second, domain analysis
is not limited to code reuse, and methods for code reuse are not likely to be productive during software
requirements production. The ideal approach to domain analysis must define appropriate methods
for all relevant software process activities.

Based on this logic, the Consortium has defined three categories of reuse regarding the sophistication
of methods for responding to a reuse need. The definitions are based on the methods that developers
have available to help them reuse software. The categories are:

If the software process specifies no methods, developers must practice ad hoc reuse. This is
equivalent to informal, superficial domain analysis.

2

1. Introduction

"* If the software process specifies methods to identify what types of components developers may
reuse at a given time, and perhaps how to find such components in a set of existing software
assets (such as a reuse library), developers practice opportunistic reuse. In other words, their
opportunities for reuse are predefined, but not how they take advantage of those opportunities.

" If the software process specifies methods that define what components to reuse and how to
adapt them, developers practice systematic reuse. That is, the opportunities are predefined,
and a process for making use of those opportunities is specified.

Indexing schemes and searching heuristics are examples of methods used in opportunistic reuse
(Frakes and Gandel 1987). Application generators illustrate the types of methods developers used in
systematic reuse. For instance, a parser-generator implements systematic reuse for the domain of con-
tea-free languages. Given a reuse need (stated as a grammar), it uses predefined algorithms (methods)
to build a parser. The usual approach is to adapt a canonical parser to recognize the grammar.
(However, developers can systematically adapt parts, too.)

Such tools are currently available in relatively few domains. This reflects the constant maturation of
technology--domain analysis technology, but also of technology in general. Researchers have only re-
cently begun thinking about defining methods to promote reuse. Meanwhile, new discoveries continu-
ally create new domains that practitioners must analyze. There is a backlog of domains to analyze.
Even the practice of opportunistic reuse is limited by the need to analyze a domain to the point where
practitioners understand it enough to categorize components meaningfully.

Therefore, all types of reuse play a role in software development. No one type is clearly superior to
another; the one that is most appropriate deptends on the software being built. The goal of domain
analysis is to produce the best products and methods for a domain. Which domain analysis approach
is right for the domain therefore depends on the type of reuse that application developers practice.

1.3 DOMAIN ANALYSIS IN CONTEXT

The previous section leads to an important point: comparing domain analysis approaches requires
considering the context in which practitioners will use an approach. The questions posed in Section 1.1
are only meaningful within such a context. Domain analysis is a means to an end, and that end imposes
constraints.

This report has already shown how the type of reuse influences the approach an organization chooses.
Section 4 gives criteria for comparing approaches. All are related to contextual factors that an
organization using domain analysis must consider, in terms of its needs, before selecting an approach.

This section discusses such contextual factors. The list is not exhaustive, although it represents a useful
selection. As the Consortium gains more experience with domain analysis, it will no doubt understand
context issues more fully than it does today.

Domain analysis approaches are considered in the context of the following five factors:

L Software Process Needs. Some domain analysis techniques are intended for a certain process
model (e.g., waterfall). Others require instituting specific process models, sometimes non-
standard, that may or may not fit into a given organizational structure. For cost reasons, or
for contractual purposes, process needs may mandate or obviate an approach. In addition,

3

1. lntroducton

if an organization wants or needs software process maturity (Humphrey 1989), it should
consider the influence of domain analysis.

2. Existing Software Base. Successful domain analysis hinges on the ability of domain experts to
crystallize their knowledge. They often do so by examining properties of existing applications
in the domain. They therefore need access to such applications. Moreover, the products for
domain analysis generally include a library of reusable code components, or at least a
specification for one. More existing applications potentially means a richer library.

Domain analysts must also consider certain properties of the existing software. Most domain
analysis approaches are not concerned simply with existing properties of a domain. They at-
tempt to account for how the domain will evolve as new applications and the effects of
technology introduce the unforeseen.

3. Business Objectises. An organization should be cognizant of how it intends to use the products
of domain analysis. The analysis processes are potentially costly. The organization must un-
derstand this, have a model for absorbing the costs, and know when to expect to recover these
costs. The organization must understand both its short-term and long-term needs. This is es-
pecially important in planning domain evolution (if evolution is a goal). The organization must
know its current and future customer needs and have a plan prioritizing domain analysis and
implementation efforts to meet those needs.

4. State of Domain Knowledge. The more mature (and, consequently, usually less volatile) a
domain, the easier domain analysis will be. Conversely, there is little point in an organization
undertaking a multi-year, extensive analysis for a domain whose properties it understands
poorly-the benefits will be minimal in comparison to the costs. However, certain aspects of
domain analysis are still quite viable in an immature domain. An organization should under-
stand what those aspects are-planning for domain evolution, for example-and choose an
approach that does not stress others.

5. Intended Use of Information Repositories. Once the domain analysts specify and implement
domain-specific products, they make the products generally available to application develop-
ers. The developers can use the information in these products in many ways. One, of course.
is as reusable software components, but domain analysis researchers have proposed many oth-
er possibilities. They range from a general knowledge base to creation of assessment and simu-
lation tools. Some domain analysis processes yield abstract designs but no code, whereas
others yield code but no designs. Thus an organization must determine just what types of
products it would like to obtain from domain analysis and how it wants to use those products.

1.4 ORGANIZATION OF THIS REPORT

This report is organized as follows:

"* Section 2 gives background information on six domain analysis approaches, three from the
Consortium and three developed by other researchers.

"* Section 3 covers characteristics shared by all domain analysis approaches.

"* Section 4 presents the comparison criteria.

4

1. Introducion

" Section 5 applies these criteria to the six approaches, showing commonalities and diversity
among them.

" Section 6 presents the Consortium's conclusions.

1.5 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Serif font General presentation of information.

Italicized serif font Publication titles.

Boldfaced serif font Section headings and emphasis.

5

1. lumiduction

Thzis page infenlionally left blank.

2. AN OVERVIEW OF SOME DOMAIN ANALYSIS
APPROACHES

As Section 1 hinted, the Consortium has drawn much of the material in this report from studying three
domain analysis approaches in use at the Consortium and from three others created by industrial and
academic researchers. This section sets the stage for the remainder of the report by presenting. for
each approach, an overview of its history and its important concepts, a description of its process and
products, and examples of domains to which it has been applied.

A little history may help in understanding these descriptions. This report grew from a need to clarify
domain analysis goals and processes at the Consortium. There were three separate domain analysis
approaches because three researchers, each with different views on domain analysis, had worked
there. The Consortium's management recognized the need to avert a problem and ordered a study
of the three approaches. The goals were to determine if one of the three approaches was best, or at
least to characterize the circumstances under which each approach was advantageous. The
Consortium initially had hopes of synthesizing its findings to create a single, unified domain analysis
approach that it could recommend be used in almost all situations.

Figure 1 shows a genealogy of domain analysis approaches. While it is not complete, it captures the
most important paths that domain analysis researchers have followed. Arrows indicate influence. For
example, information hiding concepts and Coad's approach to domain analysis (Coad 1989) in-
fluenced Jaworski's approach (Jaworski et al. 1990). Object-oriented analysis (OOA) and Neighbors'
pioneering work on domain analysis influenced Coad's approach.

Figure 1 includes all three Consortium approaches (Jaworski, Prieto-Diaz, and Synthesis). They do
not cover all branches, however, indicating that a comparison of domain analysis approaches based
only on those three might miss important contributions of other researchers. The Consortium there-
fore included other approaches. It first added FODA to the study, and later KAPTUR (Knowledge
Acquisition for Preservation of Tradeoffs and Underlying Rationales) and Lubars' approach. Because
Shrinivas' interests were theoretical-he concentrated on a particular aspect of domain modeling and
did not define a complete domain analysis process-it excluded the branch of the genealogy that
includes his work. The six approaches this report treats are in boldface type in Figure 1.

2.1 JAWORSKI'S APPROACH

2.1.1 OvERviEw

A group at the Consortium under the direction of Dr. Alan Jaworski created the first of the three
Consortium approaches covered here. The fundamental concept underlying the approach is the use
of Coad's OOA techniques (Coad 1989) to yield the entities that comprise a domain. Thus a domain
is a group of interacting objects and operations. These objects and operations are requirements-level;
that is, they reflect domain concepts, not implementation details.

7

2. An Overview of Some Domain Analysis Approaches

Information Program Synthesis
Hiding Families

0 A -" - ... _. * C o ad J a w rsk D es ign

SchemasLubars

1980 Library Science

KAPTUR

Prieto-Diaz
1987

Arango . Prieto-Diaz

Mhodeyn Developmented0 Software Productivity Solutions

TheryShrnfivasP

Algebra,.- Ada FODA
Theory OeA-•-

Figure 1. Genealogy of Domain Analysis Approaches

2.1.2 PROCESS AND PRODUCTS

Jaworski defines a four-step domain analysis process, shown in Figure 2, which results in the following
outputs:*

" A domain definition, which serves as an informal (but careful) statement of what is and is not
part of the domain. It provides a working specification for subsequent products, especially
the canonical requirements, and it helps application implementors determine if the domain
contains components that meet their needs.

" A feasibility analysis that shows the cost-effectiveness of implementing reusable components
in the domain (Cruickshank and Gaffney 1991). Organizations use this product to determine
whether the domain is economically viable, and if so, to prioritize components.

" A knowledge base containing information about the domain-ideally, anything deemed
relevant, from laws governing the domain to reusable artifacts. Domain developers use the
knowledge base as they implement operations in the domain. Application developers use it
to understand more about the domain.

" Canonical requirements, which are black-box statements of capabilities and constraints, and
of the variabilities that distinguish instances. They are expressed as objects, and so are specifi-
cations of reusable components. During the "domain implementation" activity, which follows
domain analysis, domain developers design and implement these components. Application
developers, who, having recognized that a canonical requirement matches a reuse need, use
the associated variabilities to tailor the requirement to their exact need. They can also tailor
the corresponding reusable component; the result, then, is an instance of a requirement and
a corresponding design and implementation. Canonical requirements are often termed
"generic requirements"; this report uses the latter term.

To aid comparison, the figures in this section do not always use the same activity names or presentation format as in
the papers from which they are drawn.

8

2. An Overview of Some Domain AaLysis Approaches

Figurei 2orf o a

Dusiness directions, d l enat e
dencriptions of rithepofa
esgsting systems rfllk mBodlCost and usage4

Ttperience, e Develop iatlit aC e ntr market data d I Canonical system etaa eI Requirements
Act-1 Activity Technil data

SProductI

Td Product Flow Requiretm9ents for
-- Information Flow exristing systems

Figure a c Jaworski's Procts for Domain Analysis

Dopmain analysis and domain implementation together comprise "domain engineering," a process of
defining and implementing reusable components. Application developers use the results of domain
engineering in "application engineering," the process for implementing instances of applications with-
in a domain. Jaworski does not explicitly define this application engineering process, although he
suggests a waterfall-like model.

2.1.3 Ex~m, LES

Tte Consortium has tried, experimentally, on several domains, including the Satellite Operations
Control Center (SOCC) domain, the domains of job management systems (Snodgrass et a.. 1990), and
automobile cruise controls.

2.2 DOMAIN ANALYSIS IN SYNTHESIS

The Synthes is a amilyoas process (Campbell et al. 1991) is in some respects a refinement ofJaworski's approach, although it is oriented toward program families rather than OOA. The concepts
developed by the Software Cost Reduction project at the Naval Research Lab (Pamnas, Clements, and
Weiss 1985) and subsequent work on the Spectrum application development environment from
Software Architecture and Engineering, Inc. have heavily influenced it. The fundamental concepts
underlying the woxk are:

Thbe knowledge derivable from a domain analysis effort is sufficient to design a process forengineering applications in that domain. An application can be engineered in terms of domain
concepts rather than software design or programming language concepts. This means that sys-
tem building reduces to resolving requirements and engineering decisions representing
variations within a domain.

0Program family concepts (Pamnas 1976) apply to domain specifications. In other Words, a
domain is a family of applications sharing many common features but alsovarying in precisely
defined ways.

9

2. An Oveiew of Some Domain Analyis Approhcbes

A domain analyst can create a mapping from differences among applications in a domain to a
family of designs. Application developers can use this mapping to adapt the design mechanically.

2.2.2 PROCESS AND PRODUCTS

Figures 3 and 4 show the activities in the Synthesis domain analysis process. Figure 3 shows only
domain analysis activities, and in a form intended for comparison with the other approaches in this
section (note that it omits domain verification). Figure 4 shows the Synthesis domain analysis process
in the context of a domain engineering process. In Synthesis, domain engineering produces a process
and environment for engineering applications within a domain. Domain analysis produces what
amounts to a specification of that environment, including:

"• A domain definition which, in effect, combines Jaworski's domain definition and feasibility
analysis.

"* A domain specification, a specification of the domain precise enough to facilitate domain
implementation. The domain specification contains:

- A decision model, describing decisions application developers must make to identify
a specific application within a domain.

- Product requirements, specifying shared and unique behavior across all applications
within a domain.

- Process requirements, defining how application developers can systematically specify,
generate, assess, and validate an application in terms of the decision model.

- Product design, specifying ,he architecture of each work product, the relationship
between the decision model and the work products, and adaptable components to be
used to create the work products.

In the domain implementation phase of domain engineering, domain developers use the domain
specification to build reusable components and the environment in which application developers will
build applications. The domain developers verify these products using the domain specification.

Figure 4 shows that the product of domain implementation is application engineering process support.
What this means is that Synthesis defines the process for implementing instances of the domain in
application engineering (namely, the process requirements). This process is termed the "application
engineering process." Application developers, guided by the process, use the decision model to identi-
fy the application that meets their needs. Software development becomes a concurrent interaction be-
tween a domain engineering process and a set of application development processes. Domain
engineering provides a process to build applications; that process in turn provid,-s feedback on the
products of domain engineering (see Figure 5). A "domain management" activity, responsible for de-
fining how the domain should evolve to meet short-term application needs and long-term strategic
goals, guides domain engineering.

10

2. An Overvie-w of Some Domain Analysis Approaches

Domain Specfication

Domain
Definition

Define Dion
|Model (ý

Productefine P
RPru oequirementw

descriptions oformai
Fristing systems, 3.e D i

cost and usage f tn inent

hasptriedce itmxprimentalyo ait fdmis ld~ teHs-tSaBo ytm(es

data j Design ca l d

air trDomain knonledge - m (t a 1 A p p i t d
Product

23 TTActivity
SProduct

2oExisting
wrk products

M-e-h Information Flow

Figure 3. Synthesis Domain Analysis Process (Partial)

2.2.3 Ex•IpixS

The development of the Spectrum envirohn:ent informally followed this approach. The Consortium
has triew of domaintanly in ty of domains, including the Host-At-Sea Buoy system (Weiss
1990), job management systems (Snodgrass et al. 1990), design composers (Burkhard et al. 1990). and
air traffic display/collision warning monitors (Campbell et al. 1991). A pilot project in the domain of
communication control systems, in cooperation with Rockwell International, is currently trying it.

2.3 THE FACETED CLASSIFICATION APPROACH OF RUBI•N PRIETO-DI'AZ

2.3.10Ovnvi•v

Methods for deriving classification schemes in library science and on methods for systems analysi5

are the basis of the approach by Rubin Prieto-Diaz burieto-Diaz 1987; Prieto-Diaz 1990; Prieto-Diaz
199 1). The process is a "sandwich" approach: the classification process supports bottom-up activities,
and systems analysis supports top-down activities.

The view of domain analysis in this methodology follows the line of thought pioneered in Neighbors'
DRACO system "to identify objects and operations for a class of similar systems" (Neighbors 1984).
A primary original objective, then, was making that information readily available. Neighbors indi-
cated the importance of domain analysis in reusability but did not address how to do it. Prieto-Diaz's

was the first proposed methodology to do domain analysis for reusability.

11

2. An Overview of Some Domain Analysis Approaches

Domain Knowledge
I

-------------------- ----------------------
Domain I

Domain Analysis Engineering I

Domain -

pDefinition

Domain Domain
"Definition Iletmenn

aDomain

Domain Domain
a Specification Implementation

DomainApplication EngineernrgVerification P

Key:

E I Activity Prjc
ProductSupportCZ) Product

]i Product Flow

-- , Information Flow To Application
Engineering

Figure 4. Synthesis Domain Engineering Process

Business Objectives Domain Knowledge

Domain Engineering

Application Engineering I Feedback
Process Support I (Customer and

•-Process Needs)
Customer *:

Key Customer- -ecLuirem-ents Application Engineering -

D Act ivity
Product

-+ Product Flow Application Software

--- , Information FlowDeliverables

Figure 5. Software Development in Synthesis

12

2. An Overview of Some Domain Analysis Approaches

2-3.2 PRocEss AND PRODUCrS

Prieto-Diaz developed this approach in two stages. In its first version (Prieto-Diaz 1987), the three
top-level activities shown in Figure 6 describe the process. The second activity, analyzing the domain,
is the core activity. It consists of multiple iterations of selection, abstraction, and classification of
functions, objects, and relationships in much the same way that librarians derive specialized classifi-
cation schemes. The approach proved successful in identifying generic objects and operations in a
domain but was weak in supporting the selection and encapsulation of reusable components.

Domain
knowledge Analyze Domai Model%mwlg Domain Domain]

(_Analysis ••

Piepare
Domain

Information Produce
,• •"Reusable Work
I Products

Domain analysis Existing
guidelines systems

Key. Com Den Standards

(--- Activity - Product Flow

Ci•) Product -- Information Flow

Intermediate
Product

Figure 6. Prieto-Diaz's Process for Domain knalysis (1987 Version)

The second version (Prieto-Diaz 1991), shown in Figure 7, is broader and more cohesive. It proposes
a framework to integrate domain analysis in a software development process. In this framework the
domain analyst continually reviews and refines the products of domain analysis as practitioners con-
struct new systems in the domain. The new version of the methodology complements the first version's
bottom-up approach of identifying objects and operations with a top-down, systematic analysis to
identifying domain models.

During top-down analysis, the domain analyst analyzes high-level designs and requirements of current
and new systems for commonality. Two activities support top-down analysis. The first, preparing
domain information, yields what is, in effect, a preliminary domain analysis. It consists of:

"* The domain definition, an informal statement of the types of applications in the domain.

"* The basic domain architecture, a high-level description of architectural properties shared by
applications in the domain. It contains the following information:

- A canonical structure common to all systems in the domain. It provides guidance to
the bottom-up analysis by identifying key components common to domain applications.

- Identification of stable and variable characteristics. These characteristics
complement the canonical structure and support the selection and evaluation of
standard descriptors during bottom-up analysis.

13

I~ An Overview of Some Domain Analy-sis Approaches

Top-do" Bottom-up Top-down Top-downlBottom-up

oommaan
InformaioDefiniion

Eic]D~om~awin
Archwitecture

Existing w~ms Entities _ ý
domain knowledge, __W
organizational needs I

Rdsting syste Ims, 0(L a nific týo)
domain knowledge

_ Derive ucina

Domain domai
Models PocFwrtce

t ~Expand and

Key- Current and new land Classification

Apiiy o basic domain E c tSProduct architecture ABasicteomain

componenomai

Prodxuct Flow architecture,

Information Flow representation model

Figure 7. Prieto-Diaz's Top-Down-Bottom-Up Domain Analysis Process (1990 Version)

A bottom-up analysis activity, classifying domain entities, fonmows this. Here, the domain analyst examines
low-level requirements, source code, and documentation from existing systems. The results are:

"o A preliminary vocabulary, used as basic terminology for identification of concepts and
components.

"* A taxonomy.

" The classification structure. Both the taxonomy and classification structure provide the
conceptual structure needed to verify and revise the basic domain architecture when deriving
domain models. Application developers also use this structure when searching for reusable
components.

" Standard descriptors. These form the basis for specifying standard designs and standard
components. Application developers refine these descriptors to meet application needs. (They
do not appear in Figure 7 because they are a means for presenting the taxonomy and classification
structure rather than an independent product.)

The domain analyst uses these products in the second top-down activity, deriving domain models.
This activity yields a generic functional model. This model helps a domain analyst select the proper

14

2. An Ovr-ew of Some Domm Anli Appmacbes

structural components for standardizing designs during the next domain analysis activity. The generic
functional model is expressed as layers of groups of functions, integrated with the results of the
bottom-up analysis. It supports.design and development of new systems through composition of
reusable components.

In the fourth activity, expanding and verifying models and classification, the domain analyst integrates
the results of both analyses into two products:

"* Reusable structures, a verified part of the functional model or classification structure seen
as complete enough to be useful as a reusable component.

" A reusable architecture, which provides a framework for composing reusable structures into
a legitimate software design.

The integration process consists of associating the products of the bottom-up analysis with the structures
derived by the top-down analysis. Standard descriptors, for example, represent elemental compo-
nents, either available or specified, by using a standard language and vocabulary. These standard des-
criptors define the low-level components for the reusable architecture. The result is a natural match
between high-level generic models and low-level components using domain models as skeleton guides.

2.3.3 Ex,•mEj s

Several organizations domains are trying or have tried this methodology on an experimental basis.
General Dynamics' Data Systems Division is using it in the domain of plotting empirical equations
used for flight simulators. Harris' Government Communications Systems Division is using it in the
domain of equipment control. Contel has used it in the command and control systems domain.

2.4 FODA

2.4.1 OvRnvrEw

The Software Engineering Institute (SEI) developed the FODA approach (Kang et a]. 1990). FODA
is based on identifying "features" of a class of systems. A feature is a prominent, user-visible aspect
of a system. Domain analysts identify both features that are common to all systems and features that
distinguish individual systems or subclasses of systems within a domain.

2.4.2 PRocEss AND PNODUCTS

The FODA process definei three basic activities (see Figure 8):

" Context analysis, where domain analysts interact with users and domain experts to scope the
domain. The product of context analysis is a context model. Domain analysts and domain de-
velopers use it in subsequent domain engineering activity to understand domain boundaries.

"* Domain modeling, which yields a domain model with multiple views:

- A features model, which is the end user's perspective of capabilities (both common
and variable) of applications in a domain.

15

I. An Omrviw of Some Domain Aaiu kebes

- An entity-relationship-attribute (ERA) model, which defines the objects in the domain
and their interrelationships. The model is a developer's view: domain and application
developers use this information as a basis for deriving implementations of reusable
components and applications.

- Data flow and finite state machine (FSM) models, which are the requirement analyst's
view of the functionality of applications within a domain. The features and ERA mod-
els guide and constrain their development, that is, they reflect the commonalities and
variations expressed in the features model, and the objects in the ERA model define
them. Domain analysts use them subsequently in architectural modeling. Application
developers also refine them into requirements for specific applications during application
development.

Architecture modeling, which produces high-level design specifications of solutions to the
"problems" defined in the domain model. Architectural modeling yields a model of interacting
software processes and a module structure chart. Domain developers use these products as
specifications for reusable components. Application developers refine the components into
products that meet their application's needs.

Context Analysis Domain Modeling Architecture Modeling

Analyzez

IFeatures and Faue
IRelationshipsMoe

Operating environments, I
standards

Domain knowledge Analyze Data Flow&Functions Moe

Domain kn Fow dDge,

idomain tehnology ArchitectureS r
(ZD Product 1

0 Product FlowI
--,Informnation Flow Implementation technology

Figure 8. FOD~s Domain Analysis Process

16

2. An Orvicw of Some Domain AnabAppro•d•a

2.4.3 ExAzs

The FODA report illustrates the process by using the window management systems domain. The
example shows in detail how domain analysts drive each of the products of domain analysis. It includes
the products mentioned above.

2.5 LUBARS' SUPPORT FOR MECHANIZED REUSE USING DOMAIN ANALYSIS

2.5.1 OvuviMw

Lubars' domain analysis approach derives from his previous work on mechanizing reuse using design
schemas in IDeA (Intelligent Design Aid), a reuse-based design environment to assist software design-
ers (Lubars and Harandi 1987; Lubars 1987). It supports reuse of abstract software designs. Lubars
created IDeA and its successor, ROSE-i, as a proof-of-concept tools to demonstrate the reuse of high-
level software work products other than source code. Lubars' research has focused on representation
models for software designs, the objective being software design reuse. IDeA provides mechanisms
that help users select and adapt design abstractions to solve their software problems. Before IDeA
can provide support for design reuse, however, a designer experienced in certain application domains
must populate IDeAs design reuse !ibrary with the schemas for these new domains. This manual pro-
cess is extremely difficult and tedious. To reduce the effort required to identify, select, and characterize
designs for the IDeA library, Lubars developed a domain analysis methodology.

2.5.2 PROCESS AND PRODUCrS

Lubars' approach to domain analysis resembles Prieto-Diaz's early model (Prieto-Diaz 1987). It goes
through a similar process of identification, selection, abstraction, and classification of objects, opera-
tions, and other domain items. A domain engineering activity (Lubar's term for what the other ap-
proaches discussed call domain implementation) follows domain analysis. Figure 9 shows the process.
Unlike the other approaches, it has no preliminary analysis phase.

Lubars' process has three stages. Each stage ultimately results in identifying common abstractions
pertinent to that stage:

1. Analysis ofSimilar Problem Solutions. This yields characterizations of solutions for particular
classes of problems in the application domain.

2 Analysis of Solutions in an Application Domain. This groups the characterizations from stage 1
to produce characterizations of particular application domains.

3. Analysis of an Abstract Application Domain. This generalizes the characterizations from stage
2 to represent classes of related application domains.

Lubars' heuristics aim at characterizing generic solutions to common problems in a domain, and
providing a reasonable mapping between problems and solutions to make reuse practical. Lubars uses
design schemas as mechanisms for mapping problems to solutions. He goes farther than the other
approaches in trying to identify commonalities or similarities in domains other than the one of inter-
est. Lubars addresses the issue of reuse across domains. His approach covers both "vertical" reuse
(involving related components of a subsystem) and "horizontal" reuse (identification of components

17

I An Ovavi of Some Domain Alypm Appuades

Vertical Reuse Analysis Horizontal Reuse Analysis

Key:. ~Domain knowledgeMoe

Anayz Pr

-* Product Flow I
--- Information Flow Reated domains

Figure 9. Lubars' Domain Analysis Process

for a particular module). Analysis stages 1 and 2 in his heuristics identify vertical components. Stage 3

aims at finding horizontal components. Lubars introduced the clear separation between each of the
three stages because he believed it made his methods amenable to modeling and possible automation.

Lubars' domain analysis approach concentrates'on commonalities. Domain analysts only identify
variations informally. The activities that formally define them are part of domain engineering. There,
doFain developers assemble the abstractions into a type hierarchy, identifying discriminators among

the types. These discriminators form property trees. A mapping between the data types and the
properties formally defines the domain variations.

2.5.3 Ex~PI.ES

Lubars has successfully characterized common designs in the domain of tax computations, mainly

to illustrate his method and to demonstrate its application. He has characterized and encoded a set
of designs into IDeA and ROSE-I to demonstrate reuse at the design level.

2.6 KAPTUR

2.6.1O

KAPTUR is a domain analysis support environment. The need to understand and maintain large
software systems with long life spans motivated its development. It is the product of a project for
NASA/Goddard Space Flight Center to investigate reusability of their mission control software. They
use mission control software in long satellite missions, and it typically persists through new
technologies and discoveri). nasA stages N upde it continuously and demands high modularity.

A model of competing/cooperating interests between demand and supply of reusable software (Baum
and Moore 1989; Moore and Bailin 1991) is the basis for KAPTUR concepts. Demand for reusable
components provides domain developers with requirements for developing software intended to be

18

Z. An Overview of Some Domain Analysis Approaches

reusable. The availability of reusable software, in turn, stimulates systems developers to create new
systems out of reusable components. KAPTUR supports this view by capturing domain information
from existing systems and new requirements and making it available to domain developers. This
approach aims at integrating domain analysis into a reuse-based software development process.

KAPTUR's goal is to support reuse of "software assets" (a ttrm for a reusable artifact) by capturing
design decisions and rationales that went into their development. KAPTUR's knowledge base stores
reusable assets with their corresponding rationales, underlying issues, and lists of differences and sim-
ilarities to other assets. The creation of this knowledge base is a time-consuming and involved task.
It is the product of domain analysis. Bailin proposes an evolutionary and incremental approach to
building the knowledge base. He sees domain analysis as complementary and parallel to systems de-
velopment, that is, domain knowledge is acquired as systems are developed. He believes that the
supply and demand model facilitates this view.

2.6.2 PROCESS AND PRoDucTs

KAPTUR supports reuse through generic architectures. Domain analysts use ERA, data flow, object
communication, state transition, and stimulus-response models to specify architectures. Each cap-
tures a different architectural view and provides for expressing possible variations. Once an applica-
tion developer has specified how his application varies with respect to the models, KAPTUR partly
automates the refinement of a generic model into an application.

Bailin proposes an overall domain analysis process for families or classes of systems and a more
narrow approach to identify commonality and reusability of components organizations integrate them
in an ongoing software development process. He intends the former for initial population of KAPTIUR's
knowledge base and the latter for expanding and evolving it. Figure 10 shows the overall process.

K Identify Descile Geneic
Domain Drahitrctere

CT)~ora Prouctoeerict

SUpdate AcietrSArchitecture - =
Existing systems ,

Il Identify trs trbts
SFeatures of NewRainls

Domain knowledge etdre

K er D efine N ewR e s b e A et
[• Activity Domain knowle~dge Architectuare
SProduct of experts

b Product Flow Domain knbwledge,

- -- *Information Flow KAPTUR knowledge

Figure 10. KAPTUR Domain Analysis Process

19

2. An Ovenim of Some Domain Analysis Appmaches

In the overall domain analysis process, the first step is to examine existing systems descriptions in
a domain to identify generic architectures. The domain analyst then formalizes this information using
the models of KAPTUR; the formalization facilitates subsequent activities. He extracts features, at-
tributes, rationales, trade-offs, and issues from the generic architectures based on their differences
(and similarities). A review with domain experts follows the process. This extraction and comparison
process is an important feature of this approach because it helps to derive a criterion for classification.
The next step in the process is to identify reusable assets from the architectures, their probable source,
and their documentation, if available. Domain analysts review documented assets and architectures with
domain experts and then load them into the knowledge base. When new components are identified or
a new system is analyzed, KAPTUR supports expansion of the knowledge base through a similar process.

2.6.3 ExAmNLys

NASA/Goddard Space Center is using KAPTUR, currently in its second release, on an experimental
basis to analyze mission control software. Plans are underway for integrating KAPTUR into an
operational software development environment.

2.7 PROCEDURAL COMMONALITY

Table 2 lists the domain analysis processes for each of the approaches analyzed. The table summarizes
the processes illustrated in Figures 2, 3, 7, 8, 9, and 10. It lists the four basic processes for each of the
six domain analysis approaches. On the top row are names of generic processes that capture the
essence of the activities in each column. The table abstracts essential features from common proce-
dures. The result is an abstract view of the basic activities in domain analysis. The following four
activities characterize the domain analysis process:

1. Study the domain.

2. Analyze domain entities.

3. Compile, abstract, and structure domain knowledge.

4. Generate reusable structures.

The activities in the first column can be characterized as "identify," "describe," "define," "scope,"
"provide context for," and "select information sources for" the domain. The Consortium selected the
term "study domain" to characterize the nature of these activities. The overall objective is to observe
and study the domain and to characterize its nature informally.

The activities in the second column can be summarized by the term "analyze domain entities," where
analyze stands for "identify, bound, qualify, and classify." Domain entities include objects, operations,
relationships, features, problems, and characteristics.

The third column's activities are basically creative. They deal with the concept of creating a knowledge
base, a domain model, product requirements, functional components, solutions, and new features.
The phrase "compile, abstract, and structure domain knowledge" is representative of these activities.

The last column can be identified with the phrase "generate reusable structures." The activities produce
canonical/generic requirements, designs, architectures, models, structures, abstractions, and solutions.

The six domain analysis approaches contain specific instances of these activities. This bottom-up
procedural analysis of the approaches provides some insights on a high-level model for doing domain
analysis.

20

I. An Overview of Some Domain Anahysis Approaches

liTble 2. Common Procedures for Six Domain Analysis Approaches

Corresponding Common Activity

Compile, Abstract,
Analyze Domain and Structure Generate Reusable

Approach Study the Domain Entities Domain Knowledge Structures

Jaworski Describe domain Qualify domain Create knowledge Develop canonical
base requirements

Synthesis Define domain Define decision Define product and Define product
model; define process requirements;
product requirements; design product
requirements define decision

model

Prieto-Diaz Prepare domain Classify domain Derive domain Expand and verify
information entities models models and

classification

FODA Analyze context Analyze features Analyzt functions Model architecture
and relationships

Lubars Not applicable Analyze similar Analyze domain Analyze abstract
problems solutions application domains

KAPTUR Identify domain Update Identify new Define new
architecture features architecture

21

3. SIMILARITIES AMONG APPROACHES

This report is primarily about contrasts among domain analysis approaches. Understanding these
contrasts requires some knowledge of characteristics that the approaches share. Researchers in
domain analysis have created quite different means ti achieve an end, but they share many opinions
on what that end should be. This section discusses v,..at the approaches have in common.

3.1 THE DEFINITION OF "DOMAIN"

A most basic question to address is whether all approaches agree on what the term "domain" means.
In fact, they do not (see Section 4.1), but their definitions do possess some similarities. Prieto-Diaz
defines a domain as follows (Prieto-Diaz 1990):

In the context of software engineering it is most often understood as an application area, a field for which
software systems are developed. Examples include airline reservation systems, payroll systems,
communication and control systems, spread sheets (sic), [and] numerical control.

The implicit assumption is that more than one system exists for the application area. These systems
might be the result of wholly different projects that have independently built similar systems for different
customers. They might also be versions of a single system, evolved over time based on changing customer
needs. The origins of the systems are unimportant; what matters is variations in observable behavior.

Each system performs similar types of operations on similar types of objects. This is true because
of the nature of the area. It can safely be said that any airline reservation system will deal with air-
planes, and that any payroll system will deal with money. Moreover, each system operates under cer-
tain constraints because of the laws of the area. A communication system can expect certain types
of messages to be propagated at the speed of light. Calculations in a spreadsheet system behave in
accordance with the rules of mathematics.

Despite these similarities, applications within an area vary. Variations may occur because of
differences in offered functions, differences in implementation strategies, the nuances of various types
of hardware on which they are implemented, or for many other reasons. However, a certain central
abstraction (or perhaps a set of abstractions) always characterize a domain. This central abstraction
gives an intuitive feeling for what the domain is and the types of applications that can exist within
it. All approaches to domain analysis share this characterization of a domain. (As Section 4 will show,
they differ about whether the similarities or the differences are more important.)

This central abstraction can be viewed as a "problem-level," as opposed to a "solution-level,"
conceptualization. This defines another common view of domains. All approaches see a domain as
addressing a set of problems. Applications in the domain provide solutions to those problems.
Furthermore, people need to describe problems in the domain independent of any solutions to them.
In a C31 domain, for instance, they should be able to talk about communication protocols without

23

3. Similarities Among Approachb

The Capture and Formalization of Domain Knowledge. Software systems are not necessarily in
well-understood domains. To limit domain analysis to such domains would reduce its utility.
Therefore, the approaches all provide ways to capture information about a domain in such
a way that it is sufficiently formal to satisfy whatever needs are expected of it. This does not
always result in the "optimal" domain, but rather in one that is sufficient to leverage productivity,
and also evolvable as new knowledge is gained about the domain.

3.4 SHARED CONCERNS

A shared concern is something seen as important to overcome to make domain analysis more effective.
All approaches share the following concerns:

" The Need for a Precise Definition of the Context, Products, and Process of Domain Analysis. The
benefits of domain analysis can be best achieved-or achieved at all-if people have rigorous
specifications of what they must do and how they must do it. This does not imply that the
approaches agree on what the context, products, and process of domain analysis should be.

" The Transfer of Domain Analysis Costs to Customers. Performing domain analysis introduces
costs that are not normally chargeable to customers, even if they may benefit (building and
maintaining a reuse library, for example, or simply taking the time to do the analysis). It is
generally assumed that a single organization will be responsible for implementing a domain.
That organization should not transfer the entire cost to a single customer (i.e., the one who
requests the first application). The potential competitive advantage gained from domain anal-
ysis lies in reuse of software across a set of applications (or revisions), so an organization
should apportion the costs of domain engineering across the expected number of customers
for the domain. Anyone planning a factory faces an analogous situation, but software
engineering economics is a much less mature field than for other engineering disciplines.

" The Validation of Domain Analysis Results. Domain analysis yields an abstract model
corresponding to combinations of hardware, software, and humans. All approaches agree that
there is a need to establish confidence that the model accurately reflects the domain. None
has yet found an entirely satisfactory way of doing so.

" The Reduction of the Up-front Costs of Domain Development. A customer who contracts for
software will not be anxious to have the developer spend extra time and money to develop an
entire reuse library for the domain in question. (Whether the contractor should be accepting
of this is quite another matter, but outside the scope of this report.) The lower the up-front
costs of developing a domain, the more palatable a customer will find the situation.

25

3. Similarities Among Approaches

This page intentionally left blank.

26

4. COMPARISON CRITERIA

This section presents the criteria by which the domain analysis approaches surveyed are
distinguished. Each criterion represents a decision about how an organization should approach
domain analysis.* Associated with a criterion are a set of possible resolutions of that decision. These
resolutions result from analysis of existing systems. As such, they represent ways that researchers have
seen fit (so far) to undertake domain analysis.

These are not the only criteria distinguishing domain analysis approaches. They ieflect differences
among the methods presented in this report. Including another method might have required addition-
al criteria. However, this report includes only those criteria that relate to the contextual factors in
Section 1.3. (The discussion for each criterion describes that relationship. Table 3 summarizes it.) A
criterion such as the products of a given domain analysis approach is uninteresting. It does not uncov-
er the rationale behind why researchers felt the various products necessary. Knowledge of suich
products supports the d;scussion but is not the central point of the analysis.

Table 3. Relation of Criteria and Contextual Factors

Contextual Factor
Software Existing State of Intended Use
Process Software Business Domain of Information

Criterion Needs Base Objectives Knowledge Repositories
Definition of "domain" P,
Determination of problems
in the domain
Permanence of domain
analysis results
Relation to the software
development process
Focus of analysis _ _0

Paradigm of problem space
models
Purpose and nature of ...
domain models

Organizational mrndels of
domains and projects

Approach to reuse _" I_

Primary product of domain
development

" 'Organization" can mean any group, from an individual developer to an entire company, undertaking or considering
domain analysis. All meanings are relevant across the approaches.

27

4. Comparison Criteria

Some researchers consider domain analysis part of a larger process called domain engineering. In this
view, domain analysis yields a specification. A separate subprocess of domain engineering (often
called domain implementation) transforms this specification into products that are directly useful in
application development. To simplify comparisons, this section concentrates on domain analysis.
Except where specifically mentioned, it does not consider domain implementation.

"Ibble 4 summarizes the criteria. The remainder of this section discusses them in detail.

Table 4. Summary of Comparison Criteria

Criterion Meaning Choices
Definition of "domain" What a domain encompasses, how that - Application area

influences what is considered a domain, and * Business area
how organizations satisfy business goals
accordingly.

Determination of problems The approach used to arrive at the set of * Problem-oriented
in the domain problems that make up a domain. * Solution-oriented

• Problem/solution-
oriented

Permanence of domain Whether products of domain analysis evolve. * Permanent
analysis results - Mutable

Relation to the software How domain analysis activities fit into a - Pre-requirements,
development process software process model activities (or vice versa), dependent

- Pre-requirements,
independent

• Meta-process
Focus of analysis The fundamental concept on which analysts - Objects and operations

focus during analysis. * Decisions
Paradigm of problem space The fundamental concept emphasized by the - Generic requirements
models problem space model the analysts derive. • Decision model

• Both
Purpose and nature of Intended uses of the products of domain . Repository
domain models analysis. * Software specification

* Process specification
Organizational models of Possible organizations d company might use to * Circumstance-driven
domains and projects maximize the potential of domain analysis. * Project-driven

- Domain-driven
Approach to reuse Strategies for exploiting the reusable - Opportunistic

components generated during domain analysis * Systematic
and implementation.

Primary product of domain Most significant product resulting from domain • Reuse library
development implementation, guiding how other products will * Application engineering

be used. process

28

4. Comparmn Criteria

4.1 THE DEFINITION OF "DOMAIN"

Peihaps the most basic difference is the lack of general agreement on what a domain is. Section 3.1
noted certain similarities among approaches. A domain is a set of related problems. In a mature
domain, solutions to those problems exist, i.e., applications in the domain. This problem/solution
space dichotomy is common to all domain analysis approaches. However, it still begs the question
of what forces drive the problems and solutions. TWo definitions of "domain" used in domain analysis
approaches reflect this:

I Application Area. A domain can be seen as an application area. In th; view, the subject matter
of the domain is of paramount importance. People tend to equate tht; applications with the
domain--the domain of stack packages, for instance. Notions of problems in a domain come
from problems the applications solve.

2. Business Area. A domain can also be seen as a business area. Such a domain not only contains
applications, but the external forces that motivate the domain constrain it. These include:

Systems Engineering Concerns. In other words, domain analysis can be considered in
the context of a larger process.

Economic Factors. These include the cost/benefit considerations of implementing the
domain. They relate to the business objectives of each organization within a company
and how the domain fits into that focus.

An organization ultimately performs domain analysis for "business 1sons"--increases in
productivity, decreases in error rate, etc. It therefore cannot entirely separate business objectives from
domain analysis concerns. Still, the approaches appear to have three points of contention. The first
is the degree to which business concerns drive the analysis process. The approaches that make a do-
main a business area advocate using customers' needs, both real and anticipated. The approaches
that make a domain an application !2rea tend to focus more on developer perspectives--that is, more
emphasis on function than on rationale. (All approaches realize that customer inputs are needed.
However, some focus more around developers' concerns. See Section 4.5.) Although customers' needs
ultimately mandate the course to follow, such needs are not easily quantified; analyzing existing
applications is a less abstract task.

The second point of contention is what an organization would consider a domain. In the application
areaview, any set of related programs is a domain. Businesses, however, want to focus on larger, more
profitable systems. Also, it is usually easier to identify a business need with a complete system than
with some software package. This is not universally true, as companies that market mathematical and
graphical software can attest. The implication, though, is that a business-oriented domain is more
likely to possess these characteristics. In the business area view, then, a stack family is not a dcinain.

The third point is what to consider a subdomain. Domain analysis approaches with an application-
oriented view often describe lattices of domains. Each level uses applications in domains from the
levels immediately beneath it. A domain therefore has an architecture composed of a set of interre-
lated subdormains. This type of architecture can be used in the business-oriented view, but the
approaches that adopt this view define subdomains differently. In these approaches, a subdomain
is a subset of the business area that comprises the entire domain. This philosophy permits gradial,
planned growth of a business area from a small but economically viable subset (perhaps satisfying
only a single customer's needs) to the full-blown capability.

29

4. Comparison Criteria

4.2 THE DETERMINATION OF PROBLEMS IN THE DOMAIN

All the approaches contain a view of a domain as a set of problems with corresponding solutions for
each problem. It is possible to arrive at this view in three ways:

1. Problem-oriented. Domain analysts can first define a set of problems, for which they then derive
solutions (applications or specifications thereof). The modeling constructs used in the initial
stages of domain analysis concentrate on problem-level concepts. The analysts subsequently
refine them into concepts appropriate to specifying the solution (usually software design and
implementation constructs).

An initial informal definition of domain scope, subsequently refined into a more formal model,
typically characterizes such approaches. The model is a specification of problems; it
determines what solutions are possible and viable.

2. Solution-oriented. Domain analysts can start by examining applications, from which they
determine the common problems. This may sound backward, but it has much justification
in the realities of domain analysis. Some researchers assume that domain analysis is useful
only after a certain number of applications have been built--specifically, enough to give suffi-
cient knowledge to make construction of a domain worthwhile. In this view, domain analysis
happens after enough applications in a domain have been built to give people a firm
understanding of the principles underlying the domain.

3. Problem-/Solution-oriented. The approach uses problem-oriented analysis for some products
and solution-oriented analysis for others, based on an assessment of which seems most
appropriate. Problem- and solution-oriented analysis thus occur concurrently.

The relative merits of each approach depend on an organization's domain analysis objectives and the
existing software base available. Problem-oriented determination concentrates initially on domain
concepts rather than on software development concepts and domain implementation details. This
seems likely to yield domain models that are consistent with specific business needs and to derive
problem statements that are consistent with the current and future external requirements of a domain.

Solution-oriented determination seems advantageous for the reuse and reengineering of existing
components. Consider a project tasked to create a reuse library from a given a set of components.
Domain analysis under the second choice proceeds by quickly creating an index into the components
(e.g., faceted classification). The project can use the index to catalogue the components in a reuse
library. Intuitively at least, the process seems faster and less error-prone than the first choice-specify-
ing the components' domain and refining that specification toward the components themselves. On
the other hand, it is hard to infer the business needs of a domain by studying applications. Such
information therefore must come later in the domain analysis process.

The first choice demands that the state of domain knowledge must be such that standard problems
are already recognized, or can be formulated, without examining applications. This implies greater
domain maturity than the second choice. Both approaches end up with the same results, however.

No approach is pure. Domain analysts must draw on their knowledge of both existing applications
and domain concepts. Problem-/solution-oriented determination takes advantage of this by using pro-
blem-oriented derivation techniques for those products best defined by studying domain concepts,
and solution-oriented derivation techniques for those best defined by studying existing applications.

30

4. Comparion Criteria

4.3 THE PERMANENCE OF DOMAIN ANALYSIS RESULTS

Each approach has an associated process that defines when domain analysts first develop a product,
whether it can evolve, and if so, how. The approaches considered in this report define two possibilities:

1. Permnent. The process has no provision for evolving its products. The approach assumes that
the results will be complete and correct before the first use. The presumption is that any do-
main mature enough to be amenable to domain analysis is stable. The problems it poses will
not evolve, nor will its terminology, laws, and the like. In short, it needs no evolution. This does
not preclude evolution of applications in the domain. Technological advances and economic
concerns may lead to new solutions for problems in a domain. These solutions may change
over time as long as they continue to satisfy the specification of problems. The specification,
however, is expected to be correct initially.

2. Mutable. The process has steps that allow domain analysis products to evolve over time.
Domain knowledge gained both from use of products in the domain and from external
influences (i.e., new technology) is the basis for evolution.

An organization must believe a domain to be fully mature before committing to an approach
endorsing the first choice. Such domains exist, usually in long-established branches of the physical
sciences--equations governing thermodynamics or the laws of perspective, for instance. These do-
mains are application areas rather than business areas. They are narrow in scope, and a company
cannot base its business on them. If the domain proved profitable, competitors would jump into the
market, and the company could not maintain its competitive edge. A mutable domain is a more viable
business area. A domain analysis approach that supports mutability will help an organization plan
the evolution of a domain based on business objectives.

A "permanent" domain is still useful as a subdomain, in the sense of an application area view of a
domain. It provides organizations with access to parts that can simplify other implementations (the
Common Ada Missile Package, CAMP [CAMP 1987], illustrates this point). Moreover, even if prob-
lems in the domain are universally recognized, organizations will probably incorporate improved
solutions from time to time.

4.4 THE RELATION TO THE SOFTWARE DEVELOPMENT PROCESS

The products of domain analysis are not an end in and of themselves. Organizations will use them
as part of some other process. What that process can be, and where domain analysis fits into it, are
also issues to consider. The possibilities identified are as follows:

1. Pre-requirements, Dependent. An approach can make domain analysis a pre-requirements
activity of a specific software process model or software development method. The approach
integrates domain analysis activities into those of a model; the cutputs of each domain analysis
activity are intended as inputs for specific activities of the software process or method in use.
Domain analysis occurs during or following the systems requirements phase but prior to the
software requirements phase (hence, "pre-requirements"). Domain implementation can pre-
cede, or be part of, subsequent application software design activities. The resulting reusable
parts are then available during the software requirements and design phases of any other
projects writing software for the domain.

31

4. Comparison Cnrina

2. Pre-requirements, Independent. Domain analysis can be a pre-requirements activity, but be
independent of the life-cycle model. The products of domain analysis are intended to be gener-
al enough to be used in a variety of processes. However, domain analysis is still to occur prior
to software requirements analysis (so the model must have a requirements phase).

3. Meta-process. Like software, an organization can design, implement, and evolve a process
model. A process is termed a "meta-process" if its goals include process construction. Domain
analysis can be part of a meta-process. To be so, it must fulfill the following conditions:

- The process for domain analysis and implementation must be separate from the
process for application development. It must be possible to do domain engineering
without doing application development, and vice versa.

- The results of domain analysis and implementation must influence the process for
application development. '"nfluence" might mean mechanizing or reordering activities.

The only real constraint is that domain analysis (and, perhaps, domain implementation) take place
prior to the activity that uses its products. Software process needs dictate that products required as
inputs to an activity be produced prior to the onset of that activity. Domain analysis approaches that
emphasize evolution of a domain relax (though not fully) even this constraint. A preliminary version
of a product may be enough to understand if it will, in a subsequent activity, fulfill some role.

The more interesting issue, directly related to an organization's software process needs, is whether
a domain analysis approach can fit that organization's software process model. The first choice's vi-
ability is linked to an organization's chosen model. The second and third choices are intended to be
useful with arbitrary models, although the approaches they represent have not necessarily been
verified across a range of models.

However, recent research on software processes has discussed the need for constantly maturing, self-
improving processes that incorporate feedback on process quality. This is exemplified by the SEI's
work (Humphrey 1989). It specifies five levels of software process. The lowest level, termed "chaotic,"
means an organization uses no well-defined procedures. The highest level, termed "optimizing,"
means an organization's software process is well-defined, repeatable, manageable, and self-improving.
That is, it has associated metrics to facilitate identifying and correcting problem areas.

Many researchers believe domain analysis can help an organization reach level 5. The formalization
of domain information can describe how to measure the efficacy of activities, for instance, leading
to identification of trouble spots within a process. An organization that seeks both to mature its pro-
cess along the SEI scale and to use domain analysis must consider how a domain analysis approach
will contribute to, or hinder, process maturation.

A pre-requirements, process-dependent approach can be part of a level 5 process. An organization
can presumably use pre-requirements, process-independent approach in conjunction with arbitrary
processes. A meta-process approach can ensure that domain analysis produces an appropriate pro-
cess; that is, domain analysis can lead to a level 5 process for developing applications in a given do-
main. Note that the process for domain analysis might not be level 5, even though the process that
results from domain analysis is. An organization must still define a suitable process for domain analy-
sis and domain implementation. However, given that it has a level 5 process for building applications
(i.e., for fulfilling customer contracts), it is closer to achieving its goal than the processes of the other
two types.

32

4. Comparion Criteria

Not everyone considers the SEI's scale a good measure of process maturity (see [Bollinger and
McGowan 19911). In this case, the dominant software process consideration is whether a domain
analysis approach delivers products that support software process needs.

4.5 THE FOCUS OF ANALYSIS

Domain analysis strives to uncover certain fundamental views of a domain. Each approach identifies
multiple types of views. Among these is a "focus of analysis." This is the view that, out of all types
identified, is central to the analysis approach. It determines how domain analysts will undertake their
tasks, and it shapes the products of the analysis activities. The different focuses are as follows:

1. Objects and Operations. The analysis can center around objects and operations among similar
systems. Depending on the approach, this can mean focusing on requirements, architectural
design, or detailed design. In requirements, the analyst concentrates on identifying objects in
the domain (devices, users, etc.) and stable functional and nonfunctional requirements for
those objects. The analyst focusing on architectural design looks for process models and de-
sign structures that characterize all applications in the domain. The analyst focusing on
detailed design uncovers module interfaces and the operations of those interfaces.

No matter what level the focus, the domain analyst concentrates on what is common in the
domain. All applications share the objects and operations. Analysis therefore focuses on
similarities.

2. Decisions. The analysis can concentrate on decisions that application developers need to make
to derive an acceptable solution to a problem in a domain. The domain analyst uses domain
concepts to define a means to differentiate problems in terms of decisions that lead to solu-
tions. He therefore concentrates on how applications differ. This is a focus at the domain re-
quirements level only. The design and implementation considerations of the decisions are a
secondary focus of analysis.

In all approaches, decisions ultimately become a focus, although not always the focus. Describing a
domain without identifying differences limits the applicability of a domain implementation. In ap-
proaches where domain analysts study similarities first, they do not fully formalize them. This suggests
that people believe similarities can be understood at a high level of abstraction.

Analyzing objects and operations among similar systems is most useful when studying properties of
existing systems. In particular, analyzing objects and operations at the dc.ailed design level requires
greater accessibility to a large software base containing such objects than analyzing requirements or
architectural design. For instance, the domain analyst can consult domain experts to determine com-
mon application properties. However, concentrating on similarities of existing applications does not
account for anticipated changes in the domain.

Analyzing decisions is more useful than analyzing objects and operations when considering new
customer requirements for a domain as well as its current properties. The domain analyst can examine
existing systems and enumerate their differences in the model prescribed by the approach. He expres-
ses the differences using domain-level concepts. Adding new customer requirements therefore re-
quires extending the domain model to include new concepts. Since the domain model is a statement
of problems, such extensions depend less on existing applications than on insights into the problems.

33

4. Compari3on Critera

4.6 THE PARADIGM OF PROBLEM SPACE MODELS

Correlated to the focus of analysis is what the problem space model emphasizes (that is, the products
of domain analysis related to problems in the domain) derived during domain analysis. Although the
analyst brings a particular view to bear during the analysis phase, that view is not necessarily the
overriding emphasis of the resulting products. The choices are as follows:

L Generic Requirements. The problem space model can emphasize generic, reusable
requirements. This is an emphasis on commonalities. The model shows a view of the problem
space primarily in terms of what is similar among all systems.

2. Decision Model. The problem space model can be a decision model. Its most important
component shows how to distinguish applications based on a set of decisions, each of which
resolves some facet of a problem in the domain.

3. Both. The problem space model can also consider both but emphasize neither. Both views are
important but at different times and for different people.

The relative advantages and disadvantages of the problem space model emphasis depend on who will
use the products and how. Customers need to understand differences among systems in a domain, so
that they may define the requirements for the one they desire. Developers need precise characterizations
of a domain's unvarying aspects to guide them in selecting architectures, algorithms, and data structures.

"The paradigm of a problem space model must be consistent with the intended use of that model,
especially with respect to the approach for reuse. Some approaches assume that reuse stems from a
realization that a particular subproblem of an application has a solution already extant. The imple-
mentor first recognizes the problem as matching (loosely) one previously solved, then tailors the
matched solution to the needs of the problem at hand. This makes the decision model of secondary
importance to the generic requirements.

An opposing view assumes that reuse can be systematized based on the domain model (see
Section 4.7). The domain analyst merges existing applications with a process that shows how to extract
an application that corresponds to a particular set of decisions. The primary consideration here is
how to distinguish among those applications, both during application generation and during the
merging. This view therefore emphasizes the decision model.

Equal consideration of both reflects a philosophy of refining systems from canonical designs. When
no complete implementation products exist, developers require specific guidelines to ensure that they
implement applications in ways appropriate to the domain.

4.7 THE PURPOSE AND NATURE OF DOMAIN MODELS

The approaches use the term "domain model" to refer to those products that result from domain
analysis. The previous section discussed that portion of the domain model related to the problem
space. However, the complete model also has a focus of its own that varies between approaches:

1. Repository. The domain model can serve as a repository of domain knowledge. It supports
queries about the domain: what applications are in it, what physical laws constrain it, what
relationships exist between objects and operators, etc.

34

4. Comparison Crieria

2. Software SpecUcation. The domain model can be a specification for ,oftware pro•Adcts. It
guides developers in building reusable components.

3. Pmocess Spwciahion. The domain model can be a specification for a software development
process and environment. This is a generalization of the previous item. The reason is that a
process, to be useful, must specify both the products it requires as inputs and what products
it produces as outputs. The latter is exactly what a software specification describes. The pro-
cess also may define how to effectively use those products. Furthermore, the domain analyst
can study the process to determine the cost-effectiveness of automating portions of the
process. This serves as a specification for an environment.

Experimental implementations of repositories (e.g., LaSSIE, a knowledge-based information retrieval
system, [Devanbu et al. 1991] and KAPTUR) provide an intelligent assistant for domain analysts, do-
main developers, and application developers in an automated domain analysis environment. Their
creators acknowledge a potential scale-up problem they have not yet faced.

A software product specification and a software development process and environment specification
differ in terms of an organization's intended use of information repositories. If the goal is to have a
library of parts that an application project can search, then a specification of software products suf-
fices. If the goal is to also provide mechanisms for adapting and composing those products rather
than leaving the adaptations to the skills of developers, then the organization must also have a process
specification describing how these adaptations are to occur.

Specifying a software development process and environment has the highest potential payoff. The
resulting standardization lessens the cost of application development more than the other two choices.
However, an organization must be willing to invest in making development an application-domain.
oriented activity rather than a software design activity. The investment involves defining the process
and (possibly) automating the environment.

However, spccifying only software products seems preferable in two circumstances. First, it may be
quite reasonable for an organization that is new to software reuse. Specifying a process and environ-
ment assumes a willingness to adopt a mature reuse capability, an advance that may be too radical
for some organizations.

Second, having the domain model specify only software products may be preferable in immature
domains. These have several characteristics that lessen the viability of a process. First, the domain
analyst may not be able to predict the range of variations accurately. Second, one important compo-
nent of a process is the ability to validate and assess products; techniques for doing so are less likely
to exist in immature domains. Third, the usefulness of a process depends in part on the ability to cap-
ture engineering judgment about the domain. In immature domains, where such judgment is not well
formalized, the process may require large amounts of human insight (in the form of software design
and implementation decisions), making its value little more than that of the products alone. Until the
domain matures (aided, one hopes, by domain analysis) the process can say only so much. An organi-
zation risks low return on investment when trying to formalize a process in an immature domain.

35

4. Comparison Criteria

4.8 THE ORGANIZATIONAL MODEL OF DOMAINS AND PROJECTS

Although domain analysis can be valuable for a single project, researchers believe its real payoff will
come from organization-wide use of its products.* Such analysis and implementation of domains
requires a significant corporate commitment. Once an organization makes the decision to begin analy-
sis, it wakes devote resources in the form of domain experts, end users, software developers, etc. (not
to mention hardware resources), to the cause. Nor, most researchers agree, can the effort end after
an initial implementation of the domain. Mechanisms must be in place to gather and incorporate
feedback, so the domain may evolve in response to enlarged visions and ever-changing needs.

This raises the question of how a corporation should arrange its organizations to facilitate effective
domain analysis. The following are possibilities:

1. Circumstance-driven. Domain analysis can be a subproject of whatever project first recognizes
the potential benefits from the systematization of a domain. The project would analyze and
implement the domain, then make it available to other projects needing it.

2. Project-driven. Application projects can be customers of independent domain organizations.
For each domain of interest, a company would establish a separate, centralized organization.
This organization would have full responsibility for models of, and standard parts for, the do-
main. Projects that need to build applications within the domain would use these models and
products and provide feedback.

3. Domain-driven. Projects can be a component of a domain organization. In this model, a company
would initiate an application project in a specific organization within a company based on the
relevance of the project to the domain controlled by that organization. Unlike the project-driven
organization, the organization that is responsible for the domain manages application projects.

The importance of this issue lies in the need for projects to access domains, both to obtain reusable
components and to help evolve the domain. Whether or not the technical problems of domain analysis
are ever solved, the technique is likely to have little impact unless it is made bureaucratically effective.
Corporate management must actively encourage access to and evolution of the domain. This is outside
the scope of what a single project whose original purpose is something other than domain analysis
can accomplish. Domain analysis under a circumstance-driven organization is therefore likely to be
of low value beyond the scope of the project that performs it. It may still be worthwhile, especially
on large, long-lasting projects, but spreading its benefits to other projects may prove cumbersome.

A domain-driven organization can put communication channels in place to foster and provide
feedback on the efficacy of domain models and implementations. A domain-driven organization can
tailor its structure so that its component projects have easy access to those responsible for maintaining
the domain (or, indeed, can have its component projects accept some of this responsibility). This is
much harder to achieve in a project-driven organization where one project is responsible for maintain-
ing a domain but has no authority over, or direct responsibility to, those projects that use the domain.
The creation of the UNIX operating system provides anecdotal evidence for the viability of a domain-
driven organization. Its creators believe that much of UNIX's success stems from its use for several
yez s within a single organization before being released to a larger outside population (Ritchie and
Thompson 1974). Its creators evolved it based on the needs of its customers--people within a small
group at AT&T-from whom they could expect feedback.

The Consortium is not aware of any data supporting the beliefs in this paragraph, but they seem to be universally held.
See (Prieto-Diaz and Arango 1991).

36

4. Comparison Citeria

An organization's business objectives help it choose a model. The organization must believe that the
model it chooses will be cost-effective. Several organizations might need to reorganize so that projects
are under the proper control, or so an autonomous organization can control a domain. A company
must consider its customers in making these decisions. For example, suppose it uses the domain-
driven approach and has several organizations that each support distinct domains. It can easily handle
customers whose needs a single organization can satisfy. However, setting up a project that requires
contributions from several domains (i.e., subsystems) would be trickier. The project-driven approach
given above is closer to how companies handle this situation today.

A company should also consider the intended use of information repositories when choosing
organizational models. This is particularly important in considering how to evolve a domain. A
domain changes based on customer needs, both real and anticipated. The organization responsible
for controlling the domain has the responsibility of keeping abreast of such needs. In the project-
driven model, the organization controlling a domain has no direct communication with customers.
"The organization must determine domain needs via the organizations that deal with the customers.
This layer places some extra burden on the organization controlling a domain. By contrast, an organi-
zation using the domain-driven model has responsibility for both a domain and client projects, so
customer needs feed directly into the organization.

4.9 THE APPROACH TO REUSE

Once an organization has analyzed a domain, and once it has implemented reusable components
according to the resulting model, it must have a strategy by which projects can leverage the products.
This strategy must be well-defined. Aside from guiding projects building applications in the domain,
it should have guided the analysis and implementation of the domain. This point was made in Section
1.2, which states that reuse can be:

I Opportunisic. The application implementor accesses a library with components designed to
be reusable. The goal is to leverage existing software assets. The implementor has the responsi-
bility of identifying places where reuse is possible, of locating components that fit the needs
(or he can adapted to fit the needs), and of obtaining and integrating them.

2. Systematic. Reuse becomes part of a process that incorporates knowledge of how and when
to reuse software within a domain. Systematic reuse also leverages existing software assets.
However, the more important goal is to leverage future software efforts by devoting time up
front to creating a suitable process.

(The choices omit ad-hoc reuse since it entails no formal domain analysis.) Studying this criterion
involves considering when the real work in reusing software takes place. Under opportunistic reuse,
the reuse of software (as opposed to building reusable components) occurs during application devel-
opment. Developers must identify the need and potential for reuse. They must then identify, obtain,
and tailor reusable components. Note that the developers are performingwhat might be termed "reuse
operations" to locate and incorporate parts.

Under systematic reuse, most reuse operations occur during domain implementation. Domain
developers build reusable software then. They also create reuse operations--products that define how
to identify, obtain, and tailor components. An application developer uses these products to do me-
chanically what an application developer practicing opportunistic reuse has to design and implement.

37

4. Comparison Criteria

Therefore, systematic reuse pushes most reuse operations out of application development and into
domain development. It reduces the time to implement a given application when compared to oppor-
tunistic reuse, at the expense of time that domain analysts must devote to determining how they can
systematized reuse. Unfortunately, no one has any data yet from which to determine a break-even point.

4.10 THE PRIMARY PRODUCT OF DOMAIN DEVELOPMENT

A remaining issue is the primary product that results from implementing a model of the domain. Here,
"primary" means the product most visible to those intending to reuse software in a domain. The
approaches offer the following possibilities:

1. Reuse Library. In all approaches, domain developers use the specification of the domain to
build a reuse library. Often, it is what developers interact with when building applications in
the domain. Reuse is opportunistic, occurring through adaptation of a canonical part, which
might be implementation, design, or requirements.

2. Application Engineering Process. This is a process that leverages the information in a reuse
library. See Section 2.2.

An organization can evaluate which is most appropriate based on many factors. Consider software
process needs. A reuse library is potentially useful in conjunction with any process. It is more widely
applicable than an application engineering process; an organization would have to institute shifts to
accommodate the software process. Similarly, suppose an organization's intended use of its informa-
tion repositories include making components generally available to all its application developers,
expecting them to be able to modify the components quickly and simply. It can do so using a reuse
library (if it has access to a suitable existing software base). However, if its goals include systematic
reuse of parts, a reuse library will not be sufficient. A library contains parts but no systematic process
for adapting and composing them.

38

5. APPLYING THE CRITERIA

This section applies the ten criteria to the six domain analysis approaches introduced in Section 2.
It shows how particular methods and featu,'es of an approach correlate to resolutions of decisions
for the criteria. This can help an organization choose an approach. The previous section showed how
resolutions of each criterion relate to the contextual factors in Section 1.3. If an organization under-
stands its needs in terms of those contextual factors-and given the factors, this seems quite likely-it
can use the results of the analysis to determine if an approach is suitable.

Table 5 summarizes applying the comparison criteria to the six approaches introduced in Section 2.
The rows list the criteria and the columns the methods. Each cell is a value for a criterion as applied
to the method in the corresponding column. The table reveals that no two approaches are exactly alike,
although some are more similar than others. This is no surprise, given the genealogy of Figure 1, but
each approach has captured its own unique combination of decisions as to the optimal technique for
analyzing, capturing, and using information about a domain.

Table 5. Summary of Approaches

Method
Jaworski Synthesis Prieto-Diaz FODA Lubars KAPTUR

Definition of Business Business Application Application Application Application
"do"ain" area area area area area area
Determination Problem- Problem- Problem/ Problem- Solution- Solution-
of problems in oriented oriented solution oriented oriented oriented
the domain combination
Permanence
of domainanain Permanent Mutable Permanent Mutableanalysis
results
Relation to Pre- Meta-process
the software requirements, Pre-requirements, independent Meta-process
development independent
process

Focus of Objects and Decisions Objects and Decisions Objects and Decisions,
analysis operations operations operations objects and

operations

Paradigm of Generic Decision Generic Decision Generic Generic
problem space requirements model requirements model and requirements requirements
models generic

requirements

39

5. Applýig the Criteria

lbble 5, continued

Method
Jaworski Synthesis Prieto.Diaz FODA Lubars KApTUR

Purpose and Repository of Process Process
nature of domain specification specificationspecification
domain knowledge Software specification
models
Organizational Not specified Domain-
model of driven
domains and Not specified

projects
Approach to Systematic Systematic Opportunistic Opportunistic Opportunistic Systematic
reuse

Primary Reuse library Application
product of engineering
domain process Reuse library

development I II

5.1 ANALYSIS OF CRITERIA

5.1.1 THE DEFINTON OF "DoMAIN"

Jaworski and Synthesis define domains as business areas. Jaworski's domains include control systems,
signal processing systems, and command and control systems. In such domains, reasons for pursuing
one approach or technology over another are driven mainly by economic and systems engineering fac-
tors. In fact, the principal determination of a domain is "whether software artifacts developed for one
instance of the domain may be cost-effectively reused for another instance" (Jaworski et al. 1990).
Furthermore, much of the early analysis (feasibility analysis) focuses on such concerns.

These statements also hold true for Synthesis. Moreover, Synthesis activities for domain evolution use
customer needs as inputs, further strengthening the business area view.

Lubars, FODA, Prieto-Diaz, and KAPTUR define domains as application areas. Lubars defines
domain analysis as the activity of "analyzing an application domain for reusability" (Lubars
1991. 163). His approach focuses mainly on those areas that can be decomposed into reusable design
modules. His concerns are software-oriented and deal with developers' perspectives. His objective
is to support software construction by composition of reusable components.

FODA defines a domain simply as "a set of applications" (Kang et al. 1990, 2). The inputs to a feature-
oriented domain analysis are primarily functional in nature (environment constraints, software require-
ments); the process does not state how to relate them to business needs. The outputs are views of software
from different perspectives: end-user, requirements analyst, and software designer/implementor.

KAPITUR says domain analysis is "the formulation of the common elements and structure of a domain
of applications" (Moore and Bailin 1991, 179). In KAP'UR's supply-and-demand model, the demands
for domain products come directly from applications rather than from the business forces that drive
those applications.

40

5. Applying the Criteria

Prieto-Diaz's definition on page 23 of this report also adheres to the application view. Both the top-down
and bottom-up analyses concentrate on eisting applications (although from different perspectives) rather
than on external factors.

5.1.2 THE DrrERmNAION OF PROBLEMS IN THE DoMAN

FODA follows a top-down approach to domain analysis, stemming from a stated set of problems; the
analyst searches for generic solutions. FODA is therefore problem-oriented. Jaworski's approach has
the analyst perform an OOA to define generic requirements. Defining the requirements ends domain
analysis; during domain nmplementation, software developers define generic architectures. Therefore,
Jaworski's approach not only advocates determining problems first, but the solutions are not even
derived as part of domain analysis proper. Both Synthesis and Jaworski have the analyst focus initially
on customer needs, i.e., the problems the customer faces. The analyst formalizes these problems, then
creates solutions for them. In Synthesis, this process occurs iteratively. That is, the analyst defines
a problem and specifies a solution. Based on the knowledge gained from this, he refines the problem
and solution. However, he bases the description of the solution on the problem as stated so far;, therefore,
the focus is on determining problems first.

KAPTUR follows a bottom-up approach by focusing on existing systems which represent specific
solutions. Analysts using KAPTUR must determine how they can generalize a set of solutions to solve
a domain problem. KAPTUR is solution-oriented. This is also true of Lubars' approach, where the
process for domain analysis consists of several stages of analysis of existing systems followed by
abstraction of those systems' properties.

Prieto-Diaz uses separate analysis processes for different domain entities. He uses top-down analysis
for high-level designs and requirements, and bottom-up analysis for low-level requirements and
source code. The top-down analysis yields canonical structures and generic models. From -',ese, peo-
ple derive appropriate solutions that fit the models. Therefore, the top-down analysis is problem-
oriented. The bottom-up analysis yields abstractions of existing applications. These are then matchcd
to problems in the domain. Therefore, Prieto-Diaz's approach uses a problem/solution combination
for problem determination.

5.1.3 THE PERMANENCE OF DommN ANALYsis RESuLTS

In Synthesis, an organization establishes a software development process based on the results of
domain analysis. As application developers build new systems, they feed changing or previously unrec-
ognized customer and process needs back to domain analysts, providing for evolution of the domain
analysis products. Synthesis domain analysis results are therefore mutable.

KAPTLUWs creators explicitly state that "domain evolution must be considered in the analysis
process" (Moore and Bailin 1991, 194). KAPTUR's supply-and-demand model supports this view in
a manner similar to Synthesis. KAPTUR analysts, however, concentrate mainly on how reusable
artifacts should evolve to mcet changing domain needs. Synthesis considers process evolution as well.

Prieto-Diaz does not show mutability explicitly in his process model. However, he states that iteration
is implicit in domain analysis. He contends that the results of the activities in his pr- -ess provide
feedback to subsequent iterations of the process. He therefore intends his results to ratable.

41

5. Applying the Criteria

In FODA, on the other hand, once a domain analyst defines a set of domain models (i.e., views), they
remain very much fixed since they represent generic f.tures in an application area. These models
act as frames of reference for instantiations of new applications. Changing them could produce incom-
patibilities for reuse of existing components. FODA's results are permanent. This view also character-
izes Jaworski, where the goal is to produce a "stable requirements framework." That is, the solutions
to the problems may change, but the problems do not. Lubars also takes this approach. He intends
that the abstractions created as part of domain analysis are fixed for a domain. The supporting prod-
ucts in his domain engineering activity change in response to technology but always conform to the
specifications set forth by the domain analysis results.

5.1.4 THE RELATION TO THE SorrwA DEVELOPMENT PRocEss

Jaworski's process places domain analysis activities in the system requirements, and to a lesser degree
software requirements, phases of a waterfall model. The OOA techniques yield canonical require-
ments; the domain implementation activities yield canonical designs. Application developers are to
use these products in the requirements and design phases, respectively, and domain analysts must
complete them prior to those phases. However, Jaworski does not require them to be used in conjunc-
tion with a particular model (although he shows a mapping from domain analysis activities to a 2167A
software process). His approach is therefore pre-requirements, independent.

FODA, Lubars, and Prieto-Diaz define processes but do not map them to software process models
for application development. Instead, they suggest general strategies for using the products of domain
analysis. For example, Lubars' approach and FODA both yield generic architectures. Implementors
use them in software design (they create application-specific structures from the generic ones), but
the domain analysis approaches do not prescribe properties of the design process.

rieto-Diaz goes a little farther than FODA or Lubars. For each product of his approach, he suggests
uses within s`,fware process phases. He does not tie his approach to a particular process model. He
only shows how domain analysis products might be used. Organizations therefore have guidance on
how to integrate domain analysis activities into their existing processes.

KAPTUR's supply-and-demand model assumes concurrent life cycles for domain engineering and
application development. The cycles are independent, except to the degree that application needs
determine the relative importance of domain analysis products. Moreover, the generic architectures
that result from KAPTUR domain implementation include recommended processes for an applica-
tion developer to use in tailoring the architectures to meet his application's requirements. The
KAPTUR domain analysis process is therefore a meta-process.

The Synthesis domain analysis process is also a meta-process, but Synthesis goes further than
KAPTUR. KAPTUR intends the recommended processes to fit into an organization's application
development process. For example, an organization using a waterfall model might fit domain-specific
processes into its design phase. In Synthesis, domain engineering yields the application development
process, which incorporates existing organizational processes as appropriate. For instance, the appli-
cation development process sometimes requires extensions to accommodate nuances of applications
that contain features outside the domain in question. The process for specifying and implementing
these nuances is organization-specific, not domain-specific. However, in Synthesis, the application
development process provides the context for these other processes. KAPTUR incorporates the
processes into an organization's existing model.

42

5. Applying the Criteria

Synthesis and KAPTUR share another property that makes their domain analysis processes be
meta-processes. The domain analysis activities specify certain required outputs (requirements specifi-
cations, software designs, etc.) but do not prescribe a process for generating these outputs. An organi-
zation first opts to perform domain analysis using either approach, then tailors the domain analysis
approach to use its chosen methods (e.g., structured analysis, object-oriented design). Here again the
activities for generating products are subordinate to the process for domain analysis.

No approach is "pre-requirements, dependent." Interestingly, this was not always true. Lubars
originally defined his approach to be useful mainly for an OOA and design process. He subsequently
modified his products so the abstractions are not in an object-oriented framework.

5.1.5 THE Focus OF ANALYSIS

Feature-oriented domain analysis uses a single structure to describe both commonalities and
variations. Generating this structure is one of the early tasks of domain analysis in FODA. Although
the structure shows both commonalities and variations, its purpose is to help differentiate among the
applications in the domain. FODAs creators chose a hierarchical model for this because they felt it
was a simple structure for representing decisions about how applications differ. In FODA, then, the
focus of analysis is on decisions that application developers make. FODAs creators were interested
in capturing when the decision must be made--compile-time, load-time, or run-time-and 6reated
a decision model that reflects this information.

Synthesis' focus of analysis is also on decisions. The products of a Synthesis domain analysis reflect
this: the domain specification contains proccss requirements, which are an initial statement of a deci-
sion process for a domain that application developers will follow. These decisions come from a deci-
sion model derived during domain analysis. The decisions in this model together define all
applications in the domain. In Synthesis, unlike FODA, the decision model is separate from the prod-
uct requirements (i.e., the statement of commonalities). Also, the products of Synthesis not only
specify possible decisions, they describe how application developers can resolve decisions. However,
the Synthesis decision model does not explicitly differentiate among the times that application devel-
opers resolve decisions. There is no way to indicate that a decision will be made at run-time, as there
is in FODbs model. Synthesis is concerned only with pre-runtime decisions. In Synthesis, these are
the only decisions that application developers can control. In FODA, application developers need to
make design choices based on run-time decisions; they resolve the equivalent choices during domain
engineering in Synthesis.

Jaworski's approach uses OOA techniques, and the first activity is to identify objects and operations
shared by systems in the domain. Domain analysts capture the decisions that application developers
make by making the products generic. However, the domain analyst concentrates on examining exist-
ing applications (and anticipated systems) for commonality and abstracting the characteristics of
those applications. Prieto-Diaz and Lubars' approach are similar. In particular, Lubars' process is
a series of "examine-and-abstract" phases. Jaworski, however, concentrates on requirements. Lubars
concentrates on design, and Prieto-Diau on design and code.

KAPTUR blends these two approaches. Domain analysts using KAPTUR follow an "examine-and-
abstract" paradigm, but they also are expected to formulate a decision model for application
developers based on their abstractions.

43

5. Applying the Crieria

5.1.6 THE PARADIGM OF PROBLZM SPACE MODELS

In Synthesis, reuse depends strongly on capturing a solution to a problem in a domain in terms of
how that solution differs from all others in the domain. This is expressed in terms of the decision mod-
el. The decision model, which is based on problem space concepts, therefore becomes the paradigm.

Prieto-Diaz, on the other hand, assumes reuse stems from a realization that a problem has an existing
solution, or something close, already implemented. An implementor must first recognize the general
problem, find a matching general solution, then tailor that solution. Generic, reusable requirements
are therefore important; describing variations among these requirements is secondary.

Jaworski also uses generic requirements as the paradigm for problem space models. Indeed, his
requirements (derived through OOA) are true requirements for the domain. Prieto-Diaz's are specifi-
cations for design objects. Jaworski does not advocate building reusable designs until domain
implementation.

In Lubars" approach, the results of each process phase are abstractions of the objects and operations
studied in the phase. Domain analysts express the abstractions as data flow diagrams, showing func-
tions that exist in a domain. The problem space model therefore shows generic requirements in terms
of functions available.

In FODA, although the focus of analysis is on decisions, the products of domain analysis that
emphasize a problem space model consist of a features model, an ERA model, a data flow model,
and an FSM model. The features model indicates a decision-oriented problem space model paradigm.
The other three products, however, are generic, reusable specifications of various properties of a do-
main. Furthermore, none of the four products are really the paradigm, because each model provides
a different paradigm to a particular class of people who use the products of domain analysis-end-
users, developers, and requirements analysts, respectively (requirements analysts use the last two
products). The paradigm of the problem space model therefore depends on who is using it. This is
an emphasis of both decisions and generic requirements.

KAPTUR, like FODA, uses multiple models to represent different views of domains, and these models
are generic. KAPTUR's developers go to great lengths to justify their belief that these semi-formal
models are better than fully formal ones. They base their paradigm of reuse on examining these models
to locate one that approximately matches requirements, then tailoring the part using a decision model
of "distinctive features" that they have developed for each model. However, unlike FODA, the features
are not separable from the models, and different user classes do not use them. KAPTUR's problem
space model paradigm is therefore generic requirements.

5.1.7 THE PuRPosE AND NATURE OF DOMAIN MODELS

Jaworski advocates creating a knowledge base containing all known facts about a domain, with an
intelligent front-end to help analysts and engineers retrieve information. This is a repository of domain
knowledge.

FODA domain models are design architectures that application implementors can refine into
implementations; they vaerefore specify a class of software products, bounded by the architectural
model. Lubars' domain models share this property, although they use different representation mecha-
nisms. Whereas FODA domain models consist of four separate views (see Section 5.1.6), Lubars'

44

5. Applying the Cntcria

approach specifies abstract design schemas that domain developers refine into more specialized ones.
A type lattice introduces constraints on the refinement process by specifying properties of the sche-
mas. The lattice is first used during domain engineering (Lubars' term for what other approaches call
domain implementation), not domain analysis, but Lubars considers it part of the domain model.

Prieto-Diaz's approach yields specifications of software products. The specifications are stated as
abstract operations and as generic architecture descriptions. They are further organized by a faceted
classification, structuring them for easy access.

KAPTUR, like FODA, lets domain analysts use several models to specify functional and architectural
properties of software products. It also adds a process to the domain model that guides application
developers as they refine the architecture. It is therefore a specification of both product and process.
Synthesis goes one step farther by specifying product, process, and environment; the last consists of
descriptions of tools that help application developers follow the process. Moreover, the person using
this environment sees only decisions and not, as a rule, design structures or even functional specifica-
tions. That is, the application developer would not make a choice between two design structures.
Instead, the domain analyst will have identified the conditions where each structure is appropriate.
The application developer then decides which condition is relevant, and the process for application
development includes information on how to map the condition onto a design structure. The intent
is to bring the decision-making process up from the level of software concerns to the realm of how
decisions relate to the environment in which application developers will use the software.

5.1.8 THE ORGANIZATIONAL MODEL OF DOMAINS AY PROJECTS

Synthesis includes a domain management activity. It provides for organizational control of a domain
in the sense that the organization, and not a product, defines how the domain evolves. This implies
a domain-driven organization. Actually, a project using Synthesis can use either of the other organizations;
that is, Synthesis espouses a domain-driven organizational model but does not mandate it.

The other approaches to domain analysis do not discuss this matter explicitly. KAPTUR's developers
plan to use it in a project-driven organization: they will support reuse in a project working in the SMEX
(Small Explorer) domain.

No approach conforms strictly to one organizational model. As such, this criterion is not useful for
determining which approach to use. The Consortium includes it because it feels it is an important consid-
eration no matter which approach an organization chooses, and because it believes that, in the future,
domain analysis approaches will define processes that favor one organization more strongly than another.

5.1.9 THE APPRoAcH To REusE

In Lubars' approach, domain analysts use his ROSE-1 tool to enter abstract designs in a reuse library.
Application developers use ROSE-1 to search for existing designs that meet their needs. This is oppor-
tunistic reuse. They search based on matching of data flow types and properties, plus keywords in
function descriptions.

Prleto-Diaz also advocates opportunistic reuse, but with some differences. In his original approach,
application developers searched only for code. His newer approach has provisions for generic designs,
although without the refinement rules present in Lubars' approach. In both cases, his domain model
organizes information according to a faceted classification, a simple but proven technique for locating
information (Lubars claims that data flow properties are similar to faceted classification).

45

S. Applyg the Criteria

FOD~s approach to reuse is also opportunistic. Application developers locate and refine design
structures. The features model guides refinement, mapping features to parts of the generic models
and thereby indicating whether they are present in a given application. FODA has no inherent mecha-
nism for categorizing parts other than what the features model implies. FODA therefore is more ap-
propriate as a basis for determining the design of an application (which was one of its goals) than as a
means to locate individual parts within a domain (Prieto-Diaz's analysis seems better suited to this).

In Synthesis, domain analysis yields a decision model and an application development process based
on the decision model. The decision model, in essence, describes solhtions to problems in the domain;
in other words, the range of expressible decisions is the set of all implemented solutions. The process
of application development amounts to resolving decisions on which problem to solve. During domain
analysis, the model is mapped to adaptations of components. This mapping lets application develop-
ers mechanically identify, obtain, and adapt components based on the information in the decision
model. Synthesis therefore supports systematic reuse.

KAPTUR also supports systematic reuse, although in a different way. Synthesis systematizes reuse
based on decisions that application developers need to make about applications in a domain.
KAPTUR systematizes reuse in terms of design decisions. Domain analysis yields a mechanical pro-
cess that application developers use for refining designs into implementations. The application devel-
opers must have already determined the appropriate design structure, a task that would be part of
domain engineering in Synthesis, not application development.

Jaworskd also advocated systematic reuse. Domain analysts would determine a process for transforming
the generic requirements into implementations. Application developers would use this process by
supplying values for the generic parameters of objects in a domain.

5.1.10 THE PRIMARY PRODUCT OF DOMAIN DEVELOPMENT

All approaches except Synthesis have a reuse library as the primary product of domain development.
However, the content and use of the library varies between approaches. Jaworski's information reposi-
tory is the most general-purpose library. It contains any domain information deemed potentially rele-
vant, a huge amount of material for a sizeable domain-but all potentially useful in the
problem-solving process. The other approaches have more specific needs and place less material in
the library. Prieto-Diaz's products center around what his indexing scheme can describe. The library
supports parts retrieval. Lubars' approach and KAFTUR are both built around automated environ-
ments. Their libraries intend to support not only retrieval but refinement. FODA's creators had this
in mind as well, although they have not yet treated automation in detail.

In Synthesis, a reuse library is one product, but the application engineering process defines how to use
that library. It therefore shapes the library, rather than the other way around, and is the primary product.

5.2 BENEFIT OF THE COMPARISON CRITERIA

A motivation for this study has been to analyze the feasibility of a unified approach to domain analysis
applicable across domains and across organizations. This analysis led to the identification of several
criteria for comparing the approaches which organizations can use not only to assess the possibility
of a unified method, but, as stated in the introduction, to help practitioners discover which approach
best meets their needs.

46

5. Applying the Criteria

The practical benefit of this result is of utmost importance to any organization planning or currently
implementing a reuse program. The ability to characterize a domain analysis method for selection
based on the needs and goals of an organization is a prerequisite to establishing a reuge-centered soft-
ware development process. Domain analysis products are key components in this process. A reuse
library, for example, is essential for reusing components, and an architecture model is essential for
guiding the composition of new systems. The selection of the proper domain analysis process can
determine the success or failure of a reuse program.

The Consortium selected the criteria from what it considered to be the basic characteristics of the
domain analysis approaches surveyed. It placed special emphasis on the selection of the value names
assigned to distinct attributes to facilitate their association to specific organization requirements. The
criterion for "purpose and nature of domain analysis" has the values repository, software specifica-
tion, and process specification. If an organization is, for example, at an SEI maturity level 4 (managed)
(Humphrey 1989), then a domain analysis process that focuses on process specification will be more
desirable for their reuse program than one whose focus is on a repository.

Although an ideal outcome of this study would be a set of guidelines on how to apply these criteria
to given organization requirements, objectives, maturity level, resources, and the like, the criteria pres-
ented are generic enough to be applicable without guidelines. A further effort should concentrate on
characterizing organization attributes and propose guidelines to map those attributes to the comparison
criteria to provide a systematic and more formal selection process.

47

5. Applying the Criteria

This page intentionally left blank.

48

6. CONCLUSIONS

This report concludes by discussing what the Consortium learned from this study, in terms of the four
goals given in the introduction.

6.1 IS A UNIFIED DOMAIN ANALYSIS APPROACH FEASIBLE?

Using a unified domain analysis approach implies that one believes the approach can meet a broad
range of analysis needs. The approach should accommodate all permutations of the contextual factors
discussed in Section 1.3, or at least all those relevant to an organization. Thus the approach must be
responsive to the variety of business needs, the evolving software process, the changes in domain
knowledge, etc., that are all part of an organization's infrastructure.

It seems clear that, among the approaches surveyed, no approach is "best." One approach may be
better suited to a given organization's needs than any other (see Section 6.2), but organizations have
widely different goals. No existing approach seems able to satisfy so broad a range of goals that the
Consortium could call it better than others. Therefore, a unified domain analysis approach must not
be an existing approach, but some amalgamation of concepts from approaches.

The Consortium believes that a unified approach is not feasible or even desirable. The problem, in
brief, is that a unified approach assumes that the ways information is obtained and used depend more
on the approach than on the domain and the organization using it. Experience strongly suggests that
the reverse is true. Library scientists advocate faceted classification because experiments ha,'e shown
its efficacy in organizing information. Therefore, a unified domain analysis approach must yield a
faceted classification if an organization interested in categorizing parts for direct look-up is ever to
use it. Some organizations will certainly want this, but others may not care. The domain analysts,
unfortunately, pay the price of having to decide which features of the approach to use and which to
ignore. In short, although some criteria in Section 4 are related, there are many possible combinations
of characteristics. To place all of them in a single, unified approach would complicate that approach
to the point of incomprehensibility.

This conclusion is perhaps no surprise. No requirements specification notation, design method,
programming language, or CASE tool has proven to be best, or even well-suited to all areas. There
is no reason to suppose that a single domain analysis approach would either. An important area of
future research will be learning how to tailor approaches to specific ends.

6.2 SELECTING THE RIGHT DOMAIN ANALYSIS APPROACH

Assuming there is no point in creating a unified approach, practitioners must continue to select from
among existing ones. An organization can base its selection on the context in which it will use a domain
analysis process. The factors that make up this context are things that organizations will want to

49

6. Conclusions

analyze in any case to improve their software productivity and to create useful, marketable products.
The Consortium therefore feels justified in basing the criteri~a on them.

The selection process is still qualitative, not quantitative. Quantifying certain contextual factors is
difficult. It is hard to measure the state of domain knowledge, for instance, or to state business objec-
tives precisely enough to relate them directly to software needs. However, organizations can use the
criteria to reject approaches that are wrong for their objectives. The right approach may then come
down to such mundane factors as availability of automated support in the organization's environment
or to personal tastes in dogmatic areas (e.g., whether domain analysts prefer object-oriented approaches).

The criteria are not intended as final, but rather based on the current state of the art. The Consortium
will continue to refine them as our understanding of domain analysis expands.

6.3 TRENDS IN DOMAIN ANALYSIS RESEARCH

Domain analysis researchers have shifted their emphasis from code reuse to reuse of more abstract
structures. Several years ago, Booch's Ada parts (Booch 1987) and the Common Ada Missile Packages
(CAMP 1987) were state-of-the-art domain analysis products. Now the trend is to have analysts con-
centrate on design architectures, requirements and document components, and other products that
map, manually or automatically, to design. Domain analysis does not ignore code reuse, but now it
is seldom the starting point for analysis, nor the most visible end product.

This trend probably reflects increased confidence in the ability to analyze domains. This report has
argued that domain analysis for code reuse is in some sense the easiest kind, but it also has the least
potential payoff. The trend toward the study of requirements and design structures indicates research-
ers now believe that people can create useful abstractions of such structures, which have a higher pay-
off. Adopting this view will require a more encompassing view of reuse than is usual today. Just what
is meant by reusing a design is still not widely accepted.

6.4 COMPARING AND CONTRASTING APPROACHES TO DOMAIN ANALYSIS

A key benefit of this study is a framework for comparing and contrasting domain analysis approaches.
The criteria presented are an initial set that need further refinement and expansion. They can evolve,
eventually, into a set of formal guidelines, not just for systematically selecting domain analysis meth-
ods, but for guiding the development of new methods aimed at meeting specific criteria. Organizations
would customize these new domain analysis methods to support individual needs.

50

REFERENCES

Arango, Guillermo Domain Engineering for Software Reuse. Ph.D. Dissertation.
1988 Irvine, California: University of California, Department of

Computer Science.

Bailin, Sidney, and John Moore The KAPTUR Environment: An Operations Concept. Rockville,
1989 Maryland: CTA Incorporated.

Basili, Victor, Software Reuse: A Framework. Proceedings of the Tenth
H. Dieter Rombach, J. Bailey, Minnowbrook Workshop on Software Reuse. Blue Mountain Lake,
and B. Joo New York.
1987

Bollinger, Terry, and A Critical Look at Software Capability Evaluations. IEEE
Clem McGowan Software 8, 2:25-41 (July).
1991

Booch, Grady Software Components with Ada. Menlo Park, California:
1987 Benjamin/Cummings, Inc.

Burkhard, Neil, Jeff Facemire, Applying Synthesis in the Design Composer Domain.
James Kirby, and SPC-90078-MC. Herndon, Virginia: Software Productivity
James O'Connor Consortium.
1990

CAMP Common Ada Missile Packages. Technical Report, Product
1987 Presentation Literature. St. Louis, Missouri: McDonnell-

Douglas Corporation.

Coad, Peter OOA-Object-Oriented Analysis. Austin, Texas: Object
1989 International, Inc.

Cruickshank, Robert, and The Economics of Software Reuse, SPC-91128-MC. Herndon,
John Gaffney Virginia: Software Productivity Consortium.
1991

Devanbu, Premkumar, Ronald LaSSIE: a Knowledge-based Software Information System. In
Brachman, Peter Selfridge, and Domain Analysis and Software Systems Modeling. Edited by
Bruce Ballard R. Prieto-Diaz and G. Arango, 150-162. Los Alamitos,
1991 California: IEEE Computer Society Press.

51

Refernms

Frakes, William, and Classification, Storage and Retrieval of Reusable Components.
Paul Gandel Proc. 20th Annual HICSS, 530-535. Kona, Hawaii.
1987

Gomaa, Hassan A Software Design Method for Real-Time Systems.
1984 Communications of the ACM 27:938-949.

Humphrey, Watts Managing the Software Process. Menlo Park, California:
1989 Addison-Wesley.

Jaworski, Alan, Fred Hills, A Domain Analysis Process. DOMAIN ANALYSIS-90001-N.
Tom Durek, Stuart Faulk, and Herndon, Virginia: Software Productivity Consortium.
John Gaffney
1990

Kang, Kyo, Sholom Cohen, Feature-Oriented Domain Analysis (FODA) Feasibility Study,
James Hess, William Novak, CMU/SEI-90-TR-21. Pittsburgh, Pennsylvania: Software
dnd Spencer Peterson Engineering Institute, Carnegie-Mellon University.
1990

Lubars, Mitchell A Knowledge-Based Design Aid for the Construction of
1987 Software Systems. Ph.D. Dissertation. Urbana, Illinois:

Department of Computer Science, University of Illinois.

1991 Domain Analysis and Domain Engineering in IDeA. In Domain
Analysis and Software Systems Modeling. Edited by
R. Prieto-Diaz and G. Arango, 163-178. Los Alamitos,
California: IEEE Computer Society Press.

Lubars, Mitchell, and Knowledge-Based Software Design Using Design Schemas. In
M. Harandi Proceedings of the Ninth International Conference on Software
1987 Engineering, 253-262. Monterey, California.

Moore, John, and Sidney Bailin Domain Analysis: Framework for Reuse. In Domain Analysis and
1991 Software Systems Modeling. Edited by R. Prieto-Diaz and G.

Arango. 179-203. Los Alamitos, California: IEEE Computer
Society Press.

Neighbors, James The DRACO Approach to Constructing Software from
1984 Reusable Components. IEEE Transactions on Software

Engineering SE-10:564-573.

Pamas, David On the Design and Development of Program Families. IEEE
1976 Transactions on Software Engineering SE-2, 1:1-9.

Parnas, David, Paul Clements, The Modular Structure of Complex Systems. IEEE Transactions
and David Weiss on Software Engineering SE-11:259-266.
1985

52

Refernces

Prieto-Diaz, Rubin Domain Analysis for Reusability. Proceedings of COMPSAC87,
1987 23-29. Tokyo, Japan.

1990 Domain Analysis: An Introduction. Software Engineering Notes
15, 2:47-54.

1991 Reuse Library Process Model. Final Report for STARS Reuse
Library Program, Contract F1962-88-D-0032. Hanscom Air
Force Base, Massachusetts: Electronics Systems Division,
Air Force Systems Command.

Prieto-Diaz, Ruben, and Domain Analysis and Software Systems Modeling. Los Alamitos,
Guillermo Arango California: IEEE Computer Society Press.
1991

Ritchie, Dennis, and The UNIX Time-Sharing System. Comm. ACM 17, 7:365-375.
Ken Thompson
1974

Shlaer, Sally, and An Object-Oriented Approach to Domain Analysis. Software
Stephen MeUor Engineering Notes 14:66-77.
1989

Snodgrass, Jerry, Ted Davis, Synthesis: Status and Results of Studies. SYNTHESIS-
Neil Burkhard, Guy Cox, STUDIES-90041-P. Herndon, Vrginia: Software Productivity
Jeff Facemire, Fred Hills, and Consortium.
James O'Connor
1990

Software Productivity Synthesis Guidebook, SPC-91122-MC. Herndon, Virginia:
Consortium Software Productivity Consortium.
1991

Weiss, David Synthesis Operational Scenarios. SYNTHESISOPSCENARIOS-
1990 90038-N. Herndon, Virginia: Software Productivity Consortium.

53

References

This page intentionally left blank

54

